Das Projekt "Deutsche Beteiligung am OECD/NEA HYMERES Phase 2 Project" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Organisation for Economic Co-operation and Development.
Das Projekt "Weiterentwicklung von Methoden zur interaktiven Modellierung und zur Visualisierung in ATLAS-GRAMOVIS" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH.
Das Projekt "Qualifizierung von Analysewerkzeugen zur Bewertung nachwärmegetriebener, autarker Systeme zur Nachwärmeabfuhr" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Universität Stuttgart, Institut für Kernenergetik und Energiesysteme.
Das Projekt "Untersuchung der Kritikalität von Schüttbettkonfigurationen bei schweren Unfällen von Leichtwasserreaktoren - KEK" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Universität Stuttgart, Institut für Kernenergetik und Energiesysteme.
Das Projekt "Weiterentwicklung der Rechenmethoden zur Sicherheitsbewertung innovativer Reaktorkonzepte auch mit Perspektive P&T" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH.
Das Projekt "Validierung und Verifikation der Rechenprogramme COCOSYS und ASTEC" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH.Umfassende Sicherheitsanalysen von Stör- und Unfallabläufen in Kernkraftwerken erfordern Rechenprogramme, die unter Berücksichtigung des aktuellen Standes von Wissenschaft & Technik eine möglichst realitätsnahe und verlässliche Simulation der Abläufe und der sich einstellenden Zustände in der Anlage erlauben. Zielsetzung des aktuellen Vorhabens ist es, den GRS-Systemcode COCOSYS ('Containment Code System') und den deutsch-französischen Integralcode ASTEC ('Accident Source Term Evaluation Code') weiter zu validieren, aktuelle Versuchsprogramme (hier insbesondere die THAI-Anlage bei Becker Technologies GmbH) zu begleiten sowie die Anwendbarkeit der Simulationskette ATHLET-CD ('Analysis of Thermal-hydraulics of Leaks and Transients-Core Degradation') für Kern und Kühlkreislauf und COCOSYS für das Containment auch für die Phase nach Reaktordruckbehälter(RDB)-Versagen zu verifizieren. Die folgenden Arbeiten werden durchgeführt: Validierung von weiterentwickelten und neuen COCOSYS-Modellen sowie die Begleitung von Experimenten (AP1). Im Mittelpunkt steht dabei die aktuelle COCOSYS-Entwicklung zur Umstrukturierung des Moduls für das Aerosol- und Spaltproduktverhalten (AFP - 'Aerosol and Fission Product Module'). Verifizierung von COCOSYS durch Anlagenrechnungen (AP2). Die Arbeiten beinhalten die Analyse der vollständigen Simulationskette mittels gekoppelter ATHLET-CD und COCOSYS Rechnungen, einschließlich der Phase nach RDB-Versagen. Weitere Arbeitspunkte betreffen Sensitivitäts- und Unsicherheitsanalysen mit COCOSYS (AP3). Darin wird die GRS-Methode mittels des Programms SUSA auf die COCOSYS Module für die Jod- und Aerosolmodellierung sowie die Schmelze-Beton-Wechselwirkung nach RDB-Versagen angewendet. AP4 beinhaltet internationale Aktivitäten. Dazu zählen insbesondere die Begleitung experimenteller Programme der OECD/NEA (THAI -'Thermal-hydraulics, Hydrogen, Aerosols, and Iodine', BIP -'Behaviour of Iodine Project', STEM -'Source Term Evaluation and Mitigation') sowie die Fortführung der Beteiligung am laufenden EU-Vorhaben CESAM (Code for European Severe Accident Management'), das zudem von der GRS auch koordiniert wird. Der AP 5 beinhaltet im Sinne einer Validierung die regelmäßige Durchführung des Regressionstestens und exemplarischer Anwendungsrechnungen zur Sicherstellung konsistenter Ergebnisse und Vermeidung unerwünschter Seiteneffekte bei bereits getesteten Teilen von COCOSYS. Die Qualitätssicherung wir in AP6 sichergestellt. Dazu zählen neben dem User Support z. B. durch Organisation von Workshops auch die Dokumentation sowie deren Aktualisierung. Hier sind Benutzer-Handbücher, Referenz-Handbücher sowie Nutzer-Empfehlungen zu nennen.
Das Projekt "Passive Lagerbeckenkühlung durch Wärmerohre - Experimente, Verbesserung und Validierung numerischer Modelle" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Universität Stuttgart, Institut für Kernenergetik und Energiesysteme.Die Wärmeabfuhr aus Lagerbecken von Brennelementen kann mit Hilfe von Wärmerohren von einer aktiven auf eine passive Kühlung umgestellt werden. Zur Bewertung der Machbarkeit dieser Umstellung fehlen jedoch zum einen numerische Simulationsmodelle, zum anderen Validierungsdaten von Wärmerohren mit anwendungsbezogenen Rohrlängen (mehr als 10 m). Ziel des Vorhabens ist die Weiterentwicklung und Validierung von Rechenprogrammen zur Auslegung und Begutachtung der passiven Nachwärmeabfuhr aus Brennelementlagerbecken und Nasslagern mit Wärmerohren. Hierzu werden die Reaktorsicherheitscodes RELAP und ATHLET anhand von in diesem Vorhabenrahmen am IKE Universität Stuttgart durchzuführenden Experimenten modelltechnisch erweitert und validiert, sodass diese die passive, wärmerohrgestützte Abfuhr der Nachwärme aus Lagerbecken simulieren können. Das Vorhaben, das in Kooperation mit der GRS durchgeführt wird, ist in vier Arbeitspakete (AP) aufgeteilt: Im AP1 werden vom IKE Spezifikationen eines generisches Nasslagers für Brennelemente erstellt. Im AP2 werden am IKE auf Basis der o.g. Spezifikationen Wärmerohrexperimente durchgeführt. Es werden max. 50 Wärmerohre gebaut, die in einem Laborversuchsstand getestet werden. Bei den stationären und instationären Experimenten werden Druck, Temperatur und Wärmeleistung gemessen, weiterhin die Leistungsgrenzen für Wärmerohre experimentell ermittelt. Da die Wärmeabfuhr auf der Luftseite die gesamte, aus dem Lagerbecken abgeführte Wärme limitiert, wird ein 'Dachversuchsstand' errichtet und ausgesuchte Wärmerohre in diesem Versuchsstand über 1 Jahr lang getestet. Die Daten werden den Codeentwicklern zur Validierung zur Verfügung gestellt. Im AP3 wird vom IKE ein parametrisches Wärmerohrmodell für RELAP entwickelt und die Implementierung überprüft. Es ist beabsichtigt, die Arbeiten im AP1 und 3 im Rahmen eines Unterauftrags bearbeiten zu lassen. Die IKE-Arbeiten werden in AP4 dokumentiert.
Das Projekt "Passive Lagerbeckenkühlung durch Wärmerohre - Verbesserung und Validierung numerischer Modelle" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH.
Das Projekt "H2020-Euratom-1.1. - Support safe operation of nuclear systems, The supercritical CO2 Heat Removal System (sCO2-HeRo)" wird/wurde gefördert durch: Kommission der Europäischen Gemeinschaften Brüssel. Es wird/wurde ausgeführt durch: Universität Duisburg-Essen, Institut für Energie und Umweltverfahrenstechnik, Lehrstuhl für Strömungsmaschinen.
Das Projekt "Weiterentwicklung des Systemrechenprogramms ATHLET-CD zur Simulation von Unfällen im Primärkreislauf" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH.
Origin | Count |
---|---|
Bund | 30 |
Type | Count |
---|---|
Förderprogramm | 30 |
License | Count |
---|---|
offen | 30 |
Language | Count |
---|---|
Deutsch | 29 |
Englisch | 3 |
Resource type | Count |
---|---|
Keine | 5 |
Webseite | 25 |
Topic | Count |
---|---|
Boden | 10 |
Lebewesen & Lebensräume | 12 |
Luft | 10 |
Mensch & Umwelt | 30 |
Wasser | 12 |
Weitere | 30 |