API src

Found 104 results.

Teilvorhaben: Entwicklung einer hochrepetierenden frequenzverdoppelten Strahlquelle

Das Projekt "Teilvorhaben: Entwicklung einer hochrepetierenden frequenzverdoppelten Strahlquelle" wird vom Umweltbundesamt gefördert und von Amphos GmbH durchgeführt. Das Vorhaben hat die Reduzierung der spezifischen Produktionskosten von Solarzellen auf Basis von kristallinem Silizium zum Ziel. Dieses Projekt fokussiert dabei die Emitter-Diffusion und das anschließende lokale Hochdotieren mittels Laser. Hier sollen durch innovative Prozesse und Anlagen sowohl der Solarzellenwirkungsgrad als auch der Anlagendurchsatz erhöht werden.

Teilvorhaben: Prozessentwicklung und Integration

Das Projekt "Teilvorhaben: Prozessentwicklung und Integration" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Solare Energiesysteme durchgeführt. Ziel des Vorhabens ist die Entwicklung von Hochdurchsatz-Verfahren zur Diffusion und Laserdotierung zur Herstellung von Hocheffizienz-Emittern mit niedriger Ladungsträgerrekombination. Diese Technologien sollen es ermöglichen das Effizienzpotential von homogenen und selektiven Hocheffizienz-Emittern, welche erhöhte Diffusions-Prozesszeiten bzw. komplexere Prozessabläufe mit sich bringen, wirtschaftlich zu erschließen.

Teilprojekt DLR e.V.

Das Projekt "Teilprojekt DLR e.V." wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Technische Thermodynamik durchgeführt. Gesamtvorhaben: Im Vordergrund von Go4Hy2 stehen zwei, für die Wettbewerbsfähigkeit eines emissionsfreien, voll-elektrischen BZ-Batt-Hybrid-Antriebsstrangs wesentlichen Kernkriterien: i.G. zu einem Verbrenner-Hybriden vergleichbare Leistungsdichte mit hoher Ausfallsicherheit und ein Scale-Up fähiges System inkl. E-Motor und Leistungselektronik in relevanter Leistungsklasse von 250kW. Das bisherige Niederdruck-Stack- BZ-Hybrid-System (ca. 120kW inGo4H2) soll hierbei zu einem druckaufgeladenen BZ-HybridSystem (ca. 250kW in Go4Hy2), weiterentwickelt werden. Weiterhin wird auf gesteigerte Leistungsdichten und Skalierbarkeit im schuberzeugenden Modul (LE und Motor) Wert gelegt, sowie eine verlässliche Steuerung der Systeme auf Basis luftfahrtzertifizierter Hardware angestrebt. Ergänzt werden die Arbeiten durch Konzepte für Hybrid-Systemarchitekturen zur Auslegung eines BZ-Hybrid-Regionalflugzeugs. Teilvorhaben: Es soll ein 250 kW Antriebssystem auf Basis eines emissionsfreien BZ-Batterie-Hybrid für ein Passagier-Flugzeug mit bis zu 4 Personen entwickelt werden. Es soll aus dem Automotive-Bereich verfügbare druckaufgeladene BZ-Technologie auf die Luftfahrtanwendung übertragen werden. Bisherige Systemlösungen zu Modularität, Kühlung, etc. aus der Niederdruck-BZ-Technologie können teilweise übernommen und ggfs. angepasst werden. So soll eine Antriebslösung mit einer 2-3fach höheren Leistungsdichte wie bisher entstehen die als Ausgangspunkt für die Skalierung auf größere Leistungen geeignet ist und über eine hohe Ausfallsicherheit verfügt. Dadurch wird im Vergleich zu konventionellen Verbrenner-Antrieben, neben der Emissionsfreiheit ein weiterer entscheidender Vorteil erreicht. Die Integration sowie Test und Demonstration der Technologie mit erfolgt in einer fliegenden Testplattform. Bereits während der Entwicklung werden entsprechende Anforderungen und Sicherheitsanalysen des nötigen Permit-to-fly insbesondere betreffend der BZ-Technologie erbracht.

Teilprojekt H2Fly GmbH

Das Projekt "Teilprojekt H2Fly GmbH" wird vom Umweltbundesamt gefördert und von H2Fly GmbH durchgeführt. Vorhaben: Im Vordergrund von Go4Hy2 stehen zwei, für die Wettbewerbsfähigkeit eines emissionsfreien, voll-elektrischen BZ-Batt-Hybrid-Antriebsstrangs wesentlichen Kernkriterien: i.G. zu einem Verbrenner-Hybriden vergleichbare Leistungsdichte mit hoher Ausfallsicherheit und ein Scale-Up fähiges System inkl. E-Motor und Leistungselektronik in relevanter Leistungsklasse von 250kW. Das bisherige Niederdruck-Stack- BZ-Hybrid-System (ca. 120kW inGo4H2) soll hierbei zu einem druckaufgeladenen BZ-HybridSystem (ca. 250kW in Go4Hy2), weiterentwickelt werden. Weiterhin wird auf gesteigerte Leistungsdichten und Skalierbarkeit im schuberzeugenden Modul (LE und Motor) Wert gelegt, sowie eine verlässliche Steuerung der Systeme auf Basis luftfahrtzertifizierter Hardware angestrebt. Ergänzt werden die Arbeiten durch Konzepte für Hybrid-Systemarchitekturen zur Auslegung eines BZ-Hybrid-Regionalflugzeugs. Teilvorhaben: Die H2Fly wird dabei einschlägige Verfahren anwenden um Sicherheitsrisiken des Antriebsstrangs, der Integration und des Flugbetriebs zu analysieren und durch Entwicklung neuer Anforderungen und neuer Systemlösungen zu mittigeren. Dies wird durch Begleitung der Entwicklungsarbeiten während Planung, Entwurf, Vorentwicklung und Test realisiert. Hierbei werden insbesondere z. T. in der Luftfahrt bisher nicht definierte sicherheitstechnische Anforderungen an Systeme, Funktionen, Architekturen und Integration entwickelt und aufgestellt. Dabei werden Sicherheitskonzepte bzgl. funktionaler Sicherheit und Gefährdung für diese Antriebsstränge und geeignete Systemarchitekturen entwickelt. Weiterhin werden Testprozeduren und Erprobungskampagnen des Antriebsstrangs entwickelt und begleitet, insbesondere werden dabei auch Erprobungsflüge mit der Hy4 begleitet.

Teilprojekt 4

Das Projekt "Teilprojekt 4" wird vom Umweltbundesamt gefördert und von Hochschule Geisenheim University, Zentrum für Angewandte Biologie, Institut für Bodenkunde und Pflanzenernährung durchgeführt. Umweltverträglichkeit und Effizienz verschiedener integrierter Anbausysteme, i.e. Futterpflanzen-Monokulturen und an Agroforestry/Intercropping angelehnte Verfahren werden evaluiert. Ziel ist die Identifizierung der optimalen Kombinationen aus Ertragsleistung und Umweltverträglichkeit. Im Fokus stehen die Entwicklung eines robusten Niederdruck-Bewässerungssystems, die Minimierung der Wasserverluste, agronomische und technische Maßnahmen zur Vermeidung von Bodenversalzung und die Ertragsoptimierung. Dazu werden u.a. pflanzen- und bodenbezogene Parameter analysiert und die Ergebnisse an die lokalen Akteure vermittelt. Auf Grundlage der Ist-Zustandsanalyse (Wasser, Boden, technische Infrastruktur) wird das Bewässerungssystem dimensioniert, konzeptioniert und entwickelt. Dies beinhaltet Technik, Steuerung und Effizienz der Bewässerung. Zur Leistungsvalidierung wird ein Bewässerungsversuch angelegt. Das neue System unter Einsatz des vorgeklärten Pondwassers wird der etablierten Furchenbewässerung gegenübergestellt. Für eine Mais-betonte Monokultur werden Ertrag, Qualität, Wasser- und Nährstoffnutzungseffizienz ermittelt. Die Wasserverteilungshomogenität und Wasserverluste sowie der Versalzungsgrad und die Schadstoffanreicherung werden erfasst. Zur Untersuchung der Eignung des Pondwassers, der Klärschlämme und verschiedener Kultursysteme werden die Kulturansätze in Feldversuchen auf Kleinparzellen verglichen. Dazu werden regelmäßig Daten zur Pflanzenphysiologie und -leistung, Ernährungsstatus, phänotypische Merkmale, Schädlingsbefall und Qualitätsparameter erhoben. In mehreren iterativen Optimierungsschritten soll eine 'best practice' für die Bewässerung mit Pondwasser identifiziert werden. Um die verfügbaren Ressourcen (Wasser & Nährelemente) möglichst vollständig zu nutzen und Austräge in die Umwelt auszuschließen wird ein großflächiger Anbau durchgeführt. Entlang des Gefälles erfolgt eine Staffelung der Kultursysteme nach Wasserstresstoleranz.

Teilvorhaben: 1.3b, 1.5b, 3.1b, 3.5 und 4.8b

Das Projekt "Teilvorhaben: 1.3b, 1.5b, 3.1b, 3.5 und 4.8b" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Thermische Strömungsmaschinen und Maschinenlaboratorium durchgeführt. Die ursprünglich für konstanten Betrieb ausgelegten Turbomaschinen müssen heute im Verbund mit Erneuerbaren Energien neue Fahrweisen bewerkstelligen (häufige Start-/Stopp-Zyklen, Off-Design-Betrieb, schnelles Anfahren). Die geforderte Flexibilität geht bei den heutigen Turbomaschinen einher mit höherem Verschleiß, großen Wirkungsgradeinbußen im Teillastbereich und einer verkürzten Lebensdauer. Eine Ertüchtigung soll durch die im folgenden genannten Arbeitspakete erreicht werden. In AP1.3b werden kombinierte experimentelle und numerische Untersuchungen zum verbesserten Verständnis von selbst- und zwangserregten Schwingungen in Niederdruck-Endstufen durchgeführt, um effiziente und betriebssichere Beschaufelungen auslegen zu können. Ziel von AP1.5b ist es, effiziente und sichere axial-radial Diffusoren mittels numerischer Strömungssimulationen auslegen zu können. Hierfür werden für zwei verschiedene Konfigurationen umfangreiche Simulationen durchgeführt und mit von detaillierten Messdaten validiert. Des Weiteren erfolgt eine Untersuchung der Interaktion von Spaltleckage und Hauptströmung. In AP3.1b sollen lokale Wärmeübergangseigenschaften bezüglich der Strömungs- und Rotationskräfte durch optische Messverfahren in Turbomaschinenkühlsystemen bei relevanten Versuchsbedingungen experimentell analysiert werden. In AP3.5 werden Prüfkonzept und bestehender Prüfstand für die Prüfung von Endstufenschaufeln unter betriebsähnlichen Belastungen unter Berücksichtigung von Kontaktverhalten und Vorzyklierung erweitert. Gezielte experimentelle Untersuchungen werden an modifizierten realen Schaufeln durchgeführt. Bestehende strukturmechanische Auslegungsregeln der Schaufelfuß-/Rotornutanbindung werden weiterentwickelt und mittels experimenteller Daten verifiziert. In AP4.8b soll die numerische Berechnung von Innenströmungssystemen durch neuartige verbesserte Turbulenzmodelle, die auf maschinellen Lernmethoden basieren, für unterschiedliche Randbedingungen verbessert werden.

ProCFK - Plasmaverfahren für permanente Trennschichten in CFK - Formen

Das Projekt "ProCFK - Plasmaverfahren für permanente Trennschichten in CFK - Formen" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung durchgeführt. Das Vorhaben ist Teil des Verbundes ProCFK. Ein Teilziel ist die Erhöhung der Wirtschaftlichkeit, Qualitätssicherheit und Umweltverträglichkeit bei der Herstellung von Leichtbaustrukturen aus CFK für den Flugzeugbau durch Einsatz von Formen aus CFK. Der Beitrag des vorliegenden Vorhabens ist, bei der Herstellung von CFK-Laminaten die derzeitigen Formtrennmittel durch Einsatz permanenter, nicht-übertragender Trennschichten, hergestellt durch Plasmapolymerisationsverfahren, auf den CFK-Formen zu ersetzen. Die Arbeiten sollen den Nachweis erbringen, dass A) Niederdruck(ND)-Plasmen zur Herstellung und Reparatur derartiger Trennschichten auf 'kleinen' Formen und B) Atmosphärendruck(AD)-Plasmen nach dem PlasmaTreat-Verfahren (potenzialfreies Plasma aus Düsen, roboterführbar) zur Herstellung und Reparatur derartiger Trennschichten auf 'großen' Formen aus CFK für den Luftfahrzeugbau geeignet sind. Der Nachweis erfolgt durch Demonstration der technischen Machbarkeit und der Einsparmenge an flüssigen Trennmitteln. Einsatz: A) auf (trennmittelfreien) Produktionsformen im Flugzeugbau und B) auf Formgebungswerkzeugen in der kunststoffverarbeitenden Industrie, besonders KMU.

Teilprojekt 1: Analytik von Fouling und Minimierung

Das Projekt "Teilprojekt 1: Analytik von Fouling und Minimierung" wird vom Umweltbundesamt gefördert und von Universität Karlsruhe (TH), Kompetenzzentrum für Materialfeuchte durchgeführt. Es soll ein standardisierbares Vorgehen zur Charakterisierung des Foulingpotentials unter erstmaliger Berücksichtigung der partikulären, allgegenwärtigen Inhaltsstoffe von Rohwasser erarbeitet werden, die die Leistungsfähigkeit von Membrananlagen vermindern. Die Kenntnis des Foulingpotentials erlaubt die Erhöhung der Effizienz von Membrananlagen. Teilprojekt I bearbeitet die Adaption von hochempfindlichen Nachweisverfahren für Kolloide in verschiedenen wässrigen Größenfraktionen sowie Oberflächenanalysen zur Ermittlung des Foulingpotentials. Nachweis von Kolloiden: Mittels höchstempfindlicher LIBD werden bisher nicht detektierbare Nano-Partikel quantifiziert und mit dem Membranfouling korreliert. Membranoberflächenanalytik: Mittels ESEM und Feuchtemesstechnik wird unter nicht-invasiven Bedingungen das Fouling auf Membranen charakterisiert. Entwicklung einer Methodik zur Charakterisierung des Foulingpotentials von mittels Membranfiltration aufgereinigten Wassers. Die Kenntnis des Foulingpotentials dient bei der Dimensionierung/Optimierung von Anlagen dazu, durch geeignete Maßnahmen (Vorbehandlung, Spülchemikalien, Spülprogramm) deutliche Kostenersparnis zu erzielen.

Capture and Processing Low Pressure Associated Gas from the Neft Dashlari and Palchiq Pilpilassi Oil Fields (Azerbaijan)

Das Projekt "Capture and Processing Low Pressure Associated Gas from the Neft Dashlari and Palchiq Pilpilassi Oil Fields (Azerbaijan)" wird vom Umweltbundesamt gefördert und von GFA Envest GmbH durchgeführt. The project aims at the recovery and utilization of low pressure associated gas from oil wells. In the absence of the project associated gas would be flared or vented causing negative environmental impact and contributing to global warming. By using the Clean Development Mechanism of the Kyoto Protocol the project participants invest in the recovery, compression, transportation and utilization of the low pressure gas, thus, replacing other fossil fuels at end-users. The improvement of the associated gas utilization rate achieved by the project activity simultaneously reduces emissions of greenhouse gases (GHG) into the atmosphere. Services provided: Elaboration of the project preparation study: additionality assessment, revision of the Project Idea Note, assessment of completeness of documentation required for preparation of PDD; CDM project development: preparation of the Project Design Document (PDD); Assistance to the project participants during the validation process; Capacity building for the project participants in preparation of monitoring reports and verification of Certified Emission Reductions (CER); Review and revision of monitoring reports and assistance to the Client in responding questions/comments raised by the DOE.

Teilprojekt 4: Begleitung und Analytik

Das Projekt "Teilprojekt 4: Begleitung und Analytik" wird vom Umweltbundesamt gefördert und von Technische Universität Berlin, Institut für Bauingenieurwesen, Fachgebiet Siedlungswasserwirtschaft durchgeführt. Das Ziel ist die Entwicklung einer dezentralen Low-Energy-Verfahrenskombination aus Bodenfilter, Membranfiltration und belastungs- und nutzungsspezifisch geregelter UV-Desinfektion zur Grauwasseraufbereitung. Die zu entwickelnde Verfahrenskombination soll in Hotels, Einzelhäusern, Sportanlagen und Gebäudekomplexen insbesondere in arid geprägten Regionen zum Einsatz kommen und benutzerspezifische Qualitäten von Betriebswasser erzeugen. Dabei schließt das zu entwickelnde Gesamtsystem die Lücke zwischen naturnahen Reinigungsverfahren mit geringem Energie- aber hohem Platzbedarf und den technischen Kompaktanlagen mit erhöhtem Energie- und Wartungsbedarf. Der gestapelte, unbepflanzte Bodenfilter von Ecoglobe, eine Low-Pressure-Membran von Martin Membrane System und eine UV-Desinfektion bilden dabei das verfahrenstechnische Herzstück. Die Installation der Systeme ermöglicht eine gravimetrische Beschickung bis zum Ablauf der UV-Desinfektion. Ein weiteres Energieeinsparpotential stellen schwankende Belastungen als auch unterschiedliche nutzungsspezifische Qualitätsanforderungen dar. Ein neuer innovativer biooptischer Sensor vom OUT e.V. misst in Echtzeit den Verunreinigungsgrad des Wassers über Fluoreszenz als Indikator für dessen mikrobiellen Zustand und ermöglicht dadurch die Regelung der Reinigungsstufen abhängig von der hygienischen Belastung und der gewählten Nachnutzung des gereinigten Grauwassers im Sinne einer Smart Steuerung. Durch die wissenschaftliche Begleitung und Analytik soll die Datengrundlage für Grauwasser erweitert werden und die Funktionalität der Verfahrenskombination aufgezeigt werden. Gleichzeitig dient es der Kalibrierung und Einordnung der Sensorsignale.

1 2 3 4 59 10 11