API src

Found 349 results.

Reaktionen des terrestrischen Systems auf nordatlantische Klimaschwankungen im letzten glazialen Zyklus: Hochauflösende Löss-Paläoboden-Sequenzen aus Remagen-Schwalbenberg (Mittelrheintal, Deutschland) (TerraClime)

Klimaschwankungen des Quartärs sind anhand von Tiefsee- und Eisbohrkernen sehr detailliert erforscht und bekannt. Reaktionen des terrestrischen Systems auf diese Klimaänderungen sind bis heute hingegen nur vage definiert. Diese besser zu verstehen ist jedoch von entscheidender Bedeutung, da der Mensch auf der Erdoberfläche lebt, und die Steuerungsfaktoren sowie Rückkopplungen zwischen Erdoberfläche und Atmosphäre sich anders als in Tiefseesedimenten oder Eisbohrkernen niederschlagen. Hauptziel des TERRACLIME-Projekts ist es, die Reaktionen des terrestrischen Systems auf Klimaänderungen der Nordhemisphäre während des letztglazialen Zyklus (LGZ) anhand neuer Löss-Paläoboden-Sequenzen (LPS) aus Remagen-Schwalbenberg (Mittelrheintal, Deutschland) zu rekonstruieren. Der im Zuge der Projektvorarbeiten gewonnene Pilotkern REM 3A beinhaltet die mächtigste und womöglich vollständigste für den LGZ in West- und Mitteleuropa bekannte Sequenz, die eine umfassende Rekonstruktion der Landschaftsgeschichte und Paläoumweltbedingungen ermöglicht. Der neue Kern ist länger und vollständiger als Aufschlüsse und Profile früherer Studien. Letzteren fehlen zudem hochauflösende Paläoklimarekonstruktionen mittels neuer Methoden sowie ein hochauflösender chronologischer Rahmen. Die systematische geophysikalische Prospektion des gesamten Schwalbenbergs bildet die Basis zur Detektion bestmöglicher Bohrpunkte an Stellen maximaler Lössmächtigkeit, um neben einem weiteren, hoch auflösenden Kern gezielte Testsondierungen durchzuführen. Durch diesen Catena-Ansatz wird es möglich sein, die Reaktionen von Löss auf Klimaänderungen zu erfassen sowie archiv-intrinsische Variabilitäten zur Differenzierung zwischen lokal, regional und überregional gesteuerten Prozessen zu nutzen. Neben etablierten Methoden (Sedimentologie, Mineralogie, Umweltmagnetismus) wird sich das Projekt auch neuartiger, innovativer Ansätze bedienen (anorganische und stabile Isotopen-Geochemie, Biomarker-Analysen). Dadurch werden neue Erkenntnisse zu paläoklimatischen Bedingungen, Sedimentationsprozessen, post-sedimentären Veränderungen sowie zur Vegetationsgeschichte generiert. Geochemische Daten werden außerdem herangezogen, um mögliche Änderungen der Sedimentherkunft zu erfassen. Hochauflösende Lumineszenz-Datierungen zur Erstellung eines unabhängigen und verlässlichen Altersmodells spielen im Rahmen des Projektes eine entscheidende Rolle. Ein Altersmodell, das auf der Kopplung von OSL an Quarzen mit pIR-IRSL an polymineralischen Präparaten basiert, fehlt bislang für den Schwalbenberg. Im Vergleich mit anderen lokalen, regionalen und überregionalen Paläoklimaarchiven wird es damit möglich sein, Reaktionen des terrestrischen Systems auf atmosphärische Klimaänderungen im Nordatlantik innerhalb des LGZ zu entschlüsseln. Die Erfassung synchron und asynchron verlaufender Veränderungen wird unser Verständnis von der Verknüpfung mariner, eisbasierter und terrestrischer Klimaarchive deutlich verbessern.

Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm, Teilprojekt: Die Verknüpfung von terrestrischen und marinen Ökosystemreaktionen auf Klimaschwankungen seit der letzten Zwischeneiszeit in südosteuropäischen Refugien (Ohridsee und Golf von Korinth)

Dieses hybride ICDP/IODP-Projekt hat zum Ziel: (a) die empfindliche Vegetationsreaktion von zwei Zufluchtsorten auf der Balkanhalbinsel (Ohrid/ICDP im Norden und Korinth/IODP im Süden) im letzten Klimazyklus auf hundertjähriger Skala zu verbinden, (b) die Lead-Lag-Beziehungen zwischen terrestrischen und marinen Ökosystemen auf globale Klimaschwankungen auf lokaler und regionaler Ebene in bestimmten stratigraphischen Horizonten seit der letzten Zwischeneiszeit zu untersuchen. Die beiden Untersuchungsgebiete liegen in Schlüsselpositionenen im östlichen Mittelmeerraum, der sehr empfindlich auf abrupte Klimaschwankungen reagiert und es erlaubt, Einflüsse sowohl aus höheren (z. B. Nordatlantik) als auch aus niedrigeren Breitengraden (z. B. afrikanischer Monsun) nachzuweisen. Die Bestimmung der Zusammensetzung, Fülle und der Abfolge der Vegetation in den nördlichsten und südlichsten Refugialstandorten des Pindus-Gebirges wird es uns ermöglichen, bioklimatische Schwellenwerte und die Vegetationsdynamik während einer Zeit abrupter Klimaschwankungen mit hoher Amplitude zu rekonstruieren. Neben Vegetationsverschiebungen erfassen Sedimente aus dem Golf von Korinth auch Veränderungen in marinen Ökosystemen. Somit können Lead-Lag-Beziehungen im lokalen Ausdruck der Klimaschwankungen zwischen dem terrestrischen und dem marinen Bereich unter Umgehung chronologischer Unsicherheiten bestimmt werden. Das Verständnis des Zusammenspiels zwischen klimatischen, ökologischen und tektonischen Faktoren auf suborbitaler Ebene innerhalb des Grabensystems wird es uns folglich ermöglichen, das Hauptziel der IODP Exp. 381 zu erreichen. Durch die Untersuchung der Vielfalt und Fülle der gemäßigten Baumarten während der letzten Eiszeit greift dieses Projekt eines der wichtigsten wissenschaftlichen Ziele des SCOPSCO ICDP-Projekts auf, das sich mit Pflanzenresilienz und Schutzstrategien in Südosteuropa befasst.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - International Ocean Discovery Program, Teilprojekt: Interhemisphärische Konkurrenz AtlantischerTiefenwässer seit der Mittel Pleistozänen Klimakrise (ODP 1063 versus ODP 1094/1090)

Nach Pena und Goldstein (2014) und Dausmann et al. (2017) ist die grundlegende Änderung der glazial-interglazialen Periodizität nach der Mittelpleistozänen - Klimakrise (MPT) durch eine erhebliche Abnahme der thermohalinen Zirkulation gekennzeichnet. Diese wurde mittels Nd-Isotopen Analysen mariner Sedimente nachgewiesen. Darauffolgend tritt die Reduktion der Tiefenwasserbildung während der Eiszeiten stetig wieder auf. Die MPT markiert eindeutig einen Wechsel von geringen Unterschieden im Tiefenwasser EpsilonNd (143Nd/144Nd - Verhältnis) zwischen Kaltzeiten und Warmzeiten. In den untersuchten ODP Kernen 1088/90 tritt diese Änderung in Wassertiefen von 2082 m und 3702 m auf. Weitere Studien im Nordatlantik bestätigen eine systematische Warmzeit - Kaltzeit Zyklizität der Nd-Isotopie, die einen Wettbewerb zwischen stärker radiogenen südlichen Wassermassen und weniger radiogenen nördlichen Wassermassen widerspiegelt. Hier definieren wir delta Epsilon als die Sensitivität von Wassermassen gegenüber der Veränderung der Nd-Isotopie entlang der Fließstrecke, d. h. den interhemisphärischen Gradienten pro Breitengrad. Die Nord-Süd-EpsilonNd-Differenz pro 10 Grad Breitengrad (delta Epsilon) ändert sich im Laufe der Zeit mit einer höheren Sensitivität in den Warmzeiten im Vergleich zu den Kaltzeiten. Bei bekannten Störungen der Nordatlantik-Zirkulation während des Heinrich Event 1 halbiert sich gar die Nd-Sensitivität im Vergleich zu Phasen starker Tiefenwasserbildung. Folglich verschwindet die Fähigkeit von EpsilonNd, die Wassermassenmischung zu verfolgen. Die Sensitivität nimmt dagegen in warmen Klimaphasen mit starker Tiefenzirkulation zu. Um Änderungen in der Wassermassenherkunft und der Stärke des Tiefenzirkulation durch kombinierte Untersuchungen von EpsilonNd und zum Beispiel delta 13C vollständig erfassen zu können, sind sowohl der ortsspezifische EpsilonNd Wert als auch der interhemisphärische Gradient oder die Nd-Sensitivität (delta Epsilon) erforderlich. Erste hochauflösende und bis zu 800 ka lange Nd-Isotopendatensätze zeigen die Dynamik der interhemisphärischen Nd-Sensitivitätsänderungen, für die es derzeit keine vergleichbaren Analysen im Südatlantik gibt. Ziel ist es daher, einerseits die Analysetechnik zu verbessern, um dann eine 1 Ma überspannende Zeitreihe der Nd-Isotopie im Südatlantik, südlich der Polarfront, zu generieren. Dies ermöglicht die Einflüsse von Wassermassen südlicher Herkunft zu quantifizieren. Wir haben ODP 1094 für diese Studie ausgewählt, da es eine direkte Verbindung zu Zirkumpolaren Wassermassen gibt und hohe Sedimentationsraten bestehen, die eine zeitliche Auflösung von Jahrtausenden ermöglicht. Alternativ werden wir den ODP-Kern 1090 weiter nördlich ergänzen. Wir planen eine große Anzahl von Nd-Analysen über die Projektdauer von zwei Jahren. Im dritten Jahr (Folgeantrag) sollen die Beobachtungen verfeinert werden, um die Auswirkungen der sich ändernden Sensitivität für die Entkopplung von Ozeanzirkulation und globalem

Wie prägen kohärente Luftströmungen den Einfluss des Golfstroms auf die großskalige atmosphärische Zirkulation der mittleren Breiten?

Über dem Nordatlantik und Europa wird die Variabilität der großräumigen Wetterbedingungen von quasistationären, langandauernden und immer wiederkehrenden Strömungsmustern â€Ì sogenannten Wetterregimen â€Ì geprägt. Diese zeichnen sich durch das Auftreten von Hoch- und Tiefdruckgebieten in bestimmten Regionen aus. Verlässliche Wettervorhersagen auf Zeitskalen von einigen Tagen bis zu einigen Monaten im Voraus hängen von einer korrekten Darstellung der Lebenszyklen dieser Strömungsregime in Computermodellen ab. Um das zu erreichen müssen insbesondere Prozesse, die günstige Bedingungen zur Intensivierung von Tiefdruckgebieten aufrecht erhalten, und Prozesse, die den Aufbau von stationären Hochdruckgebieten (blockierende Hochs) begünstigen, richtig wiedergegeben werden. Aktuelle Forschung deutet stark darauf hin, dass Atmosphäre-Ozean Wechselwirkungen, insbesondere entlang des Golfstroms, latente Wärmefreisetzung in Tiefs, und Kaltluftausbrüche aus der Arktis dabei eine entscheidende Rolle spielen. Dennoch mangelt es an grundlegendem Verständnis wie solche Luftmassentransformationen über dem Ozean die großskalige Höhenströmung beeinflussen. Darüber hinaus ist die Relevanz solcher Prozesse für Lebenszyklen von Wetterregimen unerforscht. In dieser anspruchsvollen drei-jährigen Kollaboration zwischen KIT und ETH Zürich streben wir an ein ganzheitliches Verständnis zu entwickeln, wie Wärmeaustausch zwischen Ozean und Atmosphäre und diabatische Prozesse in der Golfstromregion die Variabilität der großräumigen Strömung über dem Nordatlantik und Europa prägen. Zu diesem Zweck werden wir ausgefeilte Diagnostiken zur Charakterisierung von Luftmassen mit neuartigen Diagnostiken zur Bestimmung des atmosphärischen Energiehaushaltes verbinden und damit den Ablauf von Wetterregimen und Regimewechseln in aktuellen hochaufgelösten numerischen Modelldatensätzen und mit Hilfe von eigenen Sensitivitätsstudien untersuchen. Dazu werden wir unsere Expertise in größräumiger Dynamik und Wettersystemen, sowie Atmosphäre-Ozean Wechselwirkungen â€Ì insbesondere während arktischen Kaltluftausbrüchen â€Ì und der Lagrangeâ€Ìschen Untersuchung atmosphärischer Prozesse nutzen. Im Detail werden wir (i) ein dynamisches Verständnis entwickeln, wie Luftmassentransformationen entlang des Golfstroms die Höhenströmung über Europa beeinflussen, mit Fokus auf blockierenden Hochdruckgebieten, (ii) die Bedeutung von Luftmassentransformationen und diabatischer Prozesse für den Erhalt von Bedingungen, die die Intensivierung von Tiefdruckgebieten während bestimmter Wetterregimelebenszyklen bestimmen, untersuchen, (iii) diese Erkenntnisse in ein einheitliches und quantitatives Bild vereinen, welches die Prozesse, die den Einfluss des Golfstroms auf die großräumige Wettervariabilität prägen, zusammenfasst und (iv) die Güte dieser Prozesse in aktuellen numerischen Vorhersagesystemen bewerten. Diese Grundlagenforschung wird wichtige Erkenntnisse zur Verbesserung von Wettervorhersagemodellen liefern.

Numerische Simulation und Vorhersage meteorologisch bedingter Anteile der Stroemungen und Wasserstaende in der Nordsee

In physikalisch-numerischen Modellen der Nordsee sollen die Anteile der Wassertransporte und Pegelstandsaenderungen simuliert werden, die neben den astronomisch bedingten durch Tangentialschub des Windes und Luftdruckgradienten erzeugt werden. Es sollen Methoden fuer ihre Vorhersage per Computer im Anschluss an die numerische Wetterprognose entwickelt werden. Einem hierbei noch voellig ungeloesten Problem, der Simulation der Entstehung von meteorologischen Flutwellen (external surges) auf dem Nordatlantik und ihrer Ausbreitung bis in die Deutsche Bucht, wird zuerst nachgegangen.

Vertikale Verteilung von Wolkenkondensationskernen in marinen und kontinentalen Luftmassen in Europa und ihre Verbindung zur Wolkentropfenanzahlkonzentration in warmen Wolken

Die Anzahl der verfügbaren Wolkenkondensationskerne (CCN) beeinflusst maßgeblich die mikrophysikalischen Wolkeneigenschaften, wie z.B. die Wolkentropfenanzahlkonzentration (CDNC) und deren Größenverteilung. CDNC und die Tropfengröße steuern sowohl die Strahlungseigenschaften als auch die Lebensdauer von Wolken. Dies wirkt sich komplex auf die Energiebilanz der Erde aus. Aktuelle Klimamodelle basieren häufig auf Annahmen über CCN Anzahlkonzentrationen und andere CCN bezogene Eigenschaften (z.B. Hygroskopizität), da für viele Regionen auf der Erde repräsentative Daten fehlen. Wenn vorhanden, handelt es sich bei diesen CCN Daten um bodengebundene Messungen, welche somit nicht - mit Ausnahme von Bergstationen - in der für Wolkenbildungsprozesse relevanten Höhe durchgeführt wurden. Für die Karibikregion wurde gezeigt, dass die bodengebundenen CCN Messungen für die gesamte marine Grenzschicht repräsentativ zu sein scheinen also auch für die Wolkenbildungsregionen. Im hier vorgeschlagenen Projekt wollen wir überprüfen, ob bodengebundene CCN Messungen auch in anderen Erdregionen repräsentativ sind für die CCN Anzahl in der Wolkenbildungsregion, und wenn ja, unter welchen Bedingungen. Dies würde die Anwendung von CCN Daten in Modellen stark vereinfachen. Dazu wird die Gültigkeit der Beobachtungen in der Karibik, in zwei gegensätzlichen Umgebungen getestet werden, einmal in einer marinen und einmal in einer kontinentalen Umgebung. Die Messkampagne zu marinen CCN soll auf den Azoren (Portugal) durchgeführt werden. Wir werden kontinuierlich verfügbare CCN Daten von der Azoren Eastern Nordatlantik (ENA) Station auf der Insel La Graciosa (auf Meereshöhe) mit Daten von der Bergstation Pico (Pico Island, 2225 m ü.d.M.) kombinieren. Ergänzend werden CCN und CDNC Messungen auf der Helikopter-Messplattform (ACTOS) durchgeführt, um die vertikale Lücke zwischen den Meeresspiegel- und Bergmessungen zu schließen. Die kontinentalen bodengebundenen CCN Messungen werden kontinuierlich an der ACTRIS Station Melpitz durchgeführt. Die vertikale CCN und CDNC Verteilung wird in Melpitz mit Hilfe eines Ballons in mehreren einwöchigen Kampagnen einmal pro Jahreszeit gemessen werden. Darüber hinaus werden wir mit Hilfe der Aerosol-Wolken-Wechselwirkungsmetrik (ACI) die in der Wolke in-situ gemessen CCN Eigenschaften (das heißt Anzahl und Hygroskopizität) mit den CDNC quantitativ verbinden. Es wird außerdem eine Sensitivitätsstudie mit einem Cloud-Parcel Model durchgeführt, welches durch die realen Messungen in der Atmosphäre angetrieben werden wird. Dies wird einen Einblick in das Übersättigungsregime von frisch gebildeten Wolken gewähren.Die CCN Daten selbst, die Erkenntnisse zu CCN Eigenschaften und ihrer vertikalen Verteilung sowie die quantitative Verbindung zwischen CCN und CDNC werden im Hinblick auf das Verständnis und die Modellierung der Wolkentropfenaktivierung sowie der mikrophysikalischen Wolkeneigenschaften von außerordentlichem Wert sein.

Ermittlung des Potenzials von Speläothemen zur Rekonstruktion von (kurzfristigen) Phasen extremen Klimas

Ziel dieses Antrags ist es, das Potenzial von Speläothemen für die Rekonstruktion von (kurzlebigen) Phasen und Ereignissen extremen Klimas, wie besonders niedrigen Temperaturen, extreme, Niederschlagsmengen oder hohen Windgeschwindigkeiten, zu ermitteln. Solche Extremereignisse treten selten auf, verursachen aber oft große Schäden mit schwerwiegenden Folgen für Bevölkerung und Ökosysteme der betroffenen Region. Ein besseres Verständnis der Ursachen und Randbedingungen von Extremereignissen ermöglicht eine bessere Prognose ihres Auftretens in der Zukunft, was wesentlich ist für das Treffen entsprechender Vorkehrungen.Speläotheme bieten präzise datierte Multi-Proxy-Zeitreihen mit nahezu jährlicher Auflösung und haben somit ein großes Potenzial als Archiv von Extremereignissen. Allerdings werden die in Speläothemen gespeicherten Proxy-Signale im Aquifer über der Höhle in einem gewissen Umfang geglättet, weshalb die Sensitivität der jeweiligen Höhlensysteme und Proxys für die Rekonstruktion vergangener Extremereignisse bestimmt werden muss. Der Schwerpunkt dieses Antrags liegt auf dem 8.2 ka Event und den letzten 2000 Jahren. Das 8.2 ka Event war die extremste Klimaanomalie des Holozäns und spiegelt die Auswirkungen eines enormen Süßwassereintrags in den Nordatlantik während eines Interglazials wider. In den letzten 2000 Jahren wurden mehrere hundertjährige Klimaschwankungen identifiziert (z.B. die Mittelalterliche Warmzeit und die Kleine Eiszeit). Zusätzlich konnten andere, kurzlebige Klimaanomalien festgestellt werden, wie z.B. das historische Magdalenenhochwasser im Juli 1342 AD oder Hitze und Trockenheit in Europa von 1540 AD. Manche Ereignisse wurden durch Vulkanausbrüche ausgelöst (z.B. das Jahr ohne Sommer 1816 AD durch die Tambora Eruption 1815 AD).Mehrere Speläotheme, die während des 8.2 ka Event und der letzten 2000 Jahre wuchsen, aus drei Höhlen in Deutschland stehen zur Verfügung. Für alle drei Höhlen wurden langfristige Monitoring-Programme eingerichtet, was eine Voraussetzung ist, um die Prozesse in den Höhlen zu verstehen und die Proxy-Signale der Speläotheme zu interpretieren. Wir werden stabile Isotope und Spurenelemente in den entsprechenden Abschnitten der Stalagmiten mit sehr hoher Auflösung (jährlich) analysieren, und die Proben mittels MC-ICPMS 230Th/U-Datierung präzise datieren. Die Identifizierung der am besten geeigneten Proxys für die Rekonstruktion der Extremereignisse wird unter Verwendung eines quantitativen Modells basierend auf meteorologischen und Monitoring-Daten durchgeführt. Die Kombination aus präzise datierten, hochaufgelösten Multi-Proxy-Records und einem quantitativen Modell stellt eine solide Basis dar, um (i) geeignete Proxys für die Rekonstruktion der Extremereignisse zu identifizieren und (ii) bestimmte Ereignisse in verschiedenen Speläothemen zu vergleichen. Dies ermöglicht die Bestimmung von Zeitpunkt, Dauer und Struktur der Ereignisse.

Transportwege von Feuchte und Wasserdampfisotopologe

Das Zusammenspiel von atmosphärischem Wasser und Zirkulation über Beeinflussung des Strahlungshaushalts, den Transport latenter Wärme und Rückkopplungsmechanismen von Wolken ist eines der bedeutendsten Hindernisse für das Verständnis des Klimasystems. Ein Vergleich zwischen Modellen verschiedener Auflösungen und Parameterisierungen kann wertvolle Einblicke in die Problematik geben. Jedoch werden für aussagekräftige Modelltests Messdaten benötigt. In diesem Zusammenhang können Isotopologen des troposphärischen Wasserdampfs eine wichtige Rolle spielen. Das Isotopologenverhältnis reflektiert die Bedingungen am Ort des Feuchteeintrags sowie verschiedene Umwandlungsprozesse (z.B. in Wolken). Während der letzten Jahre gab es großen Fortschritt beim Modellieren und Messen der Isotopologenverhältnisse, so dass kombinierte Untersuchungen nun global zeitlich und räumlich hochaufgelöst durchführbar sind. Das Ziel dieses Projektes ist es, Wasserdampfisotopologe als neue Methode zu etablieren, um modellierte atmosphärische Feuchteprozesse zu testen und damit einige der größten Herausforderungen der aktuellen Klimaforschung anzugehen. Um statistisch robuste Untersuchungen zu ermöglichen, werden wir eine große Anzahl von (H2O, deltaD)-Paaren messen (deltaD ist das standardisierte Verhältnis zwischen den Isotopologen HD16O und H216O). Zum ersten Mal wird dann ein validierter Beobachtungsdatensatz zur Verfügung stehen, der große Gebiete, lange Zeiträume und verschiedene Tageszeiten abdeckt. Gleichzeitig wird ein hochauflösendes meteorologisches Modell, welches die Isotopologe simuliert, benutzt, um zu untersuchen inwiefern sich Eintrag und Transport von Feuchte in den Isotopologen wiederspiegeln. Diese Kombination von Messung und Modell ist einzigartig zum Testen der Modellierung von Feuchteprozessen. Das Potential der Isotopologen wird anhand von drei klimatisch interessanten Regionen aufgezeigt. Für Europa wird unser Ansatz einen wertvollen Einblick in den Zusammenhang zwischen Feuchteeintrag und den Isotopologen im Falle hochvariablen Wettergeschehens geben. Über dem subtropischen Nordatlantik werden wir Mischprozessen zwischen der marinen Grenzschicht und der freien Troposphäre untersuchen. Die verschiedenartige Einbindung dieser Prozesse in Modelle ist sehr wahrscheinlich ein Grund für die große Unsicherheit bei Rückkopplungsmechanismen von Wolken. Über Westafrika wird die Modellierung des Monsuns getestet (horizontaler Feuchtetransport, Feuchterückfluss von Land in die Troposphäre, und Tagesgänge in Zusammenhang mit vertikalen Mischprozessen). Die Frage, wie organisierte Konvektion die Monsunzirkulation und die Feuchtetransportwege beeinflusst, wird dabei von besonderem Interesse sein. In Kombination werden die Ergebnisse helfen, Defizite in aktuellen Wetter- und Klimamodellen aufzuspüren und besser zu verstehen, und dadurch einen wichtigen Beitrag für zukünftige Modellverbesserungen liefern.

Warmwassersphaere des Nordatlantiks

Die Forschungsarbeiten der Abteilung Regionale Ozeanographie werden sich weiterhin auf die physikalischen Prozesse in den oberen Schichten des offenen Ozeans, der Warmwassersphaere, konzentrieren. Dahinter steht die Notwendigkeit, die Transportprozesse zu verstehen, die den Einfluss des Ozeans auf die atmosphaerischen Klimaaenderungen fuer die Zeitskala des World Climate Research Programme bestimmen. Da diese Zeitskala den Bereich Wochen bis Monate umfasst, ist eine umfangreiche Expeditionstaetigkeit noetig. Neuentwickelte Messmethoden sollen dabei zum Einsatz kommen, so u.a. ein geschlepptes, vertikal undulierendes Geraet zur Erfassung der Dichteschichtung, ein akustisch arbeitendes Geraet zur Bestimmung der vertikalen Geschwindigkeitsverteilung in der ozeanischen Deckschicht sowie satelliten- bzw. funkgeortete Driftbojen. Begleitet wird die Messtaetigkeit durch die Entwicklung von Modellen (empirisch, diagnostisch, prognostisch). Schwerpunkte der Untersuchungen werden sein: - theoretische Untersuchungen zur geophysikalischen Turbulenz und ihre Anwendung auf Transportprozesse in der ozeanischen Warmwassersphaere, - Ursachen und Auswirkungen der Jahresschwankungen von Baroklinitaet und Haloklinitaet, - Entstehung ozeanischer Fronten und ihre Bedeutung fuer turbulente Transportprozesse, - Modellierung der Konvektion in der Deckschicht unter besonderer Beruecksichtigung des Tagesganges, - Struktur und Transporte des Nordatlantischen Stromes, - wissenschaftliche Analyse von Datensaetzen des Welt-Datenzentrums sowie von Expeditionen, insbesondere GATE 1974, JASIN 1978, FGGE 1979. Das Forschungsprogramm ist integraler Bestandteil des SFB 133.

Modellierung von Wasser-Transportwegen und -Isotopen in der atmosphärischen Grenzschicht der Passatwindzone (MoWITrade)

Das Strahlungsbudget der Erde und die Sensitivität des Klimasystems gegenüber externen Antrieben werden stark durch den Wasserkreislauf und die Bildung von tiefliegenden Wolken in der marinen Grenzschicht der Passatwindzone beeinflusst. Die Darstellung dieser Prozesse in globalen Klimamodellen ist allerdings mit großen Unsicherheiten verbunden. Das Ziel dieses Projektes ist es, diese Unsicherheiten zu reduzieren und unser Verständnis von Wassertransport-Prozessen in der Passatwindzone zu verbessern. Dazu werden hoch entwickelte Transport-Diagnostiken in Klimasimulationen verwendet, die ein breites Spektrum an räumlichen Auflösungen abdecken (Gitterpunktsabstände von unter 1 km bis zu 100 km). Die Beiträge verschiedener Quellregionen und Transportwege zum Feuchtebudget in der marinen Grenzschicht werden mit Hilfe von numerischen Feuchte-Tracern quantifiziert. Diese passiven Tracer werden mit prognostischen Simulationen von Wasserisotopen kombiniert, um spezifische Fingerabdrücke der verschiedenen diagnostizierten Feuchte-Transportwege in der Isotopenzusammensetzung zu bestimmen. Schließlich wird die simulierte Isotopenzusammensetzung mit Messungen von der EUREC4A-Messkampagne im tropischen Nordatlantik verglichen. Auf diese Weise wird untersucht, inwiefern Beobachtungen von Wasserisotopen dazu dienen können, die simulierten Transportprozesse zu evaluieren. Durch diesen skalenübergreifenden Modellierungsansatz, in Kombination mit Beobachtungsdaten von der EUREC4A-Kampagne, werden wir in der Lage sein, die Darstellung des tropischen Wasserkreislaufs in Klimamodellen auf neuartige Art und Weise zu evaluieren und schlussendlich zu verbessern.

1 2 3 4 533 34 35