API src

Found 964 results.

Related terms

Nachhaltigkeit von Paludikulturen unter besonderer Berücksichtigung des Stoffhaushaltes, Teilvorhaben 5: Nährstoffdynamik im Torf und Wasserqualität

In diesem Vorhaben werden Anbauverfahren bereits etablierter Niedermoor-Paludikulturen in Bayern und Niedersachsen untersucht und optimiert sowie nachhaltige Produkte (weiter-) entwickelt. Ziel der Untersuchungen ist es, die langfristige Ertrags- und Qualitätsentwicklung von Typha, Phragmites, Phalaris und Carex auf den Bestandsflächen zu ermitteln und den Einfluss der Nährstoffversorgung und weiterer relevanter Faktoren zu quantifizieren. Die Auswirkungen von Nährstoffverfügbarkeit und einer möglichen Düngung auf die Biomassequantität und -qualität, den Stoffhaushalt (THG-Austausch und Nährstoffdynamik) und die Biodiversität werden untersucht. Die Anbauverfahren werden hinsichtlich ihrer Wirtschaftlichkeit bewertet. Ein weiteres Alleinstellungsmerkmal ist die Erstellung eines Pflanzenwachstumsmodells für Paludikulturarten. Die Projektpartner stellen die Infrastruktur und die Flächen in Süd- und Norddeutschland zur Verfügung: Großflächige 'Pilot Sites', 'Intensivmessstandorte' und insgesamt 36 'Mesokosmen'. Der Schwerpunkt des Vorhabens liegt auf der Nachhaltigkeit der gesamten Produktionskette vom Anbau bis zur Verwertung. Für stoffliche Verwertungskonzepte (Bioraffination, Biobasierte Werkstoffe) werden praxisnahe Untersuchungen durchgeführt. Das Konsortium wird im Projekt interdisziplinär zusammenarbeiten und gemeinsam mit Stakeholdern das Konzept der Paludikultur weiterentwickeln. Durch eine enge Zusammenarbeit mit Praxispartnern aus der Wirtschaft können kurzfristig praktische Ergebnisse in die Diskussion eingebracht und mittelfristig in die Umsetzung gebracht werden. Das Projekt soll bewerten, wie nachhaltig Niedermoor-Paludikulturen in Hinblick auf Produktivität, Verwertungsschienen und Ökonomie sowie auf Nährstoffdynamik, Biodiversität und Klimarelevanz auf Dauer sind. Die generierten Daten und Ergebnisse leisten einen wichtigen Beitrag im Wissenstransfer z.B. im Bereich Emissionsminderung der Sektoren Landwirtschaft und Landnutzung.

Nachhaltigkeit von Paludikulturen unter besonderer Berücksichtigung des Stoffhaushaltes, Teilvorhaben 6: Ökonomische Bewertung, Quantifizierung und Inwertsetzung der Leistungs- und Kostenkomponenten von Paludikulturen

In diesem Vorhaben werden Anbauverfahren bereits etablierter Niedermoor-Paludikulturen in Bayern und Niedersachsen untersucht und optimiert sowie nachhaltige Produkte (weiter-) entwickelt. Ziel der Untersuchungen ist es, die langfristige Ertrags- und Qualitätsentwicklung von Typha, Phragmites, Phalaris und Carex auf den Bestandsflächen zu ermitteln und den Einfluss der Nährstoffversorgung und weiterer relevanter Faktoren zu quantifizieren. Die Auswirkungen von Nährstoffverfügbarkeit und einer möglichen Düngung auf die Biomassequantität und -qualität, den Stoffhaushalt (THG-Austausch und Nährstoffdynamik) und die Biodiversität werden untersucht. Die Anbauverfahren werden hinsichtlich ihrer Wirtschaftlichkeit bewertet. Ein weiteres Alleinstellungsmerkmal ist die Erstellung eines Pflanzenwachstumsmodells für Paludikulturarten. Die Projektpartner stellen die Infrastruktur und die Flächen in Süd- und Norddeutschland zur Verfügung: Großflächige 'Pilot Sites', 'Intensivmessstandorte' und insgesamt 36 'Mesokosmen'. Der Schwerpunkt des Vorhabens liegt auf der Nachhaltigkeit der gesamten Produktionskette vom Anbau bis zur Verwertung. Für stoffliche Verwertungskonzepte (Bioraffination, Biobasierte Werkstoffe) werden praxisnahe Untersuchungen durchgeführt. Das Konsortium wird im Projekt interdisziplinär zusammenarbeiten und gemeinsam mit Stakeholdern das Konzept der Paludikultur weiterentwickeln. Durch eine enge Zusammenarbeit mit Praxispartnern aus der Wirtschaft können kurzfristig praktische Ergebnisse in die Diskussion eingebracht und mittelfristig in die Umsetzung gebracht werden. Das Projekt soll bewerten, wie nachhaltig Niedermoor-Paludikulturen in Hinblick auf Produktivität, Verwertungsschienen und Ökonomie sowie auf Nährstoffdynamik, Biodiversität und Klimarelevanz auf Dauer sind. Die generierten Daten und Ergebnisse leisten einen wichtigen Beitrag im Wissenstransfer z.B. im Bereich Emissionsminderung der Sektoren Landwirtschaft und Landnutzung.

DeCarbonisierung der Wärmeversorgung am Geothermie-Modellstandort Schwerin, Teilvorhaben: Entwicklung des 3D-Reservoirmodells und Maximierung der Dublettenleistung

Die Mitteltiefe Geothermie hat durch die Erschließung eines hochproduktiven Sandsteinreservoirs in der Landeshauptstadt Schwerin, das ab 2023 mit ca. 7 MWth Heiznennleistung (= 5,7 MWth geothermische Leistung) etwa 10 % des Fernwärmebedarfs abdecken wird, einen entscheidenden Impuls erfahren. Diesen Impuls will der Verbundpartner EVSE nutzen und die Leistung geothermischer Wärme in der Fernwärmeversorgung auf 67 MWth im Jahr 2035 steigern und dadurch mindestens 65 % des Fernwärmebedarfs bereitstellen. Das Verbundvorhaben DeCarbSN schafft die wissenschaftliche Basis (Know-how), dieses langfristige Ausbauziel durch folgende Schwerpunkte zu erreichen. Im Rahmen der Umsetzung der Gesamtziele von DeCarbSN verfolgt der Verbundpartner GAUG im Teilvorhaben A folgende spezifische Ziele: (1) Entwicklung eines 3D-Reservoirmodells (digital twin) im Arbeitspaket 1. (2) Maximierung der Förderleistung hydrothermaler Dubletten auf bis zu 500 m³/h in den Arbeitspaketen 2 und 3. (3) Datenbereitstellung für die Entwicklung eines nachhaltigen Erschließungs- und Bewirtschaftungskonzeptes im Arbeitspaket 4. (4) Koordination von Öffentlichkeitsarbeit und Wissenstransfer im Arbeitspaket 5. Mit dem Teilvorhaben A übernimmt der Verbundpartner GAUG zudem die Federführung des Verbundvorhabens und leistet wichtige Beiträge für die Synthese in DeCarbSN. Von besonderer Bedeutung ist hierbei die Übertragung des am Geothermie-Modellstandort Schwerin entwickelte Know-hows auf weitere Standorte in Norddeutschland mit vergleichbarer Netzinfrastruktur. Dadurch bietet sich geschätztes Potenzial für den Zubau von 400-800 MWth geothermischer Leistung bis 2035.

DeCarbonisierung der Wärmeversorgung am Geothermie-Modellstandort Schwerin

Die Mitteltiefe Geothermie hat durch die Erschließung eines hochproduktiven Sandsteinreservoirs in der Landeshauptstadt Schwerin, das ab 2023 mit ca. 7 MWth Heiznennleistung (= 5,7 MWth geothermische Leistung) etwa 10 % des Fernwärmebedarfs abdecken wird, einen entscheidenden Impuls erfahren. Diesen Impuls will der Verbundpartner EVSE nutzen und die Leistung geothermischer Wärme in der Fernwärmeversorgung auf 67 MWth im Jahr 2035 steigern und dadurch mindestens 65 % des Fernwärmebedarfs bereitstellen. Das Verbundvorhaben DeCarbSN schafft die wissenschaftliche Basis (Know-how), dieses langfristige Ausbauziel durch folgende Schwerpunkte zu erreichen. Im Rahmen der Umsetzung der Gesamtziele von DeCarbSN verfolgt der Verbundpartner GAUG im Teilvorhaben A folgende spezifische Ziele: (1) Entwicklung eines 3D-Reservoirmodells (digital twin) im Arbeitspaket 1. (2) Maximierung der Förderleistung hydrothermaler Dubletten auf bis zu 500 m³/h in den Arbeitspaketen 2 und 3. (3) Datenbereitstellung für die Entwicklung eines nachhaltigen Erschließungs- und Bewirtschaftungskonzeptes im Arbeitspaket 4. (4) Koordination von Öffentlichkeitsarbeit und Wissenstransfer im Arbeitspaket 5. Mit dem Teilvorhaben A übernimmt der Verbundpartner GAUG zudem die Federführung des Verbundvorhabens und leistet wichtige Beiträge für die Synthese in DeCarbSN. Von besonderer Bedeutung ist hierbei die Übertragung des am Geothermie-Modellstandort Schwerin entwickelte Know-hows auf weitere Standorte in Norddeutschland mit vergleichbarer Netzinfrastruktur. Dadurch bietet sich geschätztes Potenzial für den Zubau von 400-800 MWth geothermischer Leistung bis 2035.

DeCarbonisierung der Wärmeversorgung am Geothermie-Modellstandort Schwerin, Teilvorhaben: Wissenschaftliche Begleitung der Erschließung in Schwerin-Lewenber

Die Mitteltiefe Geothermie hat durch die Erschließung eines hochproduktiven Sandsteinreservoirs in der Landeshauptstadt Schwerin, das ab 2023 mit ca. 7 MWth Heiznennleistung (= 5,7 MWth geothermische Leistung) etwa 10 % des Fernwärmebedarfs abdecken wird, einen entscheidenden Impuls erfahren. Diesen Impuls will der Verbundpartner EVSE nutzen und die Leistung geothermischer Wärme in der Fernwärmeversorgung auf 67 MWth im Jahr 2035 steigern und dadurch mindestens 65 % des Fernwärmebedarfs bereitstellen. Das Verbundvorhaben DeCarbSN schafft die wissenschaftliche Basis (Know-how), dieses langfristige Ausbauziel durch folgende Schwerpunkte zu erreichen. Im Rahmen der Umsetzung der Gesamtziele von DeCarbSN verfolgt der Verbundpartner LIAG im Teilvorhaben D folgende spezifische Ziele: (1) Wissenschaftliche Begleitung der Erschließung in Schwerin-Lewenberg im Arbeitspaket 2 (2) Unterstützung der Projektkoordination in den Arbeitspaketen 1 und 3-5 Mit dem Teilvorhaben D leistet der Verbundpartner LIAG zudem wichtige Beiträge für die Synthese in DeCarbSN. Von besonderer Bedeutung ist hierbei die Übertragung des am Geothermie-Modellstandort Schwerin entwickelte Know-hows auf weitere Standorte in Norddeutschland mit vergleichbarer Netzinfrastruktur. Dadurch bietet sich geschätztes Potenzial für den Zubau von 400-800 MWth geothermischer Leistung bis 2035.

DeCarbonisierung der Wärmeversorgung am Geothermie-Modellstandort Schwerin, Teilvorhaben: Entwicklung eines nachhaltigen Erschließungs-und Bewirtschaftungskonzepts der hydrothermalen Lagerstätte

Die Mitteltiefe Geothermie hat durch die Erschließung eines hochproduktiven Sandsteinreservoirs in der Landeshauptstadt Schwerin, das ab 2023 mit ca. 7,5 MWth Heiznennleistung (= 5,7 MWth geothermische Leistung) etwa 10 % des Fernwärmebedarfs abdecken wird, einen entscheidenden Impuls erfahren. Diesen Impuls wollen die Energieversorgung Schwerin GmbH & Co. Erzeugung KG, nachfolgend EVSE, nutzen und die Leistung geothermischer Wärme in der Fernwärmeversorgung auf 67 MWth im Jahr 2035 steigern und dadurch mindestens 65 % des Fernwärmebedarfs bereitstellen. Das Verbundvorhaben DeCarbSN schafft die wissenschaftliche Basis (Know-how), dieses langfristige Ausbauziel durch folgende Schwerpunkte zu erreichen: (1)Entwicklung eines digitalen 3D-Reservoirmodells (digital twin) auf Grundlage hochauflösender 3D-Seismikdaten, (2)Wissenschaftliche Begleitung einer optimierten Erschließung am Standort Schwerin-Lewenberg zur Steigerung der Dublettenleistung auf 300 m³/h (Ausbaustufe I), (3)Thermo-hydraulische Laborstudien, Durchflussversuche und numerische Modellierung für die Maximierung der Dublettenleistung auf 500 m³/h (Ausbaustufe II), (4)Entwicklung eines nachhaltigen Erschließungs- und Bewirtschaftungskonzepts der hydrothermalen Lagerstätte und Integration in das Fernwärmenetz der Stadtwerke Schwerin (5)Öffentlichkeitsarbeit, Wissenstransfer und Upscaling. Das Gesamtziel des Verbundvorhabens DeCarbSN ist die Dekarbonisierung der Fernwärmeversorgung in Norddeutschland durch Ausbau der Mitteltiefen Geothermie. Der Modellstandort Schwerin steht hier exemplarisch für norddeutsche Mittel- und Großstädte mit bereits vorhandenen Wärmenetzen, so dass das entwickelte Know-how auf weitere Standorte mit vergleichbarer kommunaler Infrastruktur übertragen werden kann. Dadurch bietet sich ein geschätztes Potenzial für den Zubau von 400-800 MWth geothermischer Leistung bis 2035.

DeCarbonisierung der Wärmeversorgung am Geothermie-Modellstandort Schwerin, Teilvorhaben: Planung und Durchführung einer 3D-Seismik am Modellstandort Schwerin

Gesamtziel des Vorhabens Die Mitteltiefe Geothermie hat durch die Erschließung eines hochproduktiven Sandsteinreservoirs in der Landeshauptstadt Schwerin, das ab 2023 mit ca. 7,5 MWth Heiznennleistung (= 5,7 MWth geothermische Leistung) etwa 10 % des Fernwärmebedarfs abdecken wird, einen entscheidenden Impuls erfahren. Diesen Impuls wollen die Energieversorgung Schwerin GmbH & Co. Erzeugung KG, nachfolgend EVSE, nutzen und die Leistung geothermischer Wärme in der Fernwärmeversorgung auf 67 MWth im Jahr 2035 steigern und dadurch mindestens 65 % des Fernwärmebedarfs bereitstellen. Das Verbundvorhaben DeCarbSN schafft die wissenschaftliche Basis (Know-how), dieses langfristige Ausbauziel durch folgende Schwerpunkte zu erreichen: (1) Entwicklung eines digitalen 3D-Reservoirmodells (digital twin) auf Grundlage hochauflösender 3D-Seismikdaten, (2) Wissenschaftliche Begleitung einer optimierten Erschließung am Standort Schwerin-Lewenberg zur Steigerung der Dublettenleistung auf 300 m³/h (Ausbaustufe I), (3) Thermo-hydraulische Laborstudien, Durchflussversuche und numerische Modellierung für die Maximierung der Dublettenleistung auf 500 m³/h (Ausbaustufe II), (4) Entwicklung eines nachhaltigen Erschließungs- und Bewirtschaftungskonzepts der hydrothermalen Lagerstätte und Integration in das Fernwärmenetz der Stadtwerke Schwerin (5) Öffentlichkeitsarbeit, Wissenstransfer und Upscaling. Das Gesamtziel des Verbundvorhabens DeCarbSN ist die Dekarbonisierung der Fernwärmeversorgung in Norddeutschland durch Ausbau der Mitteltiefen Geothermie. Der Modellstand-ort Schwerin steht hier exemplarisch für norddeutsche Mittel- und Großstädte mit bereits vorhandenen Wärmenetzen, so dass das entwickelte Know-how auf weitere Standorte mit vergleichbarer kommunaler Infrastruktur übertragen werden kann. Dadurch bietet sich ein geschätztes Potenzial für den Zubau von 400-800 MWth geothermischer Leistung bis 2035.

Hydrochemische Charakterisierung zur prognostischen Modellierung nachhaltiger Reservoirbewirtschaftung, Teilvorhaben: Erweiterung des geothermischen Informationssystems Deutschlands GeotIS um fluidchemische Daten

Geologisches 3D-Modell - Landesmodell SH 2023

Der Geologische Dienst SH beschäftigt sich mit der Erkundung des tieferen Untergrundes. Zur Landesaufnahme und für Potenzialstudien wurde ein landesweites geologisches 3D-Modell entwickelt, das die Tiefe und Verbreitung von relevanten Formationen des Norddeutschen Beckens zeigt. Die Arbeiten erfolgten im Rahmen des Projektes Potenziale des unterirdischen Speicher- und Wirtschaftsraumes im Norddeutschen Becken - TUNB, das die Bundesanstalt für Geowissenschaften und Rohstoffe in Zusammenarbeit mit den Norddeutschen Geologischen Diensten durchführte. Das Modell besteht aus 17 Basisflächen lithostratigraphischer Horizonte zwischen der Basis des Zechsteins und der Geländeroberfläche, Hüllflächen von Salzdiapiren und Störungsflächen. Die Eingangsdaten der Modellierung sind Daten des Geotektonischen Atlas von NW-Deutschlands (Baldschuhn et al. 2001), Bohrungen und seismische Profile der KW-Industrie sowie Bohrungen des Landesarchivs SH.

INSPIRE: Information system salt structures: planning basis, selection criteria and estimation of the potential for the construction of salt caverns for the storage of renewable energies (hydrogen and compressed air) (InSpEE)

InSpEE (INSPIRE) provides information about the areal distribution of salt structures (salt domes and salt pillows) in Northern Germany. Contours of the salt structures can be displayed at horizontal cross-sections at four different depths up to a maximum depth of 2000 m below NN. The geodata have resulted from a BMWi-funded research project “InSpEE” running from the year 2012 to 2015. The acronym stands for "Information system salt structures: planning basis, selection criteria and estimation of the potential for the construction of salt caverns for the storage of renewable energies (hydrogen and compressed air)”. Additionally four horizontal cross-section maps display the stratigraphical situation at a given depth. In concurrence of maps at different depths areal bedding conditions can be determined, e.g. to generally assess and interpret the spread of different stratigraphic units. Clearly visible are extent and shape of the salt structures within their regional context at the different depths, with extent and boundary of the salt structures having been the main focus of the project. Four horizontal cross-section maps covering the whole onshore area of Northern Germany have been developed at a scale of 1:500.000. The maps cover the depths of -500, -1000, -1500, -2000 m below NN. The four depths are based on typical depth requirements of existing salt caverns in Northern Germany, mainly related to hydrocarbon storage. The shapes of the structures show rudimentary information of their geometry and their change with depths. In addition they form the starting point for rock mechanical calculations necessary for the planning and construction of salt caverns for storage as well as for assessing storage potentials. The maps can be used as a pre-selection tool for subsurface uses. It can also be used to assess coverage and extension of salt structures. Offshore areas were not treated within the project. All horizontal cross-section maps were adjusted with the respective state geological survey organisations. According to the Data Specification on Geology (D2.8.II.4_v3.0) the content of InSpEE (INSPIRE) is stored in 15 INSPIRE-compliant GML files: InSpEE_GeologicUnit_Salt_structure_types.gml contains the salt structure types (salt domes and salt pillows), InSpEE_GeologicUnit_Salt_pillow_remnants.gml comprises the salt pillow remnants, InSpEE_GeologicUnit_Structure_building_salinar.gml represents the structural salinar(s), the four files InSpEE_Structural_outlines_500.gml, InSpEE_Structural_outlines_1000.gml, InSpEE_Structural_outlines_1500.gml and InSpEE_Structural_outlines_2000.gml represent the structural outlines in the corresponding horizontal cross-sections, the four files InSpEE_GeologicUnit_Cross_Section_500, InSpEE_GeologicUnit_Cross_Section_1000, InSpEE_GeologicUnit_Cross_Section_1500 and InSpEE_GeologicUnit_Cross_Section_2000 display the stratigraphical situation in the corresponding horizontal cross-sections and the four files InSpEE_GeologicStructure_500.gml, InSpEE_GeologicStructure_1000.gml, InSpEE_GeologicStructure_1500.gml and InSpEE_GeologicStructure_2000.gml comprise the relevant fault traces in the corresponding horizontal cross-sections. The GML files together with a Readme.txt file are provided in ZIP format (InSpEE-INSPIRE.zip). The Readme.text file (German/English) contains detailed information on the GML files content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.

1 2 3 4 595 96 97