Die immer weiter ansteigende Anzahl neuartiger Lasten (beispielsweise Elektrofahrzeuge und Wärmepumpen), aber auch weiterer dezentraler Erzeuger (beispielsweise Photovoltaikanlagen), führen zu einer deutlich veränderten Versorgungsaufgabe in deutschen Verteilungsnetzen. Um diesen Herausforderungen zu begegnen und Potenziale zur Kostensenkung aufzudecken, werden von den Netzbetreibern regelmäßig Zielnetzplanungen durchgeführt. Durch die Verwendung von spannungsebenenübergreifenden Analysen der Verteilungsnetze könnten technische und wirtschaftliche Synergien identifiziert und unnötige Investitionsmaßnahmen vermieden werden. Zu diesem Zweck wird im Rahmen des Forschungsvorhabens des Konsortiums, bestehend aus der Bergischen Universität Wuppertal, der IAV GmbH, sowie den assoziierten Partnern, eine softwaregestützte Methodik entwickelt, die eine spannungsebenenübergreifende Zielnetzplanung ermöglicht, bei der sowohl konventionelle als auch innovative Betriebsmittel und Planungsmethoden berücksichtigt werden. Die neue Methodik ermöglicht es, die gemeinsame Planung von Mittel- und Niederspannungsnetzen für unterschiedliche Entwicklungsszenarien automatisiert vorzunehmen. Zusätzlich werden Geostruktur- und Marktdaten verwendet, um eine präzise Abschätzung für zukünftige Standorte von neuartigen Lasten und Einspeisern zu ermitteln, zur Positionierung von Einzelstrangreglern oder zur Ermittlung neuer Kabeltrassen unter Berücksichtigung von geeigneten Untergründen. Die Ergebnisse der neuen Methode werden plausibilisiert, indem sie auf mehrere reale Mittel- und Niederspannungsnetze angewendet wird.
Eine im Auftrag des FNN im VDE erstellte Studie von Ecofys und dem IFK empfiehlt die teilweise Nachrüstung von Solarstromanlagen, um die sogenannte 50,2-Hertz-Problematik zu lösen. Bis zur Einführung einer Übergangsregelung im April 2011 mussten sich Stromerzeuger am Niederspannungsnetz beim Überschreiten einer Netzfrequenz von 50,2 Hertz vom öffentlichen Netz trennen. Würde der seltene Fall einer Überfrequenz mit der heute installierten PV-Leistung eintreten, ginge deren zu diesem Zeitpunkt eingespeiste Leistung schlagartig verloren. Das Nachrüsten älterer Solaranlagen soll für diesen Fall Vorsorge treffen und rund 9 GW installierte Leistung ertüchtigen. Die Studie mit dem vollständigen Titel Auswirkungen eines hohen Anteils dezentraler Erzeugungsanlagen auf die System-/Netzstabilität bei Überfrequenz und Entwicklung von Lösungsvorschlägen zu deren Überwindung wurde von Ecofys und dem Institut für Feuerungs- und Kraftwerkstechnik (IFK) der Universität Stuttgart verfasst. Auftraggeber sind die vier deutschen Übertragungsnetzbetreiber vertreten durch EnBW Transportnetze AG, der Bundesverband Solarwirtschaft e. V. (BSW-Solar) und das Forum Netztechnik/Netzbetrieb im VDE (VDE/FNN). Die Empfehlungen wurden am 1. September 2011 den Bundesministerien für Umwelt und für Wirtschaft vorgestellt.
emsys grid services GmbH möchte im Rahmen von digiTechNetz Mehrwertdienste zur Erzeugungs- und Verbrauchsprognose, als Trainingsgrundlage aber auch zusätzlich Hochrechnungen von dezentralen Energieerzeugern bereitstellen und weiterentwickeln. Die im Hoch- und Höchstspannungsnetz von emsys grid services GmbH bereits erfolgreich eingesetzten Methoden sowie Verfahren zur Last- sowie Erzeugungsprognose sollen im Laufe des Projektes an die Anforderungen des Niederspannungsnetzes angepasst werden. Dafür müssen geeignete Methoden gefunden werden, die es ermöglichen grundlegende Probleme im Niederspannungsnetz, wie fehlende Messwerte oder Zuordnungen dieser, zu überwinden. Für zukunftsorientierte Prognosen ist es für emsys grid services GmbH von großer Bedeutung, im Projektverlauf neue Verfahren zu entwickeln, um schnell wachsende Technologien, wie Akkus, die Elektromobilität oder Wärmepumpen realitätsnah zu modellieren und in den Prognoseprozess integrieren zu können.
Für die ambitionierten Ziele der Bundesrepublik Deutschland mit Blick auf die Energiewende und die Digitalisierung der Energiewende, ist es unabdingbar, die Netzführung für die Niederspannung aufzubauen. Im Niederspannungsnetz ist die Anzahl, aber auch die Heterogenität, angeschlossener Erzeuger und Verbraucher um Größenordnungen höher als in der etablierten Netzführung auf höheren Spannungsebenen. Durch die Verlagerung von Leistungskapazitäten von Verbrauchern (z.B. Ladesäulen) und Erzeugern (z.B. PV-Anlagen) in das Niederspannungsnetz, wird dieses in Zukunft ein zentraler Faktor beim Sichern der Versorgungsstabilität sein. Der Umbau des Energienetzes wird nur gelingen, wenn die Netzbetreiber in der Lage sind, den Zustand des Niederspannungsnetzes in Echtzeit zu erfassen und in der Netzführung entsprechend zu reagieren. Im Rahmen des Teilprojektes, soll eine zentrale Datendrehscheibe aufgebaut und erprobt werden, welche die Lösungen der weiteren Konsortialpartner integriert und den Datenaustausch in Echtzeit gewährleistet.
Besonders im städtischen Kontext stellen hydraulische Netze zur Wärme- und Kälteversorgung eine erprobte Technologie dar, da sie mit zentralen energetischen Wandlungseinheiten ausgestattet sind. Die Einbindung von regenerativen Quellen in diese zentralen Systeme ist erstrebenswert, jedoch technisch schwierig. Zwar gibt es eine ganze Reihe von Feldtests, die z.B. solarthermische Erzeugungseinheiten einzubinden versuchen, jedoch treten hier neue limitierende Elemente auf, welche den gemeinsamen Betrieb beeinflussen. Auch bei PV-Systemen existieren Hemmnisse, obwohl im urbanen Raum Dach- und theoretisch auch Fassadenflächen zur Verfügung stehen. PV-Systeme im urbanen Raum werden für eine ganzheitliche Betrachtung derzeit kaum mit Fernwärmesystemen in Bezug gesetzt, was zu einer starken Belastung des örtlichen Niederspannungsnetzes führt. Ziel muss es daher sein, Anlagentechnik sowie digitale Lösungen zu entwickeln, welche es ermöglichen, ein lokales Energiemanagementsystem zu realisieren und somit zur energetischen Versorgung der Liegenschaft mehr regenerative Energie in einem multienergetischen System zu integrieren. Ein digitalisierter Ein- und Ausspeisepunkt löst dieses Problem und ermöglicht prädiktiv den Wärme- und Kältebedarf in der Liegenschaft vorauszubestimmen. Zielorientiert muss der Ein- und Ausspeisepunkt so gestaltet sein, dass er möglichst eine Verknüpfung der Energiemanagementsysteme des Gebäudes und des übergeordneten regionalen hydraulischen Netzbetreibers aufweist. Weiterhin muss es möglich sein, verschiedene dezentrale Systeme anzubinden. Im Rahmen des Forschungsvorhabens wird die TU Dresden an der Systemanalyse arbeiten, welche sich besonders auf die Sekundärtechnologie, d.h. die Technologie im Gebäude bezieht. Des Weiteren werden messtechnische Untersuchungen des zu entwickelnden Prototyps im Combined Energy Lab 3.0 durchgeführt.'
Besonders im städtischen Kontext stellen hydraulische Netze zur Wärme- und Kälteversorgung eine erprobte Technologie dar, da sie mit zentralen energetischen Wandlungseinheiten ausgestattet sind. Die Einbindung von regenerativen Quellen in diese zentralen Systeme ist erstrebenswert, jedoch technisch schwierig. Zwar gibt es eine ganze Reihe von Feldtests, die z.B. solarthermische Erzeugungseinheiten einzubinden versuchen, jedoch treten hier neue limitierende Elemente auf, welche den gemeinsamen Betrieb beeinflussen. Auch bei PV-Systemen existieren Hemmnisse, obwohl im urbanen Raum Dach- und theoretisch auch Fassadenflächen zur Verfügung stehen. PV-Systeme im urbanen Raum werden für eine ganzheitliche Betrachtung derzeit kaum mit Fernwärmesystemen in Bezug gesetzt, was zu einer starken Belastung des örtlichen Niederspannungsnetzes führt. Ziel muss es daher sein, Anlagentechnik sowie digitale Lösungen zu entwickeln, welche es ermöglichen, ein lokales Energiemanagementsystem zu realisieren und somit zur energetischen Versorgung der Liegenschaft mehr regenerative Energie in einem multienergetischen System zu integrieren. Ein digitalisierter Ein- und Ausspeisepunkt löst dieses Problem und ermöglicht prädiktiv den Wärme- und Kältebedarf in der Liegenschaft vorauszubestimmen. Zielorientiert muss der Ein- und Ausspeisepunkt so gestaltet sein, dass er möglichst eine Verknüpfung der Energiemanagementsysteme des Gebäudes und des übergeordneten regionalen hydraulischen Netzbetreibers aufweist. Weiterhin muss es möglich sein, verschiedene dezentrale Systeme anzubinden. Im Rahmen des Forschungsvorhabens wird Danfoss am Teilvorhaben 'KI-Wärme im Gebäude' arbeiten, im Speziellen an der Nutzung von KI für Wärmebedarfsprognosen und zur optimierten Regelung der Wärme im Gebäude.
Origin | Count |
---|---|
Bund | 234 |
Land | 3 |
Type | Count |
---|---|
Förderprogramm | 231 |
Text | 2 |
unbekannt | 3 |
License | Count |
---|---|
geschlossen | 2 |
offen | 231 |
unbekannt | 3 |
Language | Count |
---|---|
Deutsch | 235 |
Englisch | 43 |
Resource type | Count |
---|---|
Archiv | 1 |
Datei | 2 |
Dokument | 2 |
Keine | 113 |
Webseite | 122 |
Topic | Count |
---|---|
Boden | 42 |
Lebewesen & Lebensräume | 65 |
Luft | 65 |
Mensch & Umwelt | 236 |
Wasser | 21 |
Weitere | 227 |