Die Halacaridae (Meeresmilben) gehören, mit ihrer Körpergröße von 200-500 mym, zum Meiobenthos. Unter den Milben sind sie die einzigen, die vollständig an ein Leben im Meer angepasst sind; sie besiedeln den Bereich von der oberen Gezeitenlinie bis in die Tiefseegräben. Zur Zeit sind etwa 900 Arten bekannt. Im Vergleich zu den Küsten im Osten und Westen des Nordatlantiks zeichnen sich die Australiens durch eine äußerst artenreiche Halacaridenfauna aus: jede geographische Region entlang der Küste scheint in erster Linie eigene Arten zu beherbergen. Die geplanten Probennahmen bei Dampier an der tropischen Nordwestküste Australiens sollen Daten liefern für einen Vergleich mit den bereits bearbeiteten Faunen von Rottnest Island (Südwestaustralien) und dem Great Barrier Reef (Ostaustralien).
Die Anzahl der verfügbaren Wolkenkondensationskerne (CCN) beeinflusst maßgeblich die mikrophysikalischen Wolkeneigenschaften, wie z.B. die Wolkentropfenanzahlkonzentration (CDNC) und deren Größenverteilung. CDNC und die Tropfengröße steuern sowohl die Strahlungseigenschaften als auch die Lebensdauer von Wolken. Dies wirkt sich komplex auf die Energiebilanz der Erde aus. Aktuelle Klimamodelle basieren häufig auf Annahmen über CCN Anzahlkonzentrationen und andere CCN bezogene Eigenschaften (z.B. Hygroskopizität), da für viele Regionen auf der Erde repräsentative Daten fehlen. Wenn vorhanden, handelt es sich bei diesen CCN Daten um bodengebundene Messungen, welche somit nicht - mit Ausnahme von Bergstationen - in der für Wolkenbildungsprozesse relevanten Höhe durchgeführt wurden. Für die Karibikregion wurde gezeigt, dass die bodengebundenen CCN Messungen für die gesamte marine Grenzschicht repräsentativ zu sein scheinen also auch für die Wolkenbildungsregionen. Im hier vorgeschlagenen Projekt wollen wir überprüfen, ob bodengebundene CCN Messungen auch in anderen Erdregionen repräsentativ sind für die CCN Anzahl in der Wolkenbildungsregion, und wenn ja, unter welchen Bedingungen. Dies würde die Anwendung von CCN Daten in Modellen stark vereinfachen. Dazu wird die Gültigkeit der Beobachtungen in der Karibik, in zwei gegensätzlichen Umgebungen getestet werden, einmal in einer marinen und einmal in einer kontinentalen Umgebung. Die Messkampagne zu marinen CCN soll auf den Azoren (Portugal) durchgeführt werden. Wir werden kontinuierlich verfügbare CCN Daten von der Azoren Eastern Nordatlantik (ENA) Station auf der Insel La Graciosa (auf Meereshöhe) mit Daten von der Bergstation Pico (Pico Island, 2225 m ü.d.M.) kombinieren. Ergänzend werden CCN und CDNC Messungen auf der Helikopter-Messplattform (ACTOS) durchgeführt, um die vertikale Lücke zwischen den Meeresspiegel- und Bergmessungen zu schließen. Die kontinentalen bodengebundenen CCN Messungen werden kontinuierlich an der ACTRIS Station Melpitz durchgeführt. Die vertikale CCN und CDNC Verteilung wird in Melpitz mit Hilfe eines Ballons in mehreren einwöchigen Kampagnen einmal pro Jahreszeit gemessen werden. Darüber hinaus werden wir mit Hilfe der Aerosol-Wolken-Wechselwirkungsmetrik (ACI) die in der Wolke in-situ gemessen CCN Eigenschaften (das heißt Anzahl und Hygroskopizität) mit den CDNC quantitativ verbinden. Es wird außerdem eine Sensitivitätsstudie mit einem Cloud-Parcel Model durchgeführt, welches durch die realen Messungen in der Atmosphäre angetrieben werden wird. Dies wird einen Einblick in das Übersättigungsregime von frisch gebildeten Wolken gewähren.Die CCN Daten selbst, die Erkenntnisse zu CCN Eigenschaften und ihrer vertikalen Verteilung sowie die quantitative Verbindung zwischen CCN und CDNC werden im Hinblick auf das Verständnis und die Modellierung der Wolkentropfenaktivierung sowie der mikrophysikalischen Wolkeneigenschaften von außerordentlichem Wert sein.
Ziel dieses Antrags ist es, das Potenzial von Speläothemen für die Rekonstruktion von (kurzlebigen) Phasen und Ereignissen extremen Klimas, wie besonders niedrigen Temperaturen, extreme, Niederschlagsmengen oder hohen Windgeschwindigkeiten, zu ermitteln. Solche Extremereignisse treten selten auf, verursachen aber oft große Schäden mit schwerwiegenden Folgen für Bevölkerung und Ökosysteme der betroffenen Region. Ein besseres Verständnis der Ursachen und Randbedingungen von Extremereignissen ermöglicht eine bessere Prognose ihres Auftretens in der Zukunft, was wesentlich ist für das Treffen entsprechender Vorkehrungen.Speläotheme bieten präzise datierte Multi-Proxy-Zeitreihen mit nahezu jährlicher Auflösung und haben somit ein großes Potenzial als Archiv von Extremereignissen. Allerdings werden die in Speläothemen gespeicherten Proxy-Signale im Aquifer über der Höhle in einem gewissen Umfang geglättet, weshalb die Sensitivität der jeweiligen Höhlensysteme und Proxys für die Rekonstruktion vergangener Extremereignisse bestimmt werden muss. Der Schwerpunkt dieses Antrags liegt auf dem 8.2 ka Event und den letzten 2000 Jahren. Das 8.2 ka Event war die extremste Klimaanomalie des Holozäns und spiegelt die Auswirkungen eines enormen Süßwassereintrags in den Nordatlantik während eines Interglazials wider. In den letzten 2000 Jahren wurden mehrere hundertjährige Klimaschwankungen identifiziert (z.B. die Mittelalterliche Warmzeit und die Kleine Eiszeit). Zusätzlich konnten andere, kurzlebige Klimaanomalien festgestellt werden, wie z.B. das historische Magdalenenhochwasser im Juli 1342 AD oder Hitze und Trockenheit in Europa von 1540 AD. Manche Ereignisse wurden durch Vulkanausbrüche ausgelöst (z.B. das Jahr ohne Sommer 1816 AD durch die Tambora Eruption 1815 AD).Mehrere Speläotheme, die während des 8.2 ka Event und der letzten 2000 Jahre wuchsen, aus drei Höhlen in Deutschland stehen zur Verfügung. Für alle drei Höhlen wurden langfristige Monitoring-Programme eingerichtet, was eine Voraussetzung ist, um die Prozesse in den Höhlen zu verstehen und die Proxy-Signale der Speläotheme zu interpretieren. Wir werden stabile Isotope und Spurenelemente in den entsprechenden Abschnitten der Stalagmiten mit sehr hoher Auflösung (jährlich) analysieren, und die Proben mittels MC-ICPMS 230Th/U-Datierung präzise datieren. Die Identifizierung der am besten geeigneten Proxys für die Rekonstruktion der Extremereignisse wird unter Verwendung eines quantitativen Modells basierend auf meteorologischen und Monitoring-Daten durchgeführt. Die Kombination aus präzise datierten, hochaufgelösten Multi-Proxy-Records und einem quantitativen Modell stellt eine solide Basis dar, um (i) geeignete Proxys für die Rekonstruktion der Extremereignisse zu identifizieren und (ii) bestimmte Ereignisse in verschiedenen Speläothemen zu vergleichen. Dies ermöglicht die Bestimmung von Zeitpunkt, Dauer und Struktur der Ereignisse.
Das Zusammenspiel von atmosphärischem Wasser und Zirkulation über Beeinflussung des Strahlungshaushalts, den Transport latenter Wärme und Rückkopplungsmechanismen von Wolken ist eines der bedeutendsten Hindernisse für das Verständnis des Klimasystems. Ein Vergleich zwischen Modellen verschiedener Auflösungen und Parameterisierungen kann wertvolle Einblicke in die Problematik geben. Jedoch werden für aussagekräftige Modelltests Messdaten benötigt. In diesem Zusammenhang können Isotopologen des troposphärischen Wasserdampfs eine wichtige Rolle spielen. Das Isotopologenverhältnis reflektiert die Bedingungen am Ort des Feuchteeintrags sowie verschiedene Umwandlungsprozesse (z.B. in Wolken). Während der letzten Jahre gab es großen Fortschritt beim Modellieren und Messen der Isotopologenverhältnisse, so dass kombinierte Untersuchungen nun global zeitlich und räumlich hochaufgelöst durchführbar sind. Das Ziel dieses Projektes ist es, Wasserdampfisotopologe als neue Methode zu etablieren, um modellierte atmosphärische Feuchteprozesse zu testen und damit einige der größten Herausforderungen der aktuellen Klimaforschung anzugehen. Um statistisch robuste Untersuchungen zu ermöglichen, werden wir eine große Anzahl von (H2O, deltaD)-Paaren messen (deltaD ist das standardisierte Verhältnis zwischen den Isotopologen HD16O und H216O). Zum ersten Mal wird dann ein validierter Beobachtungsdatensatz zur Verfügung stehen, der große Gebiete, lange Zeiträume und verschiedene Tageszeiten abdeckt. Gleichzeitig wird ein hochauflösendes meteorologisches Modell, welches die Isotopologe simuliert, benutzt, um zu untersuchen inwiefern sich Eintrag und Transport von Feuchte in den Isotopologen wiederspiegeln. Diese Kombination von Messung und Modell ist einzigartig zum Testen der Modellierung von Feuchteprozessen. Das Potential der Isotopologen wird anhand von drei klimatisch interessanten Regionen aufgezeigt. Für Europa wird unser Ansatz einen wertvollen Einblick in den Zusammenhang zwischen Feuchteeintrag und den Isotopologen im Falle hochvariablen Wettergeschehens geben. Über dem subtropischen Nordatlantik werden wir Mischprozessen zwischen der marinen Grenzschicht und der freien Troposphäre untersuchen. Die verschiedenartige Einbindung dieser Prozesse in Modelle ist sehr wahrscheinlich ein Grund für die große Unsicherheit bei Rückkopplungsmechanismen von Wolken. Über Westafrika wird die Modellierung des Monsuns getestet (horizontaler Feuchtetransport, Feuchterückfluss von Land in die Troposphäre, und Tagesgänge in Zusammenhang mit vertikalen Mischprozessen). Die Frage, wie organisierte Konvektion die Monsunzirkulation und die Feuchtetransportwege beeinflusst, wird dabei von besonderem Interesse sein. In Kombination werden die Ergebnisse helfen, Defizite in aktuellen Wetter- und Klimamodellen aufzuspüren und besser zu verstehen, und dadurch einen wichtigen Beitrag für zukünftige Modellverbesserungen liefern.
Es ist bekannt, dass Vulkanausbrüche das Klima auf verschiedene Weise beeinflussen. Diese reichen von kurzfristigen Auswirkungen wie Sulfat-Injektionen, die die einfallende Sonnenstrahlung reduzieren und zu Abkühlung führen, bis zu mittelfristigen Auswirkungen wie Erwärmung durch Kohlendioxid-Entgasung. Langfristig können Auswirkungen wie eine verstärkte Verwitterung eingelagerter Basalte zu einer Entfernung von Kohlendioxid und damit Abkühlung führen. Lange Perioden intensiven Vulkanismus, die als Large Igneous Provinces (LIPs) bekannt sind, können besonders tiefgreifende Auswirkungen auf das Klima haben, wobei mehrere LIPs entweder mit der globalen Erwärmung oder Abkühlung in der Erdgeschichte sowie mit Massenaussterben in Verbindung gebracht werden. Das Paläozän-Eozän-Temperaturemaximum (PETM), eine 200.000 Jahre lange Periode intensiver globaler Erwärmung vor ca. 56 Millionen Jahren, ereignete sich zur gleichen Zeit wie die Entstehung eines LIP, der North Atlantic Igneous Province (NAIP). Die NAIP-Entstehung wurde als Ursache für das PETM vorgeschlagen, da während des Vulkanismus Kohlendioxid und Methan freigesetzt werden, welches zu einer schnellen Erwärmung führt. Es wurde auch vermutet, dass die Ablagerung von Vulkanasche während des NAIP das Klima abgekühlt hat. Als solches ist das PETM eine ideale Periode, um die Auswirkungen des Vulkanismus auf das Erdsystem zu untersuchen. Expedition 396 des International Ocean Discovery Program (IODP) hat erfolgreich eine Reihe von langen Sedimentsequenzen aus dem PETM-Zeitalter am norwegischen Rand geborgen. In diesem Projekt beabsichtige ich, detaillierte deskriptive, geochemische und modellbasierte Untersuchungen mit den Sedimenten der Expedition 396 durchzuführen, um die Rolle des NAIP-Vulkanismus im PETM zu dokumentieren. Erstens wird die Intensität des Vulkanismus durch neue Schätzungen der Kohlendioxid-, Methan- und Sulfatemissionen bewertet, um die Rolle der Gase auf den Klimawandel zu bestimmen. Durch detaillierte geochemische Untersuchungen werden die Auswirkungen der Ascheablagerung auf den Kohlenstoffkreislauf bewertet mit Schwerpunkt auf der Rolle der Asche als Nährstofflieferant für Phytoplankton liegt. Die potenziellen Auswirkungen der Ascheablagerung auf die Speicherung von Kohlenstoff im Sediment werden ebenfalls geochemisch und isotopisch untersucht. Abschließend werden die Ergebnisse unter Verwendung von Erdsystemmodelle kombiniert, um die genaue Rolle des Vulkanismus im PETM zu bestimmen. Die erwarteten Ergebnisse werden uns neue Erkenntnisse über die Rolle der LIP-Entstehung und der Ablagerung von Vulkanasche beim Klimawandel geben. Sedimente von Expedition 396 bieten eine einzigartige Gelegenheit, den geochemischen Abdruck des Vulkanismus hochauflösend zu untersuchen. Die Ergebnisse dieser Arbeit werden zu einer erheblichen Verbesserung unseres Verständnisses des PETM führen.
Mit dem hier vorgestellten Projekt wollen wir zwei Fragen beantworten, die momentan im Zusammenhang mit zunehmendem Schmelzen des grönländischen Eisschildes heiß diskutiert werden: der Zeitpunkt ersten Auftretens von Veränderungen im subpolaren Nordatlantik und die Wahrscheinlichkeit von Extremereignissen im Ozean jeweils hervorgerufen durch einen verstärkten bis außergewöhnlich starken Schmelzwassereintrag. Beides werden wir mit Hilfe von Simulationen mit dem neuen, bereits getesteten globalen Klimamodell FOCI-VIKING10 quantifizieren. Dieses einzigartige Modell ist für die Aufgabe besonders geeignet, weil es durch eingebettetes 2-Wege Nesting eine höhere Ozeangitterauflösung von 1/10° im Nordatlantik (30°-85°N) ermöglicht. In einer Reihe von multidekadischen Simulationen mit globaler Erwärmung von 1958-2050 schreiben wir unterschiedliche Projektionen des zukünftigen Schmelzwasserabflusses von Grönland vor, indem wir die lokalen, beobachteten Abflussraten bis 2016 verwenden und für die Folgejahre die lokalen Trends extrapolieren. Ergänzt werden die Trends durch stochastische Variabilität und systematisch eingefügte Extremwerte. Darüber hinaus werden wir neue Wege für die Modellvalidierung gehen, indem gezielt Satelliten- und Argo-float-Daten des meeresoberflächennahen Salzgehaltes auf räumliche und zeitliche Variabilität analysiert und verglichen werden. Als Hauptergebnis des Projektes werden wir Angaben zu Ort, Zeit und Größe der Veränderungen bereitstellen, mit denen der Ozean auf einen realistisch ansteigenden Schmelzwasserabfluss von Grönland reagiert, sowie Einblick in einen möglichen Einfluss auf das europäische Wetter und Klima geben.
Mit detaillierten paläo-ozeanographischen Zeitserien soll das Wechselspiel zwischen nord- und südatlantischen Wassermassen und die Veränderlichkeit des transäquatorialen Wärmestromes rekonstruiert werden. Über Passagen in den Kleinen Antillen fließt warmes Oberflächenwasser aus dem Nordatlantik durch das Tobago Becken in die Karibik. Dieses Wasser fließt weiter in den Golf von Mexiko, dem Ursprungsgebiet des warmen Golfstromes. Das hier beantragte Vorhaben konzentriert sich auf die mikropaläontologische Auswertung von Sedimentmaterial, das im Rahmen der fünften Expedition des internationalen IMAGES Projektes im Juni 1999 im Tobago Becken gewonnen wurde. Feinskalige Paläo-Oberflächentemperaturprofile sollen für die letzten 150.000 bis 200.000 Jahre mit Hilfe der statistischen Bearbeitung der Vergesellschaftung planktonischer Foraminiferen entlang eines 38 m langen Sedimentkernes erstellt werden. Damit sollen kurzfristige Variabilitäten im Warmwasserpool des subtropischen Nordatlantik nachgezeichnet und versucht werden, zeitliche und mechanistische Querbezüge zu den raschen Klimawechsel im nördlichen Nordatlantik abzuleiten.
The North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) aims to provide the foundation for future improvements in the prediction of high impact weather events over Europe. The concept for the field experiment emerged from the WMO THORPEX program and contributes to the World Weather Research Program WWRP in general and to the High Impact Weather (HIWeather) project in particular. An international consortium from the US, UK, France, Switzerland and Germany has applied for funding of a multi-aircraft campaign supported by enhanced surface observations, over the North Atlantic and European region. The importance of accurate weather predictions to society is increasing due to increasing vulnerability to high impact weather events, and increasing economic impacts of weather, for example in renewable energy. At the same time numerical weather prediction has undergone a revolution in recent years, with the widespread use of ensemble predictions that attempt to represent forecast uncertainty. This represents a new scientific challenge because error growth and uncertainty are largest in regions influenced by latent heat release or other diabatic processes. These regions are characterized by small-scale structures that are poorly represented by the operational observing system, but are accessible to modern airborne remote-sensing instruments. HALO will play a central role in NAWDEX due to the unique capabilities provided by its long range and advanced instrumentation. With coordinated flights over a period of days, it will be possible to sample the moist inflow of subtropical air into a cyclone, the ascent and outflow of the warm conveyor belt, and the dynamic and thermodynamic properties of the downstream ridge. NAWDEX will use the proven instrument payload from the NARVAL campaign which combines water vapor lidar and cloud radar, supplemented by dropsondes, to allow these regions to be measured with unprecedented detail and precision. HALO operations will be supported by the DLR Falcon aircraft that will be instrumented with wind lidar systems, providing synergetic measurements of dynamical structures. These measurements will allow the first closely targeted evaluation of the quality of the operational observing and analysis systems in these crucial regions for forecast error growth. They will provide detailed knowledge of the physical processes acting in these regions and especially of the mechanisms responsible for rapid error growth in mid-latitude weather systems. This will provide the foundation for a better representation of uncertainty in numerical weather predictions systems, and better (probabilistic) forecasts.
Der Western Boundary Undercurrent (WBUC) ist eine kritische Komponente der globalen Umwälzzirkulation und wird durch Tiefenwasserbildung in der Grönland-, Labrador-, Island- und Norwegischen See angetrieben. Seismische Profile der Eirik Drift weisen auf eine hohe Variabilität der Geschwindigkeiten und Strömungspfade des WBUC seit dem frühen Miozän hin und geben Hinweise auf das Gebiet der Tiefenwasserbildung vom Miozän bis heute. Wir beabsichtigen die Mechanismen, welche in der Verschiebung der Gebiete der Tiefenwasserbildung und der Verschiebung der Strömungspfade des WBUC involviert sind, zu identifizieren. Korngrößen sind für ODP Leg 105 und die IODP Expedition 303 Sites U2305-2307 in der Eirik Drift verfügbar (iodp.tamu.edu). Die Unterscheidung in Ton (kleiner als 0.004 mm), Schlamm (0.004-0.063 mm) und Sand (mehr als 0.063 mm) ist ausreichend um Geschwindigkeiten des WBUC für verschiedene Zeitscheiben abzuleiten. Dreidimensionale Geschwindigkeiten und Sedimenttransporte werden mit dem Regional Ocean Modelling System (ROMS) simuliert. ROMS wird auf den Nordatlantik regionalisiert werden und dabei detaillierte Informationen über Gebiete der Tiefenwasserbildung und Ozeanzirkulation liefern. Seismische Profile aus der Eirik Drift (Uenzelmann-Neben (2013)) stellen Horizonttiefen, Schichtdicken und Position und Orientierung von Depozentren zur Verfügung. Diese sind in Kombination mit Korngrößen eine Validierungsmöglichkeit für den in ROMS modellierten Sedimenttransport. Durch den numerischen Ansatz ist es möglich, Prozesse hervorzuheben oder zu vernachlässigen. Hierdurch können Sensitivitätsstudien bezüglich des Einflusses sich verändernden Klimas und tektonischer Zustände auf die tiefe Ozeanzirkulation und den Sedimenttransport durchgeführt werden. Müller-Michaelis und Uenzelmann-Neben (2014) führten Variabilität im Sedimenttransport in der Eirik Drift auf Veränderungen in der Stärke und des Strömungspfades des WBUC zurück, welche durch unterschiedliche Gebiete der Tiefenwasserbildung hervorgerufen wurden. Diese Hypothese kann mit dem regionalen Model getestet werden und die klimatologischen Ursachen für die Veränderung der Gebiete der Tiefenwasserbildung können identifiziert werden. Der Strömungspfad des WBUC ist zusätzlich durch tektonische Veränderungen beeinflusst, z.B. die Subsidenz des Grönland-Schottland-Rückens oder der Schließung des Zentralamerikanischen Durchflusses. Der Einfluss tektonischer Veränderungen auf die Stärke und Strömungspfade des WBUC als auch auf Sedimentationsraten und Korngrößen wird in diesem Projekt betrachtet. Wir werden daher eine Verbindung zwischen Sedimentationsraten und Korngrößen, wie sie in den Bohrkernen von Sites 646 und U1305-1307 gemessen wurden, und klimatologisch und tektonisch hervorgerufener Änderungen der Geschwindigkeiten und Strömungspfade des WBUC herstellen.
| Origin | Count |
|---|---|
| Bund | 321 |
| Land | 8 |
| Wissenschaft | 27 |
| Type | Count |
|---|---|
| Daten und Messstellen | 26 |
| Ereignis | 4 |
| Förderprogramm | 302 |
| Taxon | 1 |
| Text | 6 |
| unbekannt | 9 |
| License | Count |
|---|---|
| geschlossen | 13 |
| offen | 333 |
| unbekannt | 2 |
| Language | Count |
|---|---|
| Deutsch | 279 |
| Englisch | 118 |
| Resource type | Count |
|---|---|
| Archiv | 6 |
| Datei | 27 |
| Dokument | 4 |
| Keine | 173 |
| Webdienst | 1 |
| Webseite | 145 |
| Topic | Count |
|---|---|
| Boden | 254 |
| Lebewesen und Lebensräume | 252 |
| Luft | 283 |
| Mensch und Umwelt | 347 |
| Wasser | 348 |
| Weitere | 346 |