API src

Found 10113 results.

Similar terms

s/northsea/North Sea/gi

WMS MSRL: D8-Schadstoffe (sh-llur), Mittelwert 2005-2010

Der WMS umfasst Schadstoffe im Wasser und im Sediment, die an Messstationen des LLUR erfasst werden. Parameter: Quecksilber, Blei, Kupfer, Nickel, Arsen, Cadmium, Chrom, Zink.

Wasserstand Pegel Wyk Foehr - Nordsee

Der Pegel Wyk Foehr befindet sich im Gewässer Nordsee. Alle Daten sind Rohdaten ohne Gewähr. Das Land Schleswig-Holstein übernimmt keine Gewähr für die Aktualität, Korrektheit, Vollständigkeit oder Qualität der dargestellten Informationen. Haftungsansprüche sind grundsätzlich ausgeschlossen. [Informationen zum Pegel](https://hsi-sh.de/pegel/pegel.html?mstnr=110005) Der Datensatz enthält folgende Felder * **Zeit** im Format `dd.MM.yyyy HH:mm:ss` * **Wasserstand** in cm * **Status** Angabe "1" bedeutet qualitätsgesichert, "0" bedeutet nicht qualitätsgesichert Zeichensatz ist ISO-8859-1, Spaltentrenner ist Semikolon.

Wasserstand Pegel Holmer Siel AP - Nordsee

Der Pegel Holmer Siel AP befindet sich im Gewässer Nordsee. Alle Daten sind Rohdaten ohne Gewähr. Das Land Schleswig-Holstein übernimmt keine Gewähr für die Aktualität, Korrektheit, Vollständigkeit oder Qualität der dargestellten Informationen. Haftungsansprüche sind grundsätzlich ausgeschlossen. [Informationen zum Pegel](https://hsi-sh.de/pegel/pegel.html?mstnr=110040) Der Datensatz enthält folgende Felder * **Zeit** im Format `dd.MM.yyyy HH:mm:ss` * **Wasserstand** in cm * **Status** Angabe "1" bedeutet qualitätsgesichert, "0" bedeutet nicht qualitätsgesichert Zeichensatz ist ISO-8859-1, Spaltentrenner ist Semikolon.

Wasserstandsvorhersage Nordsee des BSH

Aktuelle Vorhersage: Am Montag werden das Vormittag-Hochwasser an der deutschen Nordseeküste und in Emden sowie das Mittag-Hochwasser in Bremen und Hamburg <b>2 bis 4 dm </b><b>niedriger</b> als das mittlere Hochwasser eintreten.

Badegewässer Stammdaten

Stammdaten der Badegewässer in Schleswig-Holstein Folgende Spalten sind enthalten: - `BADEGEWAESSERID` – Allgemein gültiger Identifikations-Code des Badegewässers - `BADEGEWAESSERNAME` – Vollständiger Name des Badegewässers - `KURZNAME` – Kurzname des Badegewässers - `ALLGEMEIN_GEBRAEUCHL_NAME` – allgemein gebräuchlicher Name des Badegewässers - `GEWAESSERKATEGORIE` – Art des Wasserkörpers, in dem das Badegewässer liegt - `KUESTENGEWAESSER` – zugehöriges Küstengewässer (Nordsee oder Ostsee) - `BADEGEWAESSERTYP` – Status des Badegewässers (bestehendes oder neues) - `WEITEREBESCHREIBUNG` – weitere Beschreibung des Badegewässers - `BADESTELLENLAENGE` - Länge der Uferlinie der Badestelle in Metern - `EUANMELDUNG` – Zeitpunkt der Anmeldung bei der EU - `EUABMELDUNG` – Zeitpunkt der Abmeldung bei der EU - `FLUSSGEBIETSEINHEITID` – ID der Flussgebietseinheit, zu der das Badegewässer gehört; Angabe gemäß Berichterstattung nach WRRL - `FLUSSGEBIETSEINHEITNAME` – Name der Flussgebietseinheit, zu der das Badegewässer gehört; Angabe gemäß Berichterstattung nach WRRL - `WASSERKOERPERID` – ID des Wasserkörpers, zu dem das Badegewässer gehört; Angabe gemäß Berichterstattung nach WRRL - `WASSERKOERPERNAME` – Name des Wasserkörpers, zu dem das Badegewässer gehört; Angabe gemäß Berichterstattung nach WRRL - `NATWASSERKOERPERID` – ID der nationalen Wassereinheit, zu der das Badegewässer gehört - `NATWASSERKOERPERNAME` – Name der nationalen Wassereinheit, zu der das Badegewässer gehört - `SCHLUESSELWOERTER` – zur Suche des Badegewässers in WISE (Water Information System for Europe) - `KREISNR` – interne Nummer des Kreises oder der kreisfreien Stadt, der oder die für die Überwachung des Badegewässers zuständig ist - `KREIS` – Name des Kreises oder der kreisfreien Stadt, der oder die für die Überwachung des Badegewässers zuständig ist - `GEMEINDENR` – interne Nummer der Gemeinde, in der das Badegewässer liegt - `GEMEINDE` – Name der Gemeinde, in der das Badegewässer liegt - `UTM_OST` – Rechtswert der Lage des Badegewässers im KBS (EPSG:4647, ETRS89 / UTM zone N32) - `UTM_NORD` – Hochwert der Lage des Badegewässers im KBS (EPSG:4647, ETRS89 / UTM zone N32) - `GEOGR_LAENGE` - Längengrad der Lage des Badegewässers im KBS (EPSG:4326, WGS 84) - `GEOGR_BREITE` - Breitengrad der Lage des Badegewässers im KBS (EPSG:4326, WGS 84) - `BADESTELLENINFORMATION` – Touristische Informationen zum Badegewässer - `AUSWIRKUNGEN_AUF_BADEGEWAESSER` – Angabe, ob das Badegewässer anfällig für Beeinträchtigungen ist - `MOEGLICHEBELASTUNGEN` – Angabe möglicher Belastungsquellen für das Badegewässer Zeichensatz ist ISO-8859-1, Spaltentrenner ist senkrechter Strich (pipe), Zeichenketten-Trenner ist das doppelte Anführungszeichen ("). ---- Für eine komplette Sicht auf die Badegewässerqualität in Schleswig-Holstein sollten diese fünf Datensätze einbezogen werden: - [Stammdaten](/collection/badegewasser-stammdaten/aktuell) - [Einstufung der Badegewässerqualität](/dataset/badegewasser-einstufung) - [Informationen zur vorhandenen Infrastruktur](/collection/badegewasser-infrastruktur/aktuell) - [Saisondauer](/dataset/badegewasser-saisondauer) - [Messungen](/dataset/badegewasser-messungen)

Geologische Übersichtskarte von Niedersachsen 1 : 500 000

Die Geologische Übersichtskarte 1 : 500 000 gibt einen landesweiten Überblick vom geologischen Aufbau Niedersachsens. Als Linieninformation werden zusätzlich Angaben zur Ausdehnung verschiedener Vereisungen, zur Küstenlinie der Nordsee im Quartär sowie zu tektonischen Strukturen gegeben. Das südniedersächsische Bergland wird von den Festgesteinen des Paläozoikum und Mesozoikum aufgebaut. Im Harz und bei Osnabrück steht das paläozoische Grundgebirge zutage an. Ältestes Gestein ist der vermutlich aus dem Präkambrium stammende Eckergneis. Über einer Schichtlücke folgen die Sedimente eines paläozoischen Meeresbeckens. Darin kamen im Silur schwarze Tonschiefer, im Devon Sandstein, Dachschiefer, Schwellen- und Riffkalke zum Absatz; im Oberdevon und Unterkarbon wurden die Harzer Grauwacken geschüttet. Basaltische Laven, die heutigen Diabase, traten am Meeresboden aus. Damit in Zusammenhang entstanden Kieselschiefer und Eisenerze. Die gesamte Schichtenfolge wurde bei der varistischen Gebirgsbildung im Oberkarbon aufgefaltet; abschließend stiegen magmatische Schmelzen auf, die heute im Harzburger Gabbro, im Brocken- und Oker-Granit freigelegt sind. Im Rotliegenden sammelte sich der Abtragungsschutt in Senken des Gebirges. Das Zechstein-Meer überflutete ein bereits eingeebnetes Gelände und überdeckte es mit mächtigen Folgen von Kalk, Gips bzw. Anhydrit und Salz. Im Mesozoikum wurde das flache, zeitweise trockenfallende Becken mit den Sedimenten der Trias (Buntsandstein, Muschelkalk und Keuper) aufgefüllt, im Jura und in der Kreidezeit wurde das Becken wieder vom Meer überflutet. Der mesozoische Schichtenstapel zerbrach in einer Zeit tektonischer Unruhe (Oberjura bis Kreide) an tiefreichenden Störungen. An ihnen stieg das plastisch reagierende Zechsteinsalz auf. Das Ergebnis ist die saxonische Bruchfaltung des Deckgebirges. Im Tertiär überflutete das Meer erneut das eingeebnete Gelände und lagerte Sand und Ton ab, während sich im Binnenland zeitweise Braunkohle bildete. Schließlich zog sich das Meer auf den heutigen Nordsee-Bereich zurück. Das Quartär ist durch einen mehrfachen Wechsel von Kalt- und Warmzeiten gekennzeichnet. Im mittleren Pleistozän waren zur Elster- und Saale-Kaltzeit große Teile Niedersachsens vergletschert; das Eis hinterließ Grundmoränen (Geschiebemergel) und Schmelzwasserablagerungen (Kies, Sand und Ton). In den Warmzeiten (Interglazialen) und in der Nacheiszeit (Holozän) entstanden Torfe, Mudden und Mergel. Teile des Küstengebietes wurden dabei überflutet und von Meeres-, Watt- und Brackwasserablagerungen überdeckt.

Wirkungen des Klimawandels an der Küste

Im Rahmen des BMVI-Expertennetzwerks engagiert sich die BAW gemeinsam mit weiteren Ressortforschungseinrichtungen und Fachbehörden des BMVI, um fach- und verkehrsträgerübergreifende Lösungen für die drängenden Verkehrsfragen der Zukunft aufzuzeigen (www.bmvi-expertennetzwerk.de). Ein Fokusgebiet ist dabei der Küstenbereich mit seinen Seehafenzufahrten, denn infolge des zunehmenden Welthandels hat der Seehandel in der heutigen Zeit der Globalisierung eine größere Bedeutung als je zuvor. Internationale Seehäfen, wie zum Beispiel der Hamburger Hafen, bilden im Seehandel wichtige Knotenpunkte. Der Hamburger Hafen ist mit einem Seegüterumschlag von 137 Millionen Tonnen pro Jahr der größte Seehafen Deutschlands. Von hier werden Güter in die ganze Welt verschifft bzw. auf der Schiene, Straße und Wasserstraße nach ganz Deutschland und Europa weitertransportiert. Durch den Klimawandel werden sich für den Betrieb und die Unterhaltung von Seehäfen und Seehafenzufahrten äußere Einflüsse, wie zum Beispiel der Meeresspiegel, ändern. Für strategische und langfristige Investitionsentscheidungen hinsichtlich der Hafeninfrastruktur entstehen dadurch wichtige Fragen. Wie werden sich Meeresspiegelanstieg und andere klimawandelbedingte Änderungen auf die Seehäfen auswirken? Kann die Sicherheit und Leichtigkeit des Schiffsverkehrs sowie die Erreichbarkeit der Häfen in Zukunft gewährleistet werden? Welche Anpassungsmaßnahmen sind gegebenenfalls notwendig und nachhaltig? Mit diesen und anderen Fragen befasst sich die BAW am Standort Hamburg im Rahmen des Expertennetzwerkes. Mithilfe eines hochaufgelösten dreidimensionalen numerischen Modells der Deutschen Bucht werden komplexe Prozesse wie die Tidedynamik sowie der Transport von Salz, Wärme und Sedimenten für heutige und mögliche zukünftige Verhältnisse simuliert. Das Modellgebiet umfasst die gesamte deutsche Nordseeküste und die Ästuare von Ems, Jade-Weser und Elbe. Das Expertennetzwerk ist auch im Hinblick auf die Novellierung des Gesetzes zur Umweltverträglichkeitsprüfung bedeutend. Im Rahmen der Umweltverträglichkeitsprüfung müssen künftig sowohl die Anfälligkeit des geplanten Vorhabens gegenüber den Folgen des Klimawandels als auch die Auswirkungen des Vorhabens auf das Klima auf Basis wissenschaftlicher Erkenntnisse gerichtsfest untersucht werden. Dies kann nur in behördenübergreifender Zusammenarbeit geleistet werden. Wie dringend der Forschungsbedarf für die Seeschifffahrt ist, zeigt die Situation am Hamburger Hafen. Die Zufahrt zum Hamburger Hafen erfolgt entlang des Elbeästuars. Da die Flutstromgeschwindigkeiten in vielen Bereichen des Elbeästuars höher als die Ebbestromgeschwindigkeiten sind, ist der stromaufgerichtete Sedimenttransport im Mittel größer als der stromabgerichtete Sedimenttransport. Es wird mehr Sediment aus der Nordsee in das Elbästuar eingetragen als ausgetragen. (Text gekürzt)

AquaDuctus_Onshore Wasserstoffpipeline

Badegewässer Stammdaten

Stammdaten der Badegewässer in Schleswig-Holstein Folgende Spalten sind enthalten: - `BADEGEWAESSERID` – Allgemein gültiger Identifikations-Code des Badegewässers - `BADEGEWAESSERNAME` – Vollständiger Name des Badegewässers - `KURZNAME` – Kurzname des Badegewässers - `ALLGEMEIN_GEBRAEUCHL_NAME` – allgemein gebräuchlicher Name des Badegewässers - `GEWAESSERKATEGORIE` – Art des Wasserkörpers, in dem das Badegewässer liegt - `KUESTENGEWAESSER` – zugehöriges Küstengewässer (Nordsee oder Ostsee) - `BADEGEWAESSERTYP` – Status des Badegewässers (bestehendes oder neues) - `WEITEREBESCHREIBUNG` – weitere Beschreibung des Badegewässers - `BADESTELLENLAENGE` - Länge der Uferlinie der Badestelle in Metern - `EUANMELDUNG` – Zeitpunkt der Anmeldung bei der EU - `EUABMELDUNG` – Zeitpunkt der Abmeldung bei der EU - `FLUSSGEBIETSEINHEITID` – ID der Flussgebietseinheit, zu der das Badegewässer gehört; Angabe gemäß Berichterstattung nach WRRL - `FLUSSGEBIETSEINHEITNAME` – Name der Flussgebietseinheit, zu der das Badegewässer gehört; Angabe gemäß Berichterstattung nach WRRL - `WASSERKOERPERID` – ID des Wasserkörpers, zu dem das Badegewässer gehört; Angabe gemäß Berichterstattung nach WRRL - `WASSERKOERPERNAME` – Name des Wasserkörpers, zu dem das Badegewässer gehört; Angabe gemäß Berichterstattung nach WRRL - `NATWASSERKOERPERID` – ID der nationalen Wassereinheit, zu der das Badegewässer gehört - `NATWASSERKOERPERNAME` – Name der nationalen Wassereinheit, zu der das Badegewässer gehört - `SCHLUESSELWOERTER` – zur Suche des Badegewässers in WISE (Water Information System for Europe) - `KREISNR` – interne Nummer des Kreises oder der kreisfreien Stadt, der oder die für die Überwachung des Badegewässers zuständig ist - `KREIS` – Name des Kreises oder der kreisfreien Stadt, der oder die für die Überwachung des Badegewässers zuständig ist - `GEMEINDENR` – interne Nummer der Gemeinde, in der das Badegewässer liegt - `GEMEINDE` – Name der Gemeinde, in der das Badegewässer liegt - `UTM_OST` – Rechtswert der Lage des Badegewässers im KBS (EPSG:4647, ETRS89 / UTM zone N32) - `UTM_NORD` – Hochwert der Lage des Badegewässers im KBS (EPSG:4647, ETRS89 / UTM zone N32) - `GEOGR_LAENGE` - Längengrad der Lage des Badegewässers im KBS (EPSG:4326, WGS 84) - `GEOGR_BREITE` - Breitengrad der Lage des Badegewässers im KBS (EPSG:4326, WGS 84) - `BADESTELLENINFORMATION` – Touristische Informationen zum Badegewässer - `AUSWIRKUNGEN_AUF_BADEGEWAESSER` – Angabe, ob das Badegewässer anfällig für Beeinträchtigungen ist - `MOEGLICHEBELASTUNGEN` – Angabe möglicher Belastungsquellen für das Badegewässer Zeichensatz ist ISO-8859-1, Spaltentrenner ist senkrechter Strich (pipe), Zeichenketten-Trenner ist das doppelte Anführungszeichen ("). ---- Für eine komplette Sicht auf die Badegewässerqualität in Schleswig-Holstein sollten diese fünf Datensätze einbezogen werden: - [Stammdaten](/collection/badegewasser-stammdaten/aktuell) - [Einstufung der Badegewässerqualität](/dataset/badegewasser-einstufung) - [Informationen zur vorhandenen Infrastruktur](/collection/badegewasser-infrastruktur/aktuell) - [Saisondauer](/dataset/badegewasser-saisondauer) - [Messungen](/dataset/badegewasser-messungen)

TrilaWatt: Hydrodynamische Kennwerte 2020 (WMS)

<span><strong>Definitionen:</strong> Hydrodynamik beschreibt die Bewegung von Fluiden und die dabei wirkenden Kräfte. Hydrodynamische Kennwerte sind zeitintegrierte, beschreibende Parameter dieser Prozesse. So tragen bspw. die grundlegenden Tidekenngrößen des Tidehochwassers, des Tideniedrigwassers sowie der damit eng verbundenen Werte für Tidestieg, Tidefall und Tidehub dazu bei, die Dynamik der Tide herauszuarbeiten.</span> <span><strong>Datenerzeugung:</strong> Aus numerischen Simulationsdaten wurden physikalische Größen wie beispielsweise Wasserstand oder Strömungsgeschwindigkeit in festen zeitlichen Intervallen unter Berücksichtigung erreichbarer Genauigkeiten berechnet. Diese Simulationsdaten wurden mit Datenanalysemethoden zu hydrodynamischen Kennwerten wie beispielsweise dem Tidehub zusammengefasst. Es wurden harmonische Analysen des Wasserstandes durchgeführt und Tidekennwerte des Wasserstands bzw. statistische Langzeitkennwerte von Wasserstand, Strömungsgeschwindigkeit, Salzgehalt, Wassertemperatur und Schwebstoffgehalt berechnet. </span> <span><strong>Produkte:</strong> Hydrodynamische Kennwerte aus dem Projekt TrilaWatt basieren auf der Analyse der numerischen Simulation von Tide, Seegang, Salzgehalt, Temperatur und Schwebstoffkonzentration im Bereich des trilateralen Wattenmeers (Niederlande -nl, Deutschland -de, Dänemark -dk) und der Deutschen Bucht als Jahresmittel für das Jahr 2020. Die Daten werden als regelmäßiges 20 m Raster im GeoTIFF-Format bereitgestellt. Kennwerte werden nur für Berechnungszellen bereitgestellt, die im Analysezeitraum immer überflutet waren. In den Datenäquivalenten (*_no_filter) wurde diese Maskierung nicht angewendet. Nicht-gefilterte Datenäquivalente (no_filter) sind, falls physikalisch sinnvoll, ebenfalls erstellt worden. Bei nicht-gefilterten Datenprodukten ist zu beachten, dass die Anzahl der den Mittelwerten zugrundeliegenden Werte vor allem im Flachwasserbereich durch intertidales Trockenfallen geringer ist und damit die Mittelwertbildung beeinträchtigt ist. Die Anzahl an validen Datenpunkten bzw. Tiden pro Jahr (Anzahl gültiger Datenpunkte bzw. Anzahl Tidehochwasser) wird als Rasterdatei zur Einordnung nicht-gefilterter Produkte mitgeliefert.</span> <span><strong>Produktliste:</strong> - Tidehub und Tidehoch- und Tideniedrigwasser: 5-, 50- und 95% Quantil <br> - Laufzeitverschiebung zur Referenzposition „Leuchtturm Alte Weser“ von Tidehoch- und Tideniedrigwasser: Jahresmittelwerte <br> - Tidemittelwasser: 50% Quantil <br> - M2-Partialtide: Amplitude und Phase <br> - Tidehochwasser und validen Datenpunkte: Anzahl pro Jahr<br> - Wasserstand: 1-, 50- und 99% Quantil, Mittelwert, Minimum, Maximum <br> - Strömungsgeschwindigkeit: tiefengemittelter Mittelwert, 99- und 99,9% Quantil des Betrags <br> - Strömungsgeschwindigkeit: tiefengemittelter Betrag und x- und y-Komponente des Residuums <br> - Strömungsgeschwindigkeit: tiefengemittelter mittlerer, kubierter Betrag <br> - Bodenschubspannung: 99% Quantil, Mittelwert<br> - Salzgehalt, Temperatur und Schwebstoffkonzentration: tiefengemitteltes 1- und 99% Quantil und Mittelwert (Schwebstoffkonzentration als Summe aus drei Fraktionen mit einer Sinkgeschwindigkeit ws = 0,25, 1,5 und 7 mm/s) <br> - Signifikante Wellenhöhe des Seegangs: 50-, 95- und 99% Quantil, (Jahres-) Mittelwert und Maximalwert <br> - Mittlere Wellenperiode: Jahresmittelwert bei maximaler signifikanter Wellenhöhe<br> - Seegangsrichtung: x- und y-Komponenten des Residuums </span> <span><strong>English:</strong> This web service contains annual averages and quantiles of tidal characteristics, annual averages and quantiles of hydrographic parameters (e.g., depth-averaged salinity, suspended sediments, or sea water temperature), and tidal constituents from harmonic analyses that were estimated from numerical simulations of the year 2020. Data are distributed on regular 20 m grids as GeoTIFFs. </span> <span><strong>Download:</strong> A download is located under references (in German: "Verweise und Downloads"). </span>

1 2 3 4 51010 1011 1012