Zielsetzung:
In diesem Forschungsvorhaben soll ein neuartiges, recyceltes Aktivmaterial aus einer Stahllegierung für elektrische Maschinen (EMn) mithilfe eines innovativen, nachhaltigen Herstellungsverfahrens entwickelt werden. Die Grundidee des Projekts besteht darin, eine Recyclingroute für Blechpakete aus ausgemusterten Statoren und Rotoren von EMn sowie für den bei der Herstellung neuer Blechpakete anfallenden Blechschrott zu etablieren. Diese neue Recyclingroute zeichnet sich dadurch aus, dass die für neue EMn benötigten Statoren und Rotoren durch das Verpressen von Metallspänen hergestellt werden – anstelle des üblichen Weges über Verschrottung, Einschmelzen, Stranggießen sowie anschließendes Warm- und Kaltwalzen. Die Antragsteller verfolgen das Konzept, sämtlichen Schrott zu zerkleinern, die entstehenden Späne chemisch zu beschichten und anschließend durch ein Umformverfahren in die finale Geometrie von Stator- und/oder Rotorbauteilen zu verpressen. Das gepresste Bauteil kann dann als Aktivmaterial oder als Teil davon, z.?B. in einem EM oder in Transformatoren, eingesetzt werden.
Fazit:
Das gepresste Bauteil kann anschließend als Aktivmaterial oder als Teil davon verwendet werden, z.?B. in einer elektrischen Maschine (EM) oder in Transformatoren. Der daraus resultierende neuartige Werkstoff „Compacted Chip Magnetic Composite“ (CCMC) besteht aus recycelten, isolierten Blechspänen und ähnelt damit den heute bekannten weichmagnetischen Pulververbundwerkstoffen (SMC – Soft Magnetic Composites). Zur Validierung dieser Idee wird der Einfluss verschiedener Spangeometrien, deren Isolierung sowie weiterer Prozess- und Systemparameter im Herstellungsprozess untersucht. Die Ergebnisse dieser Forschung sollen dazu beitragen, den Einsatz von recyceltem Blechschrott in der Elektromobilität und anderen Anwendungen (z.?B. Transformatoren und/oder andere elektrische Maschinen zur Magnetfeldinduktion) zu verbessern und die Nachhaltigkeit von EMn zu erhöhen. Gelingt es, den Energiebedarf für das Recycling von EMn deutlich zu senken, kann dies einen wesentlichen Beitrag zur Reduzierung des CO2-Fußabdrucks zukünftiger elektrischer Maschinen leisten. Die in den Kreislauf zurückgeführten Motorkomponenten helfen dabei, den Verbrauch nicht erneuerbarer Rohstoffe sowie den Energiebedarf, die CO2-Emissionen und den Wasserverbrauch zu verringern.
Hintergrund: Obwohl Nanopartikel und Kolloide (NPC) als Vektoren für P-Verluste und P-Neuverteilungen in Waldsystemen fungieren, fehlen grundsätzlichen Erkenntnisse über den Zusammenhang zwischen steuernden Umweltfaktoren und dem Schicksal, Transport und der zusammensetzung von NPC und ihrer P-Beladung. Wir postulieren, dass hydrologisch bedingte NPC-Verluste und -umverteilungen eine dreifache Gefahr für das langfristige biogeochemische Recycling von P in Waldökosystemen und damit die Ökosystemernährung darstellen. Projektziel: Aufklärung der Bedeutung und Steuerung von NPC-Verlusten und -umverteilungen für die langfristige Effizienz des P-Recycling in Waldökosystemen. Projekt-Hypothesen: Mobile Kolloide in Waldökosystemen entstammen hauptsächlich dem organischen Oberboden (alle WPs), (ii) Laterale Flüsse vom kolloidalen P während Starkregenereignissen begrenzen langfristig die maximale P-Wiederverwertungseffizienz von Waldökosystemen (WP1), (iii) P ist überwiegend mit organischen Kolloiden assoziiert und größtenteils bioverfügbar, was eine weitere Limitierung der P-Wiederverwertung im Wald darstellt (WP2), (iv) Die Kolloidverlagerung in Wäldern führt zu P-reichen und P-armen Stellen (laterale Umverteilung) bzw. zu einem P-Transfer aus oberflächennahen organischen Horizonten zum mineralischen Unterboden und damit zu einer P-Festlegung in diesem Horizont (WP3), und (v) Abnehmende atmosphärische Einträge von organischen Säuren und Kalkung erhöhen den pH Wert und reduzieren das austauschbare bzw. gelöste Al3+ im Waldoberboden, was die Mobilisierung bzw. den Verlust von kolloidalem P fördert (WP4). Methodik: Wir werden die Konzentration und Zusammensetzung von Kolloiden in den Wasserproben i) aus den Streulysimetern, ii) aus dem lateralen Fluss in Bodeneinschnitte (trenches) und iii) aus den Oberläufen von Bächen an den Versuchsstandorten in Bad Brückenau, Conventwald, Vessertal und Mitterfels bestimmen. Die Kolloide werden mittels Feld Fluss Fraktionierung fraktioniert bzw. isoliert und in Kombination mit ICP-MS, TOC und TN Analyse, sowie TEM gekoppelt mit Energiedispersiver Röntgenspektroskopie charakterisiert. Aufgaben/Arbeitspakete: WP1: Entnahme von Wasserproben aus dem lateralen Fluss in Bodeneinschnitten (trenches) (mit Puhlmann/Weiler und Julich/Feger). Entsprechend unserer Hypothese sollte die Gesamtmenge von NPCs aus präferenziellen Fließwegen, dem lateralen Fluss und den Oberläufen der freigesetzten Menge aus der organischen Bodenoberschicht gleich sein. WP2: Untersuchung der Bioverfügbarkeit der NPC aus dem 'interflow' und den Oberläufen durch Inkubationsexperimente mit Enzymen um Phosphatester und Inositol-Phosphate nachzuweisen (mit Kaiser/Hagedorn/Niklaus). (Text gekürzt)