<p>Die Landwirtschaft in Deutschland trägt maßgeblich zur Emission klimaschädlicher Gase bei. Dafür verantwortlich sind vor allem Methan-Emissionen aus der Tierhaltung (Fermentation und Wirtschaftsdüngermanagement von Gülle und Festmist) sowie Lachgas-Emissionen aus landwirtschaftlich genutzten Böden als Folge der Stickstoffdüngung (mineralisch und organisch).</p><p>Treibhausgas-Emissionen aus der Landwirtschaft</p><p>Das Umweltbundesamt legt im Rahmen des <a href="https://www.bmuv.de/gesetz/bundes-klimaschutzgesetz">Bundes-Klimaschutzgesetzes (KSG)</a> eine Schätzung für das Vorjahr 2024 vor. Für die Luftschadstoff-Emissionen wird keine Schätzung erstellt, dort enden die Zeitreihen beim letzten Inventarjahr 2023. Die Daten basieren auf aktuellen Zahlen zur Tierproduktion, zur Mineraldüngeranwendung sowie der Erntestatistik. Bestimmte Emissionsquellen werden zudem laut KSG der mobilen und stationären Verbrennung des landwirtschaftlichen Bereichs zugeordnet (betrifft z.B. Gewächshäuser). Dieser Bereich hat einen Anteil von rund 14 % an den Gesamt-Emissionen des Landwirtschaftssektors. Demnach stammen (unter Berücksichtigung der energiebedingten Emissionen) 76,0 % der gesamten Methan (CH4)-Emissionen und 77,3 % der Lachgas (N2O)-Emissionen in Deutschland aus der Landwirtschaft.</p><p>Im Jahr 2024 war die deutsche Landwirtschaft entsprechend einer ersten Schätzung somit insgesamt für 53,7 Millionen Tonnen (Mio. t) Kohlendioxid (CO2)-Äquivalente verantwortlich (siehe Abb. „Treibhausgas-Emissionen der Landwirtschaft nach Kategorien“). Das entspricht 8,2 % der gesamten <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>-Emissionen (THG-Emissionen) des Jahres. Diese Werte erhöhen sich auf 62,1 Millionen Tonnen (Mio. t) Kohlendioxid (CO2)-Äquivalente bzw. 9,6 % Anteil an den Gesamt-Emissionen, wenn die Emissionsquellen der mobilen und stationären Verbrennung mit berücksichtigt werden.</p><p>In den folgenden Absätzen werden die Emissionsquellen der mobilen und stationären Verbrennung des landwirtschaftlichen Sektors nicht berücksichtigt.</p><p>Den Hauptanteil an THG-Emissionen innerhalb des Landwirtschaftssektors machen die Methan-Emissionen mit 62,1 % im Schätzjahr 2024 aus. Sie entstehen bei Verdauungsprozessen, aus der Behandlung von Wirtschaftsdünger sowie durch Lagerungsprozesse von Gärresten aus nachwachsenden Rohstoffen (NaWaRo) der Biogasanlagen. Lachgas-Emissionen kommen anteilig zu 33,4 % vor und entstehen hauptsächlich bei der Ausbringung von mineralischen und organischen Düngern auf landwirtschaftlichen Böden, beim Wirtschaftsdüngermanagement sowie aus Lagerungsprozessen von Gärresten. Durch eine flächendeckende Zunahme der Biogas-Anlagen seit 1994 haben die Emissionen in diesem Bereich ebenfalls kontinuierlich zugenommen. Nur einen kleinen Anteil (4,5 %) machen die Kohlendioxid-Emissionen aus der Kalkung, der Anwendung als Mineraldünger in Form von Harnstoff sowie CO2 aus anderen kohlenstoffhaltigen Düngern aus. Die CO2-Emissionen entsprechen hier einem Anteil von weniger als einem halben Prozent an den Gesamt-THG-Emissionen (ohne <a href="https://www.umweltbundesamt.de/service/glossar/l?tag=LULUCF#alphabar">LULUCF</a>) und sind daher als vernachlässigbar anzusehen (siehe Abb. „Anteile der Treibhausgase an den Emissionen der Landwirtschaft 2024“).</p><p>Klimagase aus der Viehhaltung</p><p>Das klimawirksame Spurengas Methan entsteht während des Verdauungsvorgangs (Fermentation) bei Wiederkäuern (wie z.B. Rindern und Schafen) sowie bei der Lagerung von Wirtschaftsdüngern (Festmist, Gülle). Im Jahr 2023 machten die Methan-Emissionen aus der Fermentation anteilig 76,7 % der Methan-Emissionen des Landwirtschaftsbereichs aus und waren nahezu vollständig auf die Rinder- und Milchkuhhaltung (93 %) zurückzuführen. Aus dem Wirtschaftsdüngermanagement stammten hingegen nur 18,8 % der Methan-Emissionen. Der größte Anteil des Methans aus Wirtschaftsdünger geht auf die Exkremente von Rindern und Schweinen zurück. Emissionen von anderen Tiergruppen (wie z.B. Geflügel, Esel und Pferde) sind dagegen vernachlässigbar. Der verbleibende Anteil (4,5 %) der Methan-Emissionen entstammte aus der Lagerung von Gärresten nachwachsender Rohstoffe (NawaRo) der Biogasanlagen. Insgesamt sind die aus der Tierhaltung resultierenden Methan-Emissionen im Sektor Landwirtschaft zwischen 1990 (45,8 Mio. t CO2-Äquivalente) und 2024 (33,2 Mio. t CO2-Äquivalente) um etwa 27,5 % zurückgegangen.</p><p>Wirtschaftsdünger aus der Einstreuhaltung (Festmist) ist gleichzeitig auch Quelle des klimawirksamen Lachgases (Distickstoffoxid, N2O) und seiner Vorläufersubstanzen (Stickoxide, NOx und Stickstoff, N2). Dieser Bereich trägt zu 16,2 % an den Lachgas-Emissionen der Landwirtschaft bei. Die Lachgas-Emissionen aus dem Bereich Wirtschaftsdünger (inklusive Wirtschaftsdünger-Gärreste) nahmen zwischen 1990 und 2024 um rund 34,2 % ab (siehe Tab. „Emissionen von Treibhausgasen aus der Tierhaltung“). Zu den tierbedingten Emissionen gehören ebenfalls die Lachgas-Emissionen der Ausscheidung beim Weidegang sowie aus der Ausbringung von Wirtschaftsdünger auf die Felder. Diese werden aber in der Emissionsberichterstattung in der Kategorie „landwirtschaftliche Böden“ bilanziert.</p><p>Somit lassen sich in 2024 rund 34,9 Mio. t CO2-Äquivalente direkte THG-Emissionen (das sind 64,5 % der Emissionen der Landwirtschaft und 5,4 % an den Gesamt-Emissionen Deutschlands) allein auf die Tierhaltung zurückführen. Hierbei bleiben die indirekten Emissionen aus der <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a> unberücksichtigt.</p><p> </p><p>Klimagase aus landwirtschaftlich genutzten Böden</p><p>Auch Böden sind Emissionsquellen von klimarelevanten Gasen. Neben der erhöhten Kohlendioxid (CO2)-Freisetzung infolge von <a href="https://www.umweltbundesamt.de/daten/klima/treibhausgas-emissionen-in-deutschland/emissionen-der-landnutzung-aenderung">Landnutzung und Landnutzungsänderungen</a> (Umbruch von Grünland- und Niedermoorstandorten) sowie der CO2-Freisetzung durch die Anwendung von Harnstoffdünger und der Kalkung von Böden handelt es sich hauptsächlich um Lachgas-Emissionen. Mikrobielle Umsetzungen (sog. Nitrifikation und Denitrifikation) von Stickstoffverbindungen führen zu Lachgas-Emissionen aus Böden. Sie entstehen durch Bodenbearbeitung sowie vornehmlich aus der Umsetzung von mineralischen Düngern und organischen Materialien (d.h. Ausbringung von Wirtschaftsdünger und beim Weidegang, Klärschlamm, Gärresten aus NaWaRo sowie der Umsetzung von Ernterückständen). Insgesamt wurden 2024 15,1 Mio. t CO2-Äquivalente Lachgas durch die Bewirtschaftung landwirtschaftlicher Böden emittiert.</p><p>Es werden direkte und indirekte Emissionen unterschieden:</p><p>Die <strong>direkten Emissionen</strong> stickstoffhaltiger klimarelevanter Gase (Lachgas und Stickoxide, siehe Tab. „Emissionen stickstoffhaltiger Treibhausgase und Ammoniak aus landwirtschaftlich genutzten Böden“) stammen überwiegend aus der Düngung mit mineralischen Stickstoffdüngern und den zuvor genannten organischen Materialien sowie aus der Bewirtschaftung organischer Böden. Diese Emissionen machen mit 46 kt bzw. 12,3 Mio. t CO2-Äquivalenten den Hauptanteil (51,9 %) an den gesamten Lachgasemissionen aus.</p><p>Quellen für <strong>indirekte Lachgas-Emissione</strong>n sind die atmosphärische <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a> von reaktiven Stickstoffverbindungen aus landwirtschaftlichen Quellen sowie die Lachgas-Emissionen aus Oberflächenabfluss und Auswaschung von gedüngten Flächen. Indirekte Lachgas-Emissionen belasten vor allem natürliche oder naturnahe Ökosysteme, die nicht unter landwirtschaftlicher Nutzung stehen.</p><p>Im Zeitraum 1990 bis 2024 nahmen die Lachgas-Emissionen aus landwirtschaftlichen Böden um 24 % ab.</p><p>Gründe für die Emissionsentwicklung</p><p>Neben den deutlichen Emissionsrückgängen in den ersten Jahren nach der deutschen Wiedervereinigung vor allem durch die Verringerung der Tierbestände und den strukturellen Umbau in den neuen Bundesländern, gingen die THG-Emissionen erst wieder ab 2017 deutlich zurück. Die Folgen der extremen <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Drre#alphabar">Dürre</a> im Jahr 2018 waren neben hohen Ernteertragseinbußen und geringerem Mineraldüngereinsatz auch die erschwerte Futterversorgung der Tiere, die zu einer Reduzierung der Tierbestände (insbesondere bei der Rinderhaltung aber seit 2021 auch bei den Schweinebeständen) beigetragen haben dürfte. Wie erwartet setzt sich der abnehmende Trend fort bedingt durch die anhaltend schwierige wirtschaftliche Lage vieler landwirtschaftlicher Betriebe vor dem Hintergrund stark gestiegener Energie-, Düngemittel- und Futterkosten und damit höherer Produktionskosten.</p><p>Maßnahmen in der Landwirtschaft zur Senkung der Treibhausgas-Emissionen</p><p>Das von der Bundesregierung in 2019 verabschiedete und 2021 und 2024 novellierte <a href="https://www.bmuv.de/gesetz/bundes-klimaschutzgesetz">Bundes-Klimaschutzgesetz</a> legt für 2024 für den Landwirtschaftssektor eine Höchstmenge von 67 Mio. t CO2-Äquivalente fest, welche mit 62 Mio. t CO2-Äquivalente unterschritten wurde.</p><p>Weiterführende Informationen zur Senkung der <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>-Emissionen finden Sie auf den Themenseiten <a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/ammoniak-geruch-staub">„Ammoniak, Geruch und Staub“</a>, <a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/lachgas-methan">„Lachgas und Methan“</a> und <a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/stickstoff">„Stickstoff“</a>.</p>
Im Rahmen des Forschungsvorhabens soll ein prozessorientiertes Modell zur Beschreibung von biogeochemischen Stoffumsetzungen in landwirtschaftlich genutzten Böden derart weiterentwickelt werden, daß es zur Prognose von CH4- und N2O-Spurengasemissionen aus dem Reisanbau eingesetzt werden kann. Insbesondere soll die numerische Beschreibung der in der CH4- und N2O-Produktion und Konsumption involvierten mikrobiologischen Prozesse Methanogenese, Methan-Oxidation, Nitrifikation und Denitrifikation und deren Abhängigkeit von Änderungen des Redoxpotentials im Boden implementiert bzw. verbessert werden. Zudem sollen die verschiedenen Mechanismen, die zur Emission von Spurengasen aus dem Reisanbau beitragen (Diffusion, Gasblasenbildung bei Überstauung, Pflanzentransport) sowie die Auswirkung von radialen Sauerstoffverlusten der Reiswurzeln auf die mikrobiologischen Prozesse in einer durch Anaerobiosis dominierten Umgebung in das Modell implementiert werden.
Untersuchungen ueber spezielle analytische Probleme auf dem Schmutzwassersektor. Beginn mit der Untersuchung der Nitrifizierungs- und Denitrifizierungsvorgaenge in Oberflaechenwaessern am Beispiel des Hauptentwaesserungskanals. Untersuchung synthetischer Waschmittel und anderer Reagentien auf ihre Wirksamkeit bei der Reinigung kontaminierter Schutzkleidung, Entwicklung von Waschverfahren mit besseren Dekontaminationsfaktoren und geringeren Abwassermengen. Untersuchung gaengiger Trennverfahren, wie Saegen, autogenes Schneiden oder Plasmaschneiden, auf ihre Anwendbarkeit zur rationellen Zerkleinerung sperriger kontaminierter bzw. aktivierter Bauteile. Anpassung der konventionellen Technik an schwierige Materialkombinationen, z.B. Aluminium, Beton oder Stahl/Araldit, und die strahlenschutztechnischen Randbedingungen (Fernbedienung, Abgasreinigung).
Lake Runstedt, around 30 km west of Leipzig, is a post-mining lake created by the flooding of the former Großkayna open-cast mine. After the end of the lignite mining, the pit was partially filled with industrial waste and fly ash for several decades. With high concentrations of ammonium in the sediment, oxygen consumption due to nitrification of ammonium released into the lake is a major challenge to the lake’s water quality. To ensure the oxygen supply in the hypolimnion (i.e. the bottom lake layer that is not affected by wind mixing) in summer, three aerators are operated in the lake by the Lausitzer und Mitteldeutsche Bergbau-Verwaltungsgesellschaft (LMBV). In 2023, the Freiberg University of Mining and Technology was commissioned by the BGR to carry out three measurement campaigns (end of July/beginning of August, mid-September, mid-October) on the lake using an autonomous surface vehicle (here: a catamaran-shaped robotic device) to assess the spatial effects of the aeration on lake water quality. The data set provided contains the collected three-dimensional data of water temperature, oxygen content, pH, electrical conductivity, turbidity and chlorophyll. In addition, laboratory analyses of water samples obtained with a Ruttner sampler are included. The data reflect the conditions before and after operation of the aerators. Detailed explanations can be found in the publication “Spatial heterogeneity of dissolved oxygen and sediment fluxes revealed by autonomous robotic lakewater profiling” (2025) by Röder et al. in the journal Limnology and Oceanography (http://doi.org/10.1002/lno.70174).
Der Cocktail an verschiedenen Stoffen im Abwasser hemmt die sehr empfindlichen Bakterien beim biologischen Abbauprozess in unseren Kläranlagen (z.B. Nitrifikation). Das führt zu ökologischen und wirtschaftlichen Schäden. Ziel war es nun, durch eine Überwachung der Industrie bestimmte toxische Stoffe zu lokalisieren und eine Einleitung in die Biologie der Kläranlage zu verbieten, um so die Umwelt zu schützen. Im Forschungsprojekt Toximeter wird seit 2009 ein Nitrifikanten-Toximeter kontinuierlich mit einem Abwasserteilstrom befüllt und die Aktivität der Bakterien ermittelt. Sobald diese um mehr als 80 Prozent gehemmt werden, wird automatisch eine Probe gezogen und im Labor auf toxische Einzelstoffe untersucht. Mit dem DWA-Netzwerk, unserem Industriekataster und akkreditierten Labor steht erstmals ein Konzept zur Verfügung, um verursachende Einleiter in die Verantwortung zu nehmen. Neben der Kontrollmöglichkeit für Kläranlagenbetreiber könnte das Überwachungssystem als Vorsorge bereits beim Indirekteinleiter installiert werden. Frühzeitig wird stoffbezogen eine Vorbehandlung durchgeführt und die Ableitung verhindert. Ergebnisse des Projekts: Das im Projekt verwendete Nitrifikanten-Toximeter wurde im Kanal und Klärwerk betrieben und mit dem Standardtestverfahren für Nitrifikationshemmung DIN EN ISO 9509 verglichen. Messungen wurden durchgeführt - im Abwasserstrom waren deutliche Hemmungen nachweisbar. Mit Hilfe der gezielten, rückgestellten Probe aus dem Toximeter und umfangreichen Recherchen gelang die erfolgreiche Auflösung der wiederholt auftretenden Hemmung im Klärwerk Waßmannsdorf. Allerdings gibt es immer noch Unwägbarkeiten, z.B. die Beeinflussung der Toxizität durch Ablagerungen im Ansaugschlauch und Störungen der Sauerstoffsonde. Um mit dieser Methode eine hohe Zuverlässigkeit zu erreichen, ist der Wartungsaufwand hoch und die Wirtschaftlichkeit für einen flächendeckenden Einsatz nicht gegeben. Hier gab und gibt es auf dem Markt eine stetige Neu- und Weiterentwicklung kommerzieller aktiver oder auch passiver Testsysteme, die zu beobachten ist.
Ziel des Vorhabens ist die Analyse der sekundaeren Sukzession eines Ruderal-Oekosystems (auf der Abdeckschicht einer Bauschuttdeponie) und deren Beeinflussung durch fruehzeitiges Einbringen einer Gruenlandvegetation (Rekultivierung). Unser Augenmerk richtet sich dabei auf die quantitative und qualitative Entwicklung ausgewaehlter Kompartimente, naemlich auf die Vegetation, die die Energiebasis des Systems bildet, indem sie organische Substanz primaer produziert, sowie auf verschiedene Gruppen der Bodenfauna (Enchytraeidae, Acari, Oniscoidea, Collembola), die als Konsumenten am Um- und Abbau organischer Substanz beteiligt sind. Die Entwicklung der eigentlichen Mineralisierer, also der Bodenmikroflora, wird global als Bodenatmung und anhand spezieller Enzymaktivitaeten erfasst. Als ein Prozess, an dem zahlreiche Kompartimente des Oekosystems direkt und indirekt beteiligt sind, wird seit 1982 die Entwicklung des Stickstoffhaushaltes anhand verschiedener Elemente (N-input mit dem Niederschlag, N-output mit dem Sickerwasser, N-Nettomineralisation, Nitrifikation) untersucht.
Die im Rahmen dieses Projektes durchzuführenden Untersuchungen zu bakteriellen Populationsstrukturen sind eine wichtige Grundlage für die anderen Teilprojekte. Es handelt sich hierbei zum Teil um sehr arbeits- und zeitaufwendige Routinearbeiten. Im Gegensatz zu den Nitrifikanten, bei denen physiologische Eigenschaften und die Zugehörigkeit zu phylogenetischen Taxa korrelieren und zu deren Nachweis bereits ein umfangreicher Satz gruppenspezifischer, rRNS-gerichteter Oligonukleotidsonden vorliegt, handelt es sich bei den Denitrifikanten um eine phylogenetisch äußerst heterogene Gruppe. Mit Hilfe molekularbiologischer Techniken sollen erstmals grundlegende, strukturelle und physiologische Eigenschaften von Denitrifikanten aus Abwasserreinigungsanlagen kultivierungsabhängig untersucht werden. Die so gewonnenen Kenntnisse bilden die Grundlage für eine zielgerichtete Optimierung von Leistung und Stabilität denitrifizierender Anlagen.
Die naturnahe Klaeranlage Schattweid reinigt seit 1986 das haeusliche Abwasser des Oekozentrums. Seit dieser Zeit wird die Anlage kontinuierlich wissenschaftlich begleitet und war daneben auch Ort einiger Sonderuntersuchungen. Die Rahmenbedingungen fuer den Betrieb sind damit sehr gut bekannt. Die Anlage gehoert heute zu den am laengsten und besten untersuchten naturnahen Klaeranlagen in Europa. Die Langzeitforschung soll ermoeglichen, Aussagen ueber die Lebensdauer und die Veraenderung der Abbauleistung zu erarbeiten. Bei der N-Elimination wurde eine Verbesserung von ca 50 Prozent (1986) auf ueber 80 Prozent (1993) festgestellt. Auch SCB-Abbau und Nitrifikation verbessern sich weiterhin. Beim P-Rueckhalt ist mit einer Erschoepfung zu rechnen, die sich aber bisher noch nicht abzeichnet.
| Origin | Count |
|---|---|
| Bund | 502 |
| Land | 17 |
| Wissenschaft | 4 |
| Zivilgesellschaft | 1 |
| Type | Count |
|---|---|
| Daten und Messstellen | 12 |
| Förderprogramm | 499 |
| Text | 7 |
| Umweltprüfung | 2 |
| unbekannt | 3 |
| License | Count |
|---|---|
| geschlossen | 10 |
| offen | 513 |
| Language | Count |
|---|---|
| Deutsch | 482 |
| Englisch | 62 |
| Resource type | Count |
|---|---|
| Archiv | 10 |
| Datei | 3 |
| Dokument | 8 |
| Keine | 423 |
| Webseite | 90 |
| Topic | Count |
|---|---|
| Boden | 320 |
| Lebewesen und Lebensräume | 355 |
| Luft | 257 |
| Mensch und Umwelt | 523 |
| Wasser | 523 |
| Weitere | 523 |