API src

Found 349 results.

Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm, Teilprojekt: Die Verknüpfung von terrestrischen und marinen Ökosystemreaktionen auf Klimaschwankungen seit der letzten Zwischeneiszeit in südosteuropäischen Refugien (Ohridsee und Golf von Korinth)

Dieses hybride ICDP/IODP-Projekt hat zum Ziel: (a) die empfindliche Vegetationsreaktion von zwei Zufluchtsorten auf der Balkanhalbinsel (Ohrid/ICDP im Norden und Korinth/IODP im Süden) im letzten Klimazyklus auf hundertjähriger Skala zu verbinden, (b) die Lead-Lag-Beziehungen zwischen terrestrischen und marinen Ökosystemen auf globale Klimaschwankungen auf lokaler und regionaler Ebene in bestimmten stratigraphischen Horizonten seit der letzten Zwischeneiszeit zu untersuchen. Die beiden Untersuchungsgebiete liegen in Schlüsselpositionenen im östlichen Mittelmeerraum, der sehr empfindlich auf abrupte Klimaschwankungen reagiert und es erlaubt, Einflüsse sowohl aus höheren (z. B. Nordatlantik) als auch aus niedrigeren Breitengraden (z. B. afrikanischer Monsun) nachzuweisen. Die Bestimmung der Zusammensetzung, Fülle und der Abfolge der Vegetation in den nördlichsten und südlichsten Refugialstandorten des Pindus-Gebirges wird es uns ermöglichen, bioklimatische Schwellenwerte und die Vegetationsdynamik während einer Zeit abrupter Klimaschwankungen mit hoher Amplitude zu rekonstruieren. Neben Vegetationsverschiebungen erfassen Sedimente aus dem Golf von Korinth auch Veränderungen in marinen Ökosystemen. Somit können Lead-Lag-Beziehungen im lokalen Ausdruck der Klimaschwankungen zwischen dem terrestrischen und dem marinen Bereich unter Umgehung chronologischer Unsicherheiten bestimmt werden. Das Verständnis des Zusammenspiels zwischen klimatischen, ökologischen und tektonischen Faktoren auf suborbitaler Ebene innerhalb des Grabensystems wird es uns folglich ermöglichen, das Hauptziel der IODP Exp. 381 zu erreichen. Durch die Untersuchung der Vielfalt und Fülle der gemäßigten Baumarten während der letzten Eiszeit greift dieses Projekt eines der wichtigsten wissenschaftlichen Ziele des SCOPSCO ICDP-Projekts auf, das sich mit Pflanzenresilienz und Schutzstrategien in Südosteuropa befasst.

Wie prägen kohärente Luftströmungen den Einfluss des Golfstroms auf die großskalige atmosphärische Zirkulation der mittleren Breiten?

Über dem Nordatlantik und Europa wird die Variabilität der großräumigen Wetterbedingungen von quasistationären, langandauernden und immer wiederkehrenden Strömungsmustern â€Ì sogenannten Wetterregimen â€Ì geprägt. Diese zeichnen sich durch das Auftreten von Hoch- und Tiefdruckgebieten in bestimmten Regionen aus. Verlässliche Wettervorhersagen auf Zeitskalen von einigen Tagen bis zu einigen Monaten im Voraus hängen von einer korrekten Darstellung der Lebenszyklen dieser Strömungsregime in Computermodellen ab. Um das zu erreichen müssen insbesondere Prozesse, die günstige Bedingungen zur Intensivierung von Tiefdruckgebieten aufrecht erhalten, und Prozesse, die den Aufbau von stationären Hochdruckgebieten (blockierende Hochs) begünstigen, richtig wiedergegeben werden. Aktuelle Forschung deutet stark darauf hin, dass Atmosphäre-Ozean Wechselwirkungen, insbesondere entlang des Golfstroms, latente Wärmefreisetzung in Tiefs, und Kaltluftausbrüche aus der Arktis dabei eine entscheidende Rolle spielen. Dennoch mangelt es an grundlegendem Verständnis wie solche Luftmassentransformationen über dem Ozean die großskalige Höhenströmung beeinflussen. Darüber hinaus ist die Relevanz solcher Prozesse für Lebenszyklen von Wetterregimen unerforscht. In dieser anspruchsvollen drei-jährigen Kollaboration zwischen KIT und ETH Zürich streben wir an ein ganzheitliches Verständnis zu entwickeln, wie Wärmeaustausch zwischen Ozean und Atmosphäre und diabatische Prozesse in der Golfstromregion die Variabilität der großräumigen Strömung über dem Nordatlantik und Europa prägen. Zu diesem Zweck werden wir ausgefeilte Diagnostiken zur Charakterisierung von Luftmassen mit neuartigen Diagnostiken zur Bestimmung des atmosphärischen Energiehaushaltes verbinden und damit den Ablauf von Wetterregimen und Regimewechseln in aktuellen hochaufgelösten numerischen Modelldatensätzen und mit Hilfe von eigenen Sensitivitätsstudien untersuchen. Dazu werden wir unsere Expertise in größräumiger Dynamik und Wettersystemen, sowie Atmosphäre-Ozean Wechselwirkungen â€Ì insbesondere während arktischen Kaltluftausbrüchen â€Ì und der Lagrangeâ€Ìschen Untersuchung atmosphärischer Prozesse nutzen. Im Detail werden wir (i) ein dynamisches Verständnis entwickeln, wie Luftmassentransformationen entlang des Golfstroms die Höhenströmung über Europa beeinflussen, mit Fokus auf blockierenden Hochdruckgebieten, (ii) die Bedeutung von Luftmassentransformationen und diabatischer Prozesse für den Erhalt von Bedingungen, die die Intensivierung von Tiefdruckgebieten während bestimmter Wetterregimelebenszyklen bestimmen, untersuchen, (iii) diese Erkenntnisse in ein einheitliches und quantitatives Bild vereinen, welches die Prozesse, die den Einfluss des Golfstroms auf die großräumige Wettervariabilität prägen, zusammenfasst und (iv) die Güte dieser Prozesse in aktuellen numerischen Vorhersagesystemen bewerten. Diese Grundlagenforschung wird wichtige Erkenntnisse zur Verbesserung von Wettervorhersagemodellen liefern.

Numerische Simulation und Vorhersage meteorologisch bedingter Anteile der Stroemungen und Wasserstaende in der Nordsee

In physikalisch-numerischen Modellen der Nordsee sollen die Anteile der Wassertransporte und Pegelstandsaenderungen simuliert werden, die neben den astronomisch bedingten durch Tangentialschub des Windes und Luftdruckgradienten erzeugt werden. Es sollen Methoden fuer ihre Vorhersage per Computer im Anschluss an die numerische Wetterprognose entwickelt werden. Einem hierbei noch voellig ungeloesten Problem, der Simulation der Entstehung von meteorologischen Flutwellen (external surges) auf dem Nordatlantik und ihrer Ausbreitung bis in die Deutsche Bucht, wird zuerst nachgegangen.

Vertikale Verteilung von Wolkenkondensationskernen in marinen und kontinentalen Luftmassen in Europa und ihre Verbindung zur Wolkentropfenanzahlkonzentration in warmen Wolken

Die Anzahl der verfügbaren Wolkenkondensationskerne (CCN) beeinflusst maßgeblich die mikrophysikalischen Wolkeneigenschaften, wie z.B. die Wolkentropfenanzahlkonzentration (CDNC) und deren Größenverteilung. CDNC und die Tropfengröße steuern sowohl die Strahlungseigenschaften als auch die Lebensdauer von Wolken. Dies wirkt sich komplex auf die Energiebilanz der Erde aus. Aktuelle Klimamodelle basieren häufig auf Annahmen über CCN Anzahlkonzentrationen und andere CCN bezogene Eigenschaften (z.B. Hygroskopizität), da für viele Regionen auf der Erde repräsentative Daten fehlen. Wenn vorhanden, handelt es sich bei diesen CCN Daten um bodengebundene Messungen, welche somit nicht - mit Ausnahme von Bergstationen - in der für Wolkenbildungsprozesse relevanten Höhe durchgeführt wurden. Für die Karibikregion wurde gezeigt, dass die bodengebundenen CCN Messungen für die gesamte marine Grenzschicht repräsentativ zu sein scheinen also auch für die Wolkenbildungsregionen. Im hier vorgeschlagenen Projekt wollen wir überprüfen, ob bodengebundene CCN Messungen auch in anderen Erdregionen repräsentativ sind für die CCN Anzahl in der Wolkenbildungsregion, und wenn ja, unter welchen Bedingungen. Dies würde die Anwendung von CCN Daten in Modellen stark vereinfachen. Dazu wird die Gültigkeit der Beobachtungen in der Karibik, in zwei gegensätzlichen Umgebungen getestet werden, einmal in einer marinen und einmal in einer kontinentalen Umgebung. Die Messkampagne zu marinen CCN soll auf den Azoren (Portugal) durchgeführt werden. Wir werden kontinuierlich verfügbare CCN Daten von der Azoren Eastern Nordatlantik (ENA) Station auf der Insel La Graciosa (auf Meereshöhe) mit Daten von der Bergstation Pico (Pico Island, 2225 m ü.d.M.) kombinieren. Ergänzend werden CCN und CDNC Messungen auf der Helikopter-Messplattform (ACTOS) durchgeführt, um die vertikale Lücke zwischen den Meeresspiegel- und Bergmessungen zu schließen. Die kontinentalen bodengebundenen CCN Messungen werden kontinuierlich an der ACTRIS Station Melpitz durchgeführt. Die vertikale CCN und CDNC Verteilung wird in Melpitz mit Hilfe eines Ballons in mehreren einwöchigen Kampagnen einmal pro Jahreszeit gemessen werden. Darüber hinaus werden wir mit Hilfe der Aerosol-Wolken-Wechselwirkungsmetrik (ACI) die in der Wolke in-situ gemessen CCN Eigenschaften (das heißt Anzahl und Hygroskopizität) mit den CDNC quantitativ verbinden. Es wird außerdem eine Sensitivitätsstudie mit einem Cloud-Parcel Model durchgeführt, welches durch die realen Messungen in der Atmosphäre angetrieben werden wird. Dies wird einen Einblick in das Übersättigungsregime von frisch gebildeten Wolken gewähren.Die CCN Daten selbst, die Erkenntnisse zu CCN Eigenschaften und ihrer vertikalen Verteilung sowie die quantitative Verbindung zwischen CCN und CDNC werden im Hinblick auf das Verständnis und die Modellierung der Wolkentropfenaktivierung sowie der mikrophysikalischen Wolkeneigenschaften von außerordentlichem Wert sein.

Warmwassersphaere des Nordatlantiks

Die Forschungsarbeiten der Abteilung Regionale Ozeanographie werden sich weiterhin auf die physikalischen Prozesse in den oberen Schichten des offenen Ozeans, der Warmwassersphaere, konzentrieren. Dahinter steht die Notwendigkeit, die Transportprozesse zu verstehen, die den Einfluss des Ozeans auf die atmosphaerischen Klimaaenderungen fuer die Zeitskala des World Climate Research Programme bestimmen. Da diese Zeitskala den Bereich Wochen bis Monate umfasst, ist eine umfangreiche Expeditionstaetigkeit noetig. Neuentwickelte Messmethoden sollen dabei zum Einsatz kommen, so u.a. ein geschlepptes, vertikal undulierendes Geraet zur Erfassung der Dichteschichtung, ein akustisch arbeitendes Geraet zur Bestimmung der vertikalen Geschwindigkeitsverteilung in der ozeanischen Deckschicht sowie satelliten- bzw. funkgeortete Driftbojen. Begleitet wird die Messtaetigkeit durch die Entwicklung von Modellen (empirisch, diagnostisch, prognostisch). Schwerpunkte der Untersuchungen werden sein: - theoretische Untersuchungen zur geophysikalischen Turbulenz und ihre Anwendung auf Transportprozesse in der ozeanischen Warmwassersphaere, - Ursachen und Auswirkungen der Jahresschwankungen von Baroklinitaet und Haloklinitaet, - Entstehung ozeanischer Fronten und ihre Bedeutung fuer turbulente Transportprozesse, - Modellierung der Konvektion in der Deckschicht unter besonderer Beruecksichtigung des Tagesganges, - Struktur und Transporte des Nordatlantischen Stromes, - wissenschaftliche Analyse von Datensaetzen des Welt-Datenzentrums sowie von Expeditionen, insbesondere GATE 1974, JASIN 1978, FGGE 1979. Das Forschungsprogramm ist integraler Bestandteil des SFB 133.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - International Ocean Discovery Program, Untersuchung der Rolle von Vulkanismus am Beginn und Ende des Paläozän-Eozän-Temperaturemaximum basierend auf Sedimenten der IODP-Expedition 396

Es ist bekannt, dass Vulkanausbrüche das Klima auf verschiedene Weise beeinflussen. Diese reichen von kurzfristigen Auswirkungen wie Sulfat-Injektionen, die die einfallende Sonnenstrahlung reduzieren und zu Abkühlung führen, bis zu mittelfristigen Auswirkungen wie Erwärmung durch Kohlendioxid-Entgasung. Langfristig können Auswirkungen wie eine verstärkte Verwitterung eingelagerter Basalte zu einer Entfernung von Kohlendioxid und damit Abkühlung führen. Lange Perioden intensiven Vulkanismus, die als Large Igneous Provinces (LIPs) bekannt sind, können besonders tiefgreifende Auswirkungen auf das Klima haben, wobei mehrere LIPs entweder mit der globalen Erwärmung oder Abkühlung in der Erdgeschichte sowie mit Massenaussterben in Verbindung gebracht werden. Das Paläozän-Eozän-Temperaturemaximum (PETM), eine 200.000 Jahre lange Periode intensiver globaler Erwärmung vor ca. 56 Millionen Jahren, ereignete sich zur gleichen Zeit wie die Entstehung eines LIP, der North Atlantic Igneous Province (NAIP). Die NAIP-Entstehung wurde als Ursache für das PETM vorgeschlagen, da während des Vulkanismus Kohlendioxid und Methan freigesetzt werden, welches zu einer schnellen Erwärmung führt. Es wurde auch vermutet, dass die Ablagerung von Vulkanasche während des NAIP das Klima abgekühlt hat. Als solches ist das PETM eine ideale Periode, um die Auswirkungen des Vulkanismus auf das Erdsystem zu untersuchen. Expedition 396 des International Ocean Discovery Program (IODP) hat erfolgreich eine Reihe von langen Sedimentsequenzen aus dem PETM-Zeitalter am norwegischen Rand geborgen. In diesem Projekt beabsichtige ich, detaillierte deskriptive, geochemische und modellbasierte Untersuchungen mit den Sedimenten der Expedition 396 durchzuführen, um die Rolle des NAIP-Vulkanismus im PETM zu dokumentieren. Erstens wird die Intensität des Vulkanismus durch neue Schätzungen der Kohlendioxid-, Methan- und Sulfatemissionen bewertet, um die Rolle der Gase auf den Klimawandel zu bestimmen. Durch detaillierte geochemische Untersuchungen werden die Auswirkungen der Ascheablagerung auf den Kohlenstoffkreislauf bewertet mit Schwerpunkt auf der Rolle der Asche als Nährstofflieferant für Phytoplankton liegt. Die potenziellen Auswirkungen der Ascheablagerung auf die Speicherung von Kohlenstoff im Sediment werden ebenfalls geochemisch und isotopisch untersucht. Abschließend werden die Ergebnisse unter Verwendung von Erdsystemmodelle kombiniert, um die genaue Rolle des Vulkanismus im PETM zu bestimmen. Die erwarteten Ergebnisse werden uns neue Erkenntnisse über die Rolle der LIP-Entstehung und der Ablagerung von Vulkanasche beim Klimawandel geben. Sedimente von Expedition 396 bieten eine einzigartige Gelegenheit, den geochemischen Abdruck des Vulkanismus hochauflösend zu untersuchen. Die Ergebnisse dieser Arbeit werden zu einer erheblichen Verbesserung unseres Verständnisses des PETM führen.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Einfluss von Jet-Front Systemen in der oberen Troposphäre auf die mesoskalige Struktur der Tropopauseninversionsschicht und Stratosphären-Troposphären Austausch (MESO-TIL)

Der vorliegende Antrag ist der HALO Mission WISE zuzuordnen. Ein besonderes Augenmerk liegt dabei auf der Bildung der Tropopauseninversionsschicht (TIL) und deren Einfluss auf Stratosphären-Troposphären Austausch (STE) auf der Mesoskala. Diesem Projekt dienen idealisierte Studien der TIL in baroklinen Lebenszyklen als Grundlage. Die Hauptziele sind dabei die Überprüfung der Ergebnisse der idealisierten Studien zur TIL Bildung genauso wie ein erweitertes Verständnis der Prozesse, die zum STE auf der Mesoskala beitragen. Dabei soll auf drei wissenschaftliche Fragestellungen genauer eingegangen werden: (1) Wie stark schwankt die TIL in ihrem Auftreten über dem Nordatlantik, vor allem im Bereich barokliner Lebenszyklen und im Bereich von STE? (2) Welche Prozesse liefern den größten Beitrag zur TIL auf der Mesoskala und welchen Einfluss hat dies auf STE? (3) Wie groß ist der Beitrag von klein-skaligen Wellen in der unteren Stratosphäre auf die TIL Bildung und die Ausdehnung der extratropischen Mischungsschicht? Eine Kombination von Methoden wird verwendet werden um diese Fragen zu beantworten. Analysedaten des EZMW werden zusammen mit Lagrangeschen Methoden benutzt, um die TIL und STE über dem Nordatlantik zu untersuchen. Der Nordatlantik ist das Gebiet, das auch während WISE untersucht werden soll. Darüber hinaus sollen für WISE hoch aufgelöste Modellsimulationen mit dem neuen numerischen Wettervorhersagemodell ICON durchgeführt werden. Dabei sollen zum einen die Beiträge diverser Prozesse auf die Bildung der TIL am Beispiel von realen Zyklonen und Antizyklonen untersucht werden. Des Weiteren sollen die Modelldaten zusammen mit Beobachtungsdaten verwendet werden um den Einfluss der TIL und von klein-skaligen Wellen auf die vertikale Ausdehnung der extratropischen Mischungsschicht zu bestimmen.

Kurzfristige Variabilität von Klima und Ozeanographie des subtropischen Nordwest-Atlantik

Mit detaillierten paläo-ozeanographischen Zeitserien soll das Wechselspiel zwischen nord- und südatlantischen Wassermassen und die Veränderlichkeit des transäquatorialen Wärmestromes rekonstruiert werden. Über Passagen in den Kleinen Antillen fließt warmes Oberflächenwasser aus dem Nordatlantik durch das Tobago Becken in die Karibik. Dieses Wasser fließt weiter in den Golf von Mexiko, dem Ursprungsgebiet des warmen Golfstromes. Das hier beantragte Vorhaben konzentriert sich auf die mikropaläontologische Auswertung von Sedimentmaterial, das im Rahmen der fünften Expedition des internationalen IMAGES Projektes im Juni 1999 im Tobago Becken gewonnen wurde. Feinskalige Paläo-Oberflächentemperaturprofile sollen für die letzten 150.000 bis 200.000 Jahre mit Hilfe der statistischen Bearbeitung der Vergesellschaftung planktonischer Foraminiferen entlang eines 38 m langen Sedimentkernes erstellt werden. Damit sollen kurzfristige Variabilitäten im Warmwasserpool des subtropischen Nordatlantik nachgezeichnet und versucht werden, zeitliche und mechanistische Querbezüge zu den raschen Klimawechsel im nördlichen Nordatlantik abzuleiten.

Reaktionen des terrestrischen Systems auf nordatlantische Klimaschwankungen im letzten glazialen Zyklus: Hochauflösende Löss-Paläoboden-Sequenzen aus Remagen-Schwalbenberg (Mittelrheintal, Deutschland) (TerraClime)

Klimaschwankungen des Quartärs sind anhand von Tiefsee- und Eisbohrkernen sehr detailliert erforscht und bekannt. Reaktionen des terrestrischen Systems auf diese Klimaänderungen sind bis heute hingegen nur vage definiert. Diese besser zu verstehen ist jedoch von entscheidender Bedeutung, da der Mensch auf der Erdoberfläche lebt, und die Steuerungsfaktoren sowie Rückkopplungen zwischen Erdoberfläche und Atmosphäre sich anders als in Tiefseesedimenten oder Eisbohrkernen niederschlagen. Hauptziel des TERRACLIME-Projekts ist es, die Reaktionen des terrestrischen Systems auf Klimaänderungen der Nordhemisphäre während des letztglazialen Zyklus (LGZ) anhand neuer Löss-Paläoboden-Sequenzen (LPS) aus Remagen-Schwalbenberg (Mittelrheintal, Deutschland) zu rekonstruieren. Der im Zuge der Projektvorarbeiten gewonnene Pilotkern REM 3A beinhaltet die mächtigste und womöglich vollständigste für den LGZ in West- und Mitteleuropa bekannte Sequenz, die eine umfassende Rekonstruktion der Landschaftsgeschichte und Paläoumweltbedingungen ermöglicht. Der neue Kern ist länger und vollständiger als Aufschlüsse und Profile früherer Studien. Letzteren fehlen zudem hochauflösende Paläoklimarekonstruktionen mittels neuer Methoden sowie ein hochauflösender chronologischer Rahmen. Die systematische geophysikalische Prospektion des gesamten Schwalbenbergs bildet die Basis zur Detektion bestmöglicher Bohrpunkte an Stellen maximaler Lössmächtigkeit, um neben einem weiteren, hoch auflösenden Kern gezielte Testsondierungen durchzuführen. Durch diesen Catena-Ansatz wird es möglich sein, die Reaktionen von Löss auf Klimaänderungen zu erfassen sowie archiv-intrinsische Variabilitäten zur Differenzierung zwischen lokal, regional und überregional gesteuerten Prozessen zu nutzen. Neben etablierten Methoden (Sedimentologie, Mineralogie, Umweltmagnetismus) wird sich das Projekt auch neuartiger, innovativer Ansätze bedienen (anorganische und stabile Isotopen-Geochemie, Biomarker-Analysen). Dadurch werden neue Erkenntnisse zu paläoklimatischen Bedingungen, Sedimentationsprozessen, post-sedimentären Veränderungen sowie zur Vegetationsgeschichte generiert. Geochemische Daten werden außerdem herangezogen, um mögliche Änderungen der Sedimentherkunft zu erfassen. Hochauflösende Lumineszenz-Datierungen zur Erstellung eines unabhängigen und verlässlichen Altersmodells spielen im Rahmen des Projektes eine entscheidende Rolle. Ein Altersmodell, das auf der Kopplung von OSL an Quarzen mit pIR-IRSL an polymineralischen Präparaten basiert, fehlt bislang für den Schwalbenberg. Im Vergleich mit anderen lokalen, regionalen und überregionalen Paläoklimaarchiven wird es damit möglich sein, Reaktionen des terrestrischen Systems auf atmosphärische Klimaänderungen im Nordatlantik innerhalb des LGZ zu entschlüsseln. Die Erfassung synchron und asynchron verlaufender Veränderungen wird unser Verständnis von der Verknüpfung mariner, eisbasierter und terrestrischer Klimaarchive deutlich verbessern.

Dynamik des postglazialen Ökosystems südwestliche Ostsee - Untersuchung der Wechselwirkung zwischen Umwelt und Biosphäre anhand organisch-wandiger und kieseliger Mikrofossilien

Die südwestliche Ostsee ist die Schlüsselregion für den Austausch von niedrigsalinem Oberflächenwasser und höhersalinem, sauerstoffreichem Bodenwasser zwischen der eigentlichen bzw. zentralen Ostsee und dem Skagerrak/Kattegat bzw. der Nordsee. Dieses System wird durch die Richtung und Intensität der Winde bestimmt und ist damit letztendlich durch das zyklonale Wettersystem des Nordatlantiks und die Golfstromaktivität kontrolliert. Die wesentliche Intention des beantragten Projektes ist die Untersuchung der Auswirkungen von holozänen Klimavariationen auf das Ökosystem Ostsee, welche sowohl durch die Sedimentabfolge als auch durch den Fossilinhalt reflektiert werden. Hierzu ist die Untersuchung der durch unterschiedliche Wind-/ Sturm- und Niederschlagsintensität hervorgerufenen Veränderungen der Salinität, der Nährstoffflüsse und des Sauerstoffgehalts der südwestlichen Ostsee vorgesehen. Diese können anhand organisch-wandiger und kieseliger Mikrofossilien, deren morphologischen Variationen, Arten-Sukzession und der chemischen Veränderungen bei der Einbettung nachgewiesen werden. Ziel dieses Projektes ist es, die Wechselwirkung zwischen Umwelt und Phyto-/Zooplankton im Ablauf der holozänen Entwicklungsgeschichte der südwestlichen Ostsee zu erfassen. Die zu erwartenden Ergebnisse sind Grundlagen zur Differenzierung natürlicher und anthropogener Umweltveränderungen sowie Datenbasis zur Modellierung zukünftiger Umweltveränderungen durch Klimaschwankungen.

1 2 3 4 533 34 35