Geschaft. SenseBox befindet sich im Freien auf dem Balkon neben den Blumen.
Nagetierfallen, welche zur Schadnagerbekämpfung eingesetzt werden, unterliegen in Deutschland und den meisten europäischen Ländern keiner Zulassung. Auf dem Markt verfügbare Fallenprodukte unterscheiden sich daher stark in ihrer Güte. Seit 2021 existiert ein Leitfaden, welcher die Bewertung der Wirksamkeit und tierschutzgerechten Tötungswirkung von Schlagfallen ermöglicht. Es wurden nun Testmethoden und Bewertungskriterien für weitere Fallentypen entwickelt, z.B. Elektrokutionsfallen, Bolzenschlagfallen, CO2-Fallen. Fallen, welche diese Kriterien erfüllen sind eine wirksame Alternative zum Einsatz umweltgefährdender Rodentizide und könnten diese in bestimmten Anwendungsfällen ersetzen.
Multi-level monitoring of destabilized Sahelian regions connects field work in situ with detailed to semi-detailed analysis of vegetation structure (aerial photography), vegetation functional types and units of rational landcover (satellite images). Human impact on Sahelian vegetation in its regional variations is a main reason for continous destruction of former grazing lands. Regional dynamics of impact patterns are analysed by means of multi-stage remote sensing techniques and multi-spectral image classification. Integration of remotely sensed as well as of socio-economic data with geo-information systems is an important tool for modelling regional dynamics of degradation and desertification due to multi-thematic and multi-temporal input parameters. Intersection of geo-informations creates change detection databasas of Sahelian regions. Planning sustainable development will urgently need the appropriate use of the presented facilities of IGIS technology.
Oligozäne und Miozäne Sedimentfolgen aus der Taatsiin Gol und Taatsiin Tsagaan Nuur Region in der Zentral-Mongolei sind von außergewöhnlicher Bedeutung: hier liegen Basalte in Sedimenten der Hsanda Gol- und Loh Formation eingebettet, und die höchsten Fossilkonzentrationen finden sich zusammen mit Caliche und Paläoböden. Im Rahmen von Vorläuferprojekten wurde ein Stratigraphie-Konzept erarbeitet, das auf der Evolution von Säugetieren und auf radiometrischen Basalt-Altern beruht. 40Ar / 39Ar-Datierungen ergaben drei Altersgruppen von Basalten, eine Basalt I-Gruppe aus dem Früh-Oligozän (vor etwa 31.5 Millionen Jahren), eine Basalt II-Gruppe aus dem Spät-Oligozän (vor etwa 28 Millionen Jahren) und eine Basalt III-Gruppe aus dem Mittel-Miozän (vor etwa 13 Millionen Jahren). Das Taatsiin Gol-und Taatsiin Tsagaan Nuur Gebiet ist heute Schlüsselregion für die Oligozän-Miozän Stratigraphie der Mongolei und ist Bezugspunkt für internationale Korrelationen. Im neuen Projekt werden Klimaveränderungen im Oligozän und Miozän der Mongolei und ihre Auswirkungen auf Säugetiergemeinschaften und Lebensräume untersucht. Um diese Ziele zu erreichen müssen zahlreiche stratifizierte Caliche Lagen und Paläoböden beprobt und analysiert werden. Wir erwarten uns von Bodenanalysen und von der Interpretation der Signaturen stabiler Isotopen (?18O, ?13C) Hinweise auf Veränderungen von Paläoklima und Lebensräumen im Untersuchungsgebiet. Die stratifizierten und datierten Säugetierfaunen bestehen aus Amphibien, Reptilien und Säugetieren, wobei Hasenartige, Insektenfresser, Nagetiere und Wiederkäuer vorherrschen. Dieser reiche Fossil-Fundus bietet die Möglichkeit zur Analyse von einstigen Wirbeltier-Gemeinschaften, zu entwicklungsgeschichtlichen Studien und palökologischen Interpretationen. Besonderes Interesse gilt der Entwicklung und Funktion von Gebissstrukturen bei kleinen und großen Pflanzen fressenden Säugetieren. Hier kommen Methoden zur Anwendung (Microwear- und Mesowear-Analysen, Zahnschmelzuntersuchungen, Mikro-CT und 3D-Modellierung), die Rückschlüsse auf das Nahrungsspektrum und auf markante Veränderungen von Lebensräumen in dem untersuchten Zeitabschnitt von mehr als 20 Millionen Jahren erlauben. Die Feldarbeit in der Mongolei und die anschließenden wissenschaftlichen Studien werden in nationaler und internationaler Zusammenarbeit durchgeführt. Von diesen Synergien werden die Mongolischen und Österreichischen Forschungseinrichtungen und alle mitwirkenden Personen stark profitieren.
The present dataset from Germany is encompassed in the European Biodiversa BioRodDis project (Managing BIOdiversity in forests and urban green spaces: Dilution and amplification effects on RODent microbiomes and rodent-borne DISeases. Project coordinator: Nathalie Charbonnel, Senior researcher (DR2, INRAE), nathalie.charbonnel@inrae.fr - https://www6.inrae.fr/biodiversa-bioroddis). The project comes with the purpose to explore on a large scale the relationship between biodiversity of rodents, rodent-borne diseases dynamics and differences over time in a changing climate and it includes data of small terrestrial mammals from temperate forests and urban parks from the following countries: Belgium, France, Germany, Ireland and Poland. The present dataset includes records of small mammals (Rodentia) occurrences trapped in urbanised and forested areas in northeast Germany in the district of Potsdam (Brandenburg). Samplings and data collection took place throughout three years and during a total of four seasons: winter 2020, spring 2021, autumn 2021 and spring 2022. The number of sampling sites varied between 2 and 4 per seasons, with two main sites (Germany EastA and Germany EastB) being permanent in each sampling season. These variations are mainly due to the impact of SARS-CoV-2 pandemic regulations (2020, 2021) on the organisation and the execution of fieldwork and to the exclusion subsequently of forested sites with very low density of animals (≤10 individuals: Germany EastC, Germany EastB). The two main sampling sites represent different levels of anthropisation. The site Germany EastA is around the Botanical Garden belonging to the University of Potsdam with a mixture of sealed and wooded areas and a constant human presence while the site Germany EastB is a forested sub-urbanised area outside of the city composed by mixed coniferous forests, meadows, crossed by a main road and with occasional human presence (hunters, foresters). All animals were live captured (as in Schirmer et al., 2019) using a combination of Ugglan and Longworth traps for a total of 100-150 traps, depending on site and year. Traps were placed in 4 to 6 lines with 25m distance, and each line was composed by a total of 25 traps placed with 10m distance from each other. Fieldwork actions generally started with 1-4 days of pre-baiting followed by 1-10 days of trapping, according to efficiency of trapping and subprojects included. The sites Germany EastC and Germany EastD were excluded from the last two seasons because of very low trapping success during the previous seasons. All the traps were controlled daily during early morning hours and were activated again in the evening, with animals spending not more than eight hours in the trap. Baiting mixture consisted of oat flakes and apples and all traps were equipped with insulating material, like hay or wood wool. Taxonomical identification was determined in the field at species level according to morphology and previously recorded species occurrences in the sampling area (Dolch, 1995). Molecular identification of Apodemus flavicollis and Microtus individuals that were subsequently dissected was performed by the CBGP (France) using CO1 sequencing for Microtus species following Pagès et al., 2010, and DNA fingerprinting (AP-PCR) for Apodemus species (Bugarski-Stanojević et al., 2013). Dissections and body measurements were performed following the protocols described in Herbreteau et al., 2011. At the end of all seasons, a total of 620 occurrences of rodents was recorded, belonging to two main families (Muridae, Cricetidae) and four different species (Apodemus flavicollis, Apodemus agrarius, Myodes glareolus and Microtus arvalis). Additionally, for a subset of individuals (n=264), body measurements like weight, body length, head width, tail length and hind foot length as well as sexual maturity data were recorded. Animals were captured in accordance with the applicable international and institutional guidelines for the use of animals in research. The trapping and collection of rodents was performed under the permission of “Landesamt für Arbeitsschutz, Verbraucherschutz und Gesundheit Brandenburg (LAVG)“ (no. 2347-A-16-1-2020 for procedure, LUGV_RW7-4744/41+5#243052/2015 and N1 0424 for trapping) and “Landesamt für Umwelt Brandenburg (LfU)” (no. LFU-N1-4744/97+17#194297/2020, for sites and species exemptions). This project was funded through the 2018-2019 BiodivERsA joint call for research proposals, under the BiodivERsA3 ERA-Net COFUND programme, and coordinated by the German Science Foundation DFG (Germany). Citations: 1) Bugarski-Stanojević, V., Blagojević, J., Adnađević, T., Jovanović, V., & Vujošević, M. (2013). Identification of the sibling species Apodemus sylvaticus and Apodemus flavicollis (Rodentia, Muridae)—Comparison of molecular methods. Zoologischer Anzeiger - A Journal of Comparative Zoology, 252(4), 579–587. https://doi.org/10.1016/j.jcz.2012.11.004 2) Dolch, D. (1995). Naturschutz und Landschaftspflege in Brandenburg. 97. 3) Herbreteau, V., Jittapalapong, S., Rerkamnuaychoke, W., Chaval, Y., Cosson, J.-F., & Morand, S. (2011). Protocols for field and laboratory rodent studies. 56. 4) Pagès, M., Chaval, Y., Herbreteau, V., Waengsothorn, S., Cosson, J.-F., Hugot, J.-P., Morand, S., & Michaux, J. (2010). Revisiting the taxonomy of the Rattini tribe: A phylogeny-based delimitation of species boundaries. BMC Evolutionary Biology, 10(1), 184. https://doi.org/10.1186/1471-2148-10-184 5) Schirmer, A., Herde, A., Eccard, J. A., & Dammhahn, M. (2019). Individuals in space: Personality-dependent space use, movement and microhabitat use facilitate individual spatial niche specialization. Oecologia, 189(3), 647–660. https://doi.org/10.1007/s00442-019-04365-5
Nagetierfallen, welche zur Schadnagerbekämpfung eingesetzt werden, unterliegen in Deutschland und den meisten europäischen Ländern keiner Zulassung. Auf dem Markt verfügbare Fallenprodukte unterscheiden sich daher stark in ihrer Güte. Seit 2021 existiert ein Leitfaden, welcher die Bewertung der Wirksamkeit und tierschutzgerechten Tötungswirkung von Schlagfallen ermöglicht. Es wurden nun Testmethoden und Bewertungskriterien für weitere Fallentypen entwickelt, z.B. Elektrokutionsfallen, Bolzenschlagfallen, CO 2 -Fallen. Fallen, welche diese Kriterien erfüllen sind eine wirksame Alternative zum Einsatz umweltgefährdender Rodentizide und könnten diese in bestimmten Anwendungsfällen ersetzen. Veröffentlicht in Texte | 135/2025.
Im Naturschutzrecht gibt es zahlreiche Regelungen für besonders geschützte Arten. Ein Teil der besonders geschützten Arten ist zusätzlich streng geschützt, und für diese gibt es einzelne weitergehende Regelungen. Welche Arten damit gemeint sind bestimmen § 7 Abs. 2 Nr. 13 und Nr. 14 Bundesnaturschutzgesetz (BNatSchG). Dazu gehören die in den unten stehenden Rechtsquellen genannten Arten. Alle in den Anhängen A und B dieser Verordnung aufgeführte Arten sind besonders geschützt. Hierzu gehören neben vielen exotischen Artengruppen wie Orchideen, Kakteen, etliche Tropenholzarten, Papageien, Großkatzen, Bären, Affen, etliche Reptilien, Elefanten, Nashörner usw. auch der Wolf, der Fischotter, alle Greifvögel und Eulen und der Kranich. Die im Anhang A aufgeführten Arten sind zusätzlich streng geschützt, wozu neben Wolf und Fischotter auch alle europäischen Greifvögel und Eulen gehören. Weitere Informationen Zusätzlich sind alle in Europa natürlicherweise vorkommenden Vogelarten sind besonders geschützt. Dies betrifft den Weißstorch genauso wie den Haussperling oder die Amsel. Weitere Informationen Zusätzlich Alle Arten des Anhanges IV sind gleichzeitig besonders und streng geschützt. Dazu gehören heimische Arten wie Biber, Zauneidechse, Kammmolch, Rotbauchunke, Moorfrosch, Kleiner Wasserfrosch, Kreuz- und Wechselkröte, Laubfrosch und ein paar Libellenarten. Weitere Informationen Zusätzlich zu den vorstehend genannten “europäisch zu schützenden” Arten führt die BArtSchV (“Verordnung nach § 54 Absatz 1 BNatSchG”) in ihrer Anlage 1 weitere Arten auf, die auch als “national geschützte” Arten bezeichnet werden: alle heimischen Reptilien, Amphibien, Libellen, viele Gruppen und Arten der Schmetterlinge, Hautflügler und Käfer, auch einige Heuschrecken und Weichtiere sowie zahlreiche Pflanzenarten. Auch ist in der Anlage 1 vermerkt, ob die Arten besonders oder streng geschützt sind. Etliche heimische Vogelarten – die bereits durch die EU-Vogelschutzrichtlinie besonders geschützt sind – haben hier eine “Hochstufung” in den strengen Schutz erfahren. Weitere Informationen Unter den bei uns vorkommenden Arten verbleiben nicht viele, die keinen besonderen Schutz genießen. Dies sind neben domestizierten Formen (z.B. Straßentaube, Honigbiene) weitere dem Jagdrecht unterliegende Säugetierarten (z.B. Fuchs, Kaninchen, Wildschwein, Marder, Reh), etliche Kleinsäuger (viele Mäuse und Ratten) sowie einige Insektenarten wie Deutsche und Gemeine Wespe. Den Schutzstatus einer Art kann man komfortabel auf folgender Webseite des Bundesamtes für Naturschutz recherchieren: www.wisia.de.
DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]
DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]
Die Messstelle 300 m oh Moos (Messstellen-Nr: 3152) befindet sich im Gewässer Kleine Paar in Bayern. Die Messstelle dient der Überwachung des biologischen Zustands, des Grundwasserstands im oberen Grundwasserstockwerk.
| Origin | Count |
|---|---|
| Bund | 599 |
| Kommune | 1 |
| Land | 610 |
| Wissenschaft | 20 |
| Zivilgesellschaft | 3 |
| Type | Count |
|---|---|
| Chemische Verbindung | 8 |
| Daten und Messstellen | 265 |
| Ereignis | 29 |
| Förderprogramm | 214 |
| Gesetzestext | 7 |
| Infrastruktur | 1 |
| Taxon | 295 |
| Text | 122 |
| Umweltprüfung | 17 |
| unbekannt | 299 |
| License | Count |
|---|---|
| geschlossen | 231 |
| offen | 736 |
| unbekannt | 25 |
| Language | Count |
|---|---|
| Deutsch | 941 |
| Englisch | 348 |
| Resource type | Count |
|---|---|
| Archiv | 4 |
| Bild | 10 |
| Datei | 523 |
| Dokument | 115 |
| Keine | 264 |
| Multimedia | 2 |
| Unbekannt | 9 |
| Webseite | 142 |
| Topic | Count |
|---|---|
| Boden | 285 |
| Lebewesen und Lebensräume | 992 |
| Luft | 181 |
| Mensch und Umwelt | 968 |
| Wasser | 655 |
| Weitere | 914 |