SeaCause cruise SO186-2, aboard the RV Sonne, was carried out off northern Sumatra between 21st January and 24th February 2006, with mobilisation and demobilisation in Singapore and Penang, Malaysia, respectively. The geophysical survey acquired multichannel seismic data (MCS) using a 240 channel, 3 km Sercel streamer, and a tuned airgun array comprising 16 airguns with a total capacity of 50.8 litres. Bathymetry data, using the 12 kHz Simrad swath system, subseabed data using the hull mounted high resolution Parasound profiler together with gravity and magnetic data were also acquired. The main scientific objective of the survey was to investigate the southern part of the rupture zone of the 26th December 2004 9.3 magnitude earthquake, that caused the catastrophic tsunami of that date, and the rupture zone of the 8.7 magnitude earthquake of March 28th 2005. Specifically, to identify the segment boundary between the two earthquakes, as recognised by the distribution of their aftershocks. This was to be achieved by mapping the structure of the subduction zone including the dip angle of the subducted plate, the architecture of the accretionary prism and the structure of the forearc basins, particularly their strike-slip fault systems. Also to be investigated was whether there was a contribution to the 2004 tsunami from major submarine failures. During the survey a total of 5358 line kilometres of MCS data were acquired, mainly on lines oriented orthogonal to the subduction zone and extending from the ocean basin across the trench and accretionary prism to the forearc basins offshore Sumatra. The orthogonal survey lines were located on average approximately 40 km apart. The survey was planned using the bathymetry from the HMS Scott, RV Natsushima and RV Sonne cruises carried out in 2004. The morphology of the trench and sediment thickness varies from north to south. In the north the trench is poorly defined with shallow seabed dip but with sediment thickness of ~3.5 secs (TWT). The seafloor dips increase southwards, but sediment thickness decreases to ~2.5 secs (TWT) off Nias. Both the ocean basin and trench sediments are dissected by numerous normal faults, oriented subparallel to the plate boundary, with many that penetrate the oceanic crust. In the south Fracture Zones were identified. The structure of the deformation front on the seaward margin of the accretionary prism is highly variable. While the younges main thrust are predominantly landward vergent there are examples for seaward verging thrusts. The frontal fold develops in some cases already in the french while in most cases the frontal fold is at the beginning of the accretionary wedge. At some locations there are large sediment slumps on the frontal thrusts, the slope angle of the prism varies between 6 to 15 degrees, an angle that explains the large scale slumping. The width of the accretionary prism is widest in the north of the area at 140 km and narrows southwards until in the vicinity of the islands it is 40 km. In the north and central parts of the survey area the passage from the deformation front landwards into the older prism is rapid and the seabed gradients steep. The dip of the oceanic crust remains low and there is an obvious twofold increase (6-7 seconds TWT) in the sediment thickness. The basal decollement of the thrusts at the deformation front is in the lower sediment layer overlying oceanic basement. This is traced northeastward. A possible explanation for the increase in thickness of the prism is therefore considered to be the formation of a thrust duplex. Perhaps this is due to the subducted sediment thickness. In this region the prism forms a plateau and the internal pattern of the uppermost sediments shows striking similarities to the trench fill. Offshore of Simeulue Island the prism structure changes and it forms the more usually seen taper. The offscraped sediment forms a thinner section, the thrusts are more steeply dipping. The dip of the subducted plate here is greater than in the north. Three forearc basins were surveyed. In the north the western margin of the Aceh Basin lies along the West Andaman Fault. Within the main basin the sediments are internally undeformed. Farther south in the Simeulue Basin the northern and central parts there are numerous, active steeply dipping faults. In southern part of the basin there is a transpressional fault similarly to the Mentawi Fault off southern Sumatra. There are notable ‘bright spots’ in the upper section that may indicate the presence of hydrocarbon gas. There are also widespread Bottom Simulating Reflectors indication the presence of gashydrates and there may be also one double BSR. At the southern end of the surveyed area the Nias Basin may be subdivided along its length into two parts by a northnorthwest to southsoutheast trending carbonate platform development. The basin has had a varying subsidence history, in the south the subsidence was completed before the northern part started.
This product is based on Vaisala RS92 radiosonde measurements of temperature, humidity, wind and pressure that have been processed following the requirements of the GCOS Reference Upper Air Network (GRUAN) that were described in Immler et al. [2010]. The GRUAN data product file comply to the requirements of GRUAN in particular by providing a full uncertainty analysis. The uncertainty is calculated according to the recommendations of the “Guide for expressing uncertainty in measurement” [GUM2008]. The total uncertainty is assessed from estimates of the calibration uncertainty, the uncertainty of corrections and statistical standard deviations. Corrections are applied such that the data is bias free according to current knowledge.
This product is based on Vaisala RS92 radiosonde measurements of temperature, humidity, wind and pressure that have been processed following the requirements of the GCOS Reference Upper Air Network (GRUAN) that were described in Immler et al. [2010]. The GRUAN data product file comply to the requirements of GRUAN in particular by providing a full uncertainty analysis. The uncertainty is calculated according to the recommendations of the “Guide for expressing uncertainty in measurement” [GUM2008]. The total uncertainty is assessed from estimates of the calibration uncertainty, the uncertainty of corrections and statistical standard deviations. Corrections are applied such that the data is bias free according to current knowledge.
This product is based on Vaisala RS92 radiosonde measurements of temperature, humidity, wind and pressure that have been processed following the requirements of the GCOS Reference Upper Air Network (GRUAN) that were described in Immler et al. [2010]. The GRUAN data product file comply to the requirements of GRUAN in particular by providing a full uncertainty analysis. The uncertainty is calculated according to the recommendations of the “Guide for expressing uncertainty in measurement” [GUM2008]. The total uncertainty is assessed from estimates of the calibration uncertainty, the uncertainty of corrections and statistical standard deviations. Corrections are applied such that the data is bias free according to current knowledge.
This product is based on Vaisala RS92 radiosonde measurements of temperature, humidity, wind and pressure that have been processed following the requirements of the GCOS Reference Upper Air Network (GRUAN) that were described in Immler et al. [2010]. The GRUAN data product file comply to the requirements of GRUAN in particular by providing a full uncertainty analysis. The uncertainty is calculated according to the recommendations of the “Guide for expressing uncertainty in measurement” [GUM2008]. The total uncertainty is assessed from estimates of the calibration uncertainty, the uncertainty of corrections and statistical standard deviations. Corrections are applied such that the data is bias free according to current knowledge.
This product is based on Vaisala RS92 radiosonde measurements of temperature, humidity, wind and pressure that have been processed following the requirements of the GCOS Reference Upper Air Network (GRUAN) that were described in Immler et al. [2010]. The GRUAN data product file comply to the requirements of GRUAN in particular by providing a full uncertainty analysis. The uncertainty is calculated according to the recommendations of the “Guide for expressing uncertainty in measurement” [GUM2008]. The total uncertainty is assessed from estimates of the calibration uncertainty, the uncertainty of corrections and statistical standard deviations. Corrections are applied such that the data is bias free according to current knowledge.
Das Bundesamt für Strahlenschutz ist unter anderem verantwortlich für den Schutz der Bevölkerung vor schädlichen Wirkungen nichtionisierender Strahlung bei der Anwendung am Menschen entsprechend den Vorgaben des Gesetzes zum Schutz vor nichtionisierender Strahlung (NiSG). Hier wird insbesondere der Schutz vor schädlichen Wirkungen optischer Strahlung bei kosmetischen oder sonstigen Anwendungen außerhalb der Medizin betrachtet. Während seit 2012 für Solarien Anforderungen für den Betrieb im Rahmen der UV-Schutzverordnung (UVSV) geregelt sind, steht eine vergleichbare Regelung für den Einsatz von z.B. Lasern, IPL-Geräten oder anderen optischen Strahlenquellen mit vergleichbarer Wirkung noch aus. Die Therapie von Hautveränderungen durch die Anwendung von Laser- und Nicht-Laser-Lichtquellen (ALLS) hat in den letzten Jahren im medizinischen Bereich und darüber hinaus starke Verbreitung gefunden. Dies ist zum einen bedingt durch die immer breitere und kostengünstigere Verfügbarkeit entsprechender Therapiegeräte. Zum anderen versprechen solche Therapien auf ärztlicher Seite Zusatzeinnahmen aufgrund ihres IGeL-Status. Problematisch ist diese Entwicklung insofern, als ALLS zwar scheinbar relativ einfach durchzuführen ist (entsprechend wird sie auch häufig von Vertreibern der benötigten Geräte dargestellt). Bei genauer Betrachtung ist der korrekte Einsatz von ALLS jedoch voraussetzungsvoll und bedarf einer professionellen Schulung. Die Gründe dafür sind vor allem: • die heterogenen Anwendungsgebiete (von der Entfernung von Gefäßveränderungen über die Tattoo-Entfernung bis hin zur Hautglättung) • die jeweils sehr unterschiedliche Beschaffenheit der Haut (Hauttyp, Pigmentierung, ggf. Kontraindikationen) • die Vielzahl einsetzbarer Geräte mit höchst unterschiedlichen Wirkungen (z. B. YAG-Laser (gepulst/ungepulst), CO2-Laser, IPL) Die Nichtbeachtung oder falsche Einschätzung dieser Vielzahl von Parametern führt zu nicht-intendierten Nebenwirkungen. Die notwendige professionelle Schulung ist sowohl im ärztlichen als auch nicht-ärztlichen Bereich nicht immer gegeben, so dass die meisten Nebenwirkungen durch mangelnde Erfahrung oder fachliche Eignung entstehen – also leicht vermeidbar sind. HAMMES und KIMMING (2013) empfehlen deshalb dringend eine sorgsamere ALLS, die sich insbesondere durch eine Beschränkung auf das ärztliche Tätigkeitsfeld auszeichnet (also Dermatologen nur dermatologische Indikationen behandeln), durch eine standardisierte Qualifizierung inklusive Prüfung sowie durch eine Konkretisierung von Rechtsnormen, die ALLS als rein medizinische Therapie definiert – und damit aus dem nichtärztlichen kosmetischen Bereich entfernt. Um die Forderung nach einer Regulierung von ALLS empirisch zu unterfüttern, ist es sinnvoll, einen belastbaren Überblick über entstandene Nebenwirkungen, ihre Art, ihre Ursachen und auch ihre spezifische Verbreitung in den Anwender- und Empfängergruppen zu erstellen. Dazu wurden eine repräsentative Umfrage bei Nutzer*innen sowie eine zusätzliche Befragung bei professionellen Anwender*innen durchgeführt. Anhand der Ergebnisse dieser beiden Befragungen können Risiken bei der Anwendung optischer Strahlenquellen insbesondere durch Anwender*innen mit unterschiedlichem Ausbildungshintergrund (z.B. Ärzt*innen, Kosmetiker*innen) besser bewertet werden. Dies ist die Grundlage für die Erarbeitung einer Rechtsverordnung nach § 5 NiSG.
DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]
Rechnergestütztes Betriebsleitsystem
Fahrplandatenbank inkl. Haltestellendaten für die INSA-Auskunft
Origin | Count |
---|---|
Bund | 22 |
Land | 11 |
Type | Count |
---|---|
Förderprogramm | 5 |
Gesetzestext | 1 |
Text | 2 |
unbekannt | 15 |
License | Count |
---|---|
geschlossen | 7 |
offen | 7 |
unbekannt | 9 |
Language | Count |
---|---|
Deutsch | 15 |
Englisch | 7 |
unbekannt | 1 |
Resource type | Count |
---|---|
Archiv | 1 |
Dokument | 3 |
Keine | 7 |
Webseite | 13 |
Topic | Count |
---|---|
Boden | 5 |
Lebewesen & Lebensräume | 13 |
Luft | 13 |
Mensch & Umwelt | 21 |
Wasser | 5 |
Weitere | 21 |