s/numerisches-modell/Numerisches Modell/gi
Das Klima ist ein angetriebenes, dissipatives Nichtgleichgewichtssystem, wobei unsere Fähigkeiten die beteiligten Prozesse zu verstehen und simulieren begrenzt sind. Meteorologie und Klimaforschung verfügen noch nicht über eine Theorie zur Beschreibung von Instabilitäten, Gleichgewichtsrelaxation, Vorhersagbarkeit, Variabilität, und der Antwort auf Störungen. Trotz großer Fortschritte stoßen Klima- und Wettervorhersagemodelle nach wie vor auf Barrieren aufgrund der komplexen Randbedingungen und der Multiskaleneffekte. Diese Effekte erfordern die Parametrisierung der nicht aufgelösten Prozesse mit der Folge großer systematischer Fehler. Wir nutzen drei erfolgreiche Ansätze aus der statistischen Mechanik und der Theorie dynamischer Systeme: Covariante Lyapunov Vektoren (CLV), instabile periodische Orbits (UPO) und die Response-Theorie (RT). Dies wird uns erlauben, relevante Probleme der geophysikalischen Strömungsdynamik (GFD) im turbulenten Bereich anzugehen. Wir werden diese Ideen auf komplexere numerische Modelle als frühere Studien ausdehnen.1) Instabilitäten: Wir werden Instabilitäten in turbulenten geophysikalischen Strömungen durch CLVs beschreiben. Im Gegensatz zu klassischen Lyapunov-Vektoren bieten CLVs eine kovariante Aufspaltung der Strömung und physikalisch interpretierbare Muster und erlauben damit eine neue Interpretation von Instabilitäten. Dies wird es uns ermöglichen, eine Verbindung zwischen der Energetik und der dynamischen Eigenschaften herzustellen und damit die mesoskopischen mit den makroskopischen Eigenschaften der Strömung zu verknüpfen.2) Vorhersagbarkeit: Wir werden CLVs und UPOs nutzen, um die Vorhersagbarkeit zu analysieren und Zustände hoher und niedriger Vorhersagbarkeit besser zu verstehen. Wir werden untersuchen auf welche Weise Schwankungen der Lyapunov Exponenten (LE) mit bestimmten Eigenschaften der entsprechenden CLVs zusammenhängen. Wir werden den sogenannten Return-of-Skill in Vorhersagen von Strömungen in einen Zusammenhang mit vorübergehenden Abweichungen in der Summe der positive LEs der Strömung bringen und damit die in der Wettervorhersage beobachteten Schwankungen der Vorhersagbarkeit erklären. Wir werden die Hypothese prüfen inwieweit UPOs die niederfrequente atmosphärische Variabilität erklären können.3) Antworttheorie: Auf der Basis der RT werden wir berechnen wie eine Strömung auf Störungen reagiert, indem nur die Gleichgewichtseigenschaften verwendet werden. Wir werden aus kleinen Ensembles von gestörten Simulationen den Responseoperator empirisch für Klimamodelle ableiten. Dies wird uns eine neue Methode zur Projektion auf verschiedene räumliche und zeitliche Skalen liefern. Wir werden die Antwort von baroklinen Strömungen auf Störungen (z.B. Erwärmung und CO2-Konzentration) analysieren. Wir werden die CLVs nutzen, um die Responseoperatoren in die stabilen, instabilen und neutralen Richtungen zu zerlegen und die Hypothese prüfen inwieweit UPOs mit Resonanzen verbunden sind.
Ein Digitales Geländemodell (DGM) ist ein digitales, numerisches Modell der Geländehöhen und -formen, welches aus Laserscandaten abgeleitet wird. In Sachsen-Anhalt wird ein hochauflösendes DGM1 mit einer Gitterweite von 1m vorgehalten. Es besitzt eine Höhengenauigkeit von 0,15 m (flaches bis wenig geneigtes Gelände) bis 0,30 m (bewegtes Gelände bzw. bei Bewuchs/Bebauung).
Entwicklung eines neuen Verfahrens zur Modellierung der Strömungen mit freier Oberfläche gekoppelt mit der Umströmung von Schiffen in freifließenden Wasserstraßen. Aufgabenstellung und Ziel Im Rahmen dieses in Zusammenarbeit mit der Universität Trient (Dipartimento di Ingegneria Civile Ambientale e Meccanica, Università di Trento) bearbeiteten Projektes wurde ein neuartiges Verfahren für die Interaktion Schiff-Wasserstraße entwickelt und implementiert. Es sind prinzipiell zwei Anwendungsfälle anvisiert – die Beurteilung der schiffsinduzierten Belastungen an Ufern von Gewässern und die Dimensionierung von Wasserstraßen, insbesondere bei Engstellen und in freifließenden Flüssen. Das entwickelte Modell befindet sich aufgrund der erfassten physikalischen Phänomene und Skalen einerseits konzeptuell im mesoskaligen Bereich von geophysikalischen Modellen für ganzheitlich betrachtete Strömungen in Gewässern wie Flussstrecken – andererseits modelliert das Verfahren gleichzeitig die Interaktion zwischen den Strömungen und den navigierenden Schiffen. Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) Es handelt sich um eine Entwicklung, die die Möglichkeiten der Modellierung der fahrenden Schiffe in mesoskaliger Betrachtung (z. B. Flussstrecken mittlerer Länge) mit dem Zweck erweitern soll, die Methodik zur Befahrbarkeitsbewertung und Dimensionierung von Wasserstraßen zu verbessern und als Fernziel eine Kopplung an den Schiffsführungssimulator zu realisieren. Die verwendeten rechnerischen Netze sind wesentlich gröber als es in etablierten CFD-Verfahren des Schiffbaus üblich ist, wodurch das Verfahren rechnerisch wesentlich effizienter ist. Untersuchungsmethoden Das mathematische Modell nimmt als Ausgangspunkt das in BAW eingesetzte mathematische Verfahren nach Casulli und Stelling (2011), implementiert in UnTRIM2, d. h. ein semi-implizites Finite-Volumen-Schema zur gleichzeitigen Betrachtung der Strömungen mit und ohne freie Oberfläche, jedoch mit der Verwendung von generischen Flachwassergleichungen in der konservativen Form als grundlegendem System der partiellen Differentialgleichungen (PDE). Im Gegensatz zu UnTRIM2 wird für die Diskretisierung der Variablen ein kartesisches gestaffeltes Gitter verwendet, um die horizontale Bewegung der schwimmenden Körper möglichst genau und rechnerisch effizient zu erfassen. Durch die zusätzliche Verwendung der Subgrid-Technologie profitiert die Simulation von hochauflösenden digitalen Geländemodellen (DGM) und einer detailgetreuen Abbildung der Schiffsgeometrie (Tessellationen in STL-Dateien), um eine gitterunabhängige Erfassung des Wasservolumens über dem Boden und unter dem Schiff zu ermöglichen. Aufgrund der Struktur des Verfahrens kann die Dimensionalität des Modells mit der Anzahl der gewählten Zellebenen und -reihen automatisch von dreidimensional auf zweidimensional (vertikal oder horizontal integriert) bis hin zu eindimensional reduziert werden. Das Modell für die Strömungen mit freier Oberfläche und unter dem Schiff basiert auf einer nichtlinearen Tiefen- bzw. Volumenfunktion, wodurch die Überflutung und das Trockenfallen an Gewässerufern ein integraler Bestandteil des Verfahrens ist. Das Schiff wird im Modell als beweglicher starrer Körper mit sechs Freiheitsgraden betrachtet und seine Dynamik wird mittels eines Systems gewöhnlicher Differentialgleichungen (ODE) beschrieben. Die beiden Systeme für die externen Strömungen bzw. die Schiffsdynamik werden durch die Volumenfunktion gekoppelt. Die Veränderung der Volumenfunktion aufgrund der Schiffsbewegungen verstärkt die Nichtlinearität des zu lösenden Gleichungssystems, das gleichzeitig trockene Zellen an Ufern, nasse freie Oberflächenzellen und unter Druck stehende Zellen beinhaltet. Die Lösung dieses Systems wird durch die Verwendung eines verschachtelten iterativen Newton-Lösers erreicht. (Text gekürzt)
Im Fokus des Vorhabens stehen die Planung und Durchführung eines Feldversuchs zur Bestimmung der geohydraulischen Anisotropie von Porengrundwasserleitern sowie die Auswertung der ermittelten Daten mit Hilfe inverser numerischer Methoden. Aufgabenstellung und Ziel Geohydraulische Berechnungen basieren zumeist auf der Annahme bereichsweise homogener und isotroper Grundwasserleiter und -geringleiter. Dies bedeutet, dass die hydraulische Durchlässigkeit innerhalb einer geologischen Formation als konstant und richtungsunabhängig angenommen wird. Da die einzelnen Kornpartikel einer geologischen Formation jedoch zumeist nicht gleichförmig abgelagert werden und selten kugelförmig sind, orientieren sie sich zumeist während der Ablagerungsprozesse und bilden Lagen aus Feinsedimenten. Kornanalytisch kann hier zwar eine Homogenität nachgewiesen werden, in Bezug auf die hydraulische Durchlässigkeit trifft dies jedoch nicht zu. In den meisten Fällen ist die hydraulische Durchlässigkeit eines Sedimentkörpers in horizontaler Richtung wesentlich größer als in vertikaler Richtung. Dieses Phänomen wird als Anisotropie bezeichnet. Speziell in größeren Skalen (räumlich) wirkt sich die Anisotropie des Untergrunds maßgeblich auf dessen effektive Durchlässigkeit aus, wodurch beispielsweise die räumliche Ausbreitung von Absenktrichtern bei Wasserhaltungsmaßnahmen nachhaltig beeinflusst werden kann. Für die Planung und Dimensionierung von Wasserhaltungsmaßnahmen liegt jedoch meist keine ausreichende Kenntnis über die Anisotropie des Untergrunds vor. Oftmals wird deshalb auf Literaturangaben zurückgegriffen, in denen das Anisotropieverhältnis von horizontaler und vertikaler hydraulischer Durchlässigkeit natürlich abgelagerter Sedimente mit Werten zwischen 2 und 10 beschrieben wird. Je nach Standort kann der Wert der tatsächlich vorliegenden Anisotropie jedoch noch deutlich von diesen Größen abweichen bzw. räumlich stark variieren. Hierdurch entstehen bei der Planung von Wasserhaltungsmaßnahmen große Unsicherheiten, woraus gegebenenfalls ein erhöhter Aufwand mit entsprechenden Kosten resultiert. Geohydraulische Standarduntersuchungsmethoden eignen sich nur in geringem Maß, um Informationen über die hydraulische Anisotropie von Sedimentkörpern zu erhalten. Durch die meisten dieser Verfahren kann nur die horizontale, selten auch nur die vertikale Durchlässigkeit des Untergrunds bestimmt werden (Bagarello et al. 2009). Durch Pumpversuche kann in bedingtem Maß ein Rückschluss auf die Anisotropie des Untergrunds gezogen werden (Neumann 1975). Die hierbei ermittelten Werte basieren jedoch meist auf einer an wenigen Beobachtungs¬punkten erhobenen Datengrundlage. Die Auswertung erfolgt dabei auf Grundlage analytischer Lösungen für stark vereinfachte Modellannahmen. Die Zuverlässigkeit der ermittelten Werte ist deshalb zum einen von der Datengrundlage und zum anderen von der Eignung des Berechnungsansatzes für die jeweils vorliegenden Randbedingungen abhängig. Prognostizierte Grundwasserspiegeländerungen mittels numerischer Modelle, die auf einer geringen Datengrundlage erstellt wurden, korrelieren oftmals nicht mit tatsächlichen Beobachtungen. Aus diesem Grund ist es erforderlich, geeignete Methoden zu entwickeln, um die Erkundungsergebnisse zu verbessern und dadurch die Prognosefähigkeit deutlich zu steigern. Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) Durch ein verbessertes Prozessverständnis, jedoch vor allem durch die Verfügbarkeit verbesserter Werkzeuge zur Bestimmung der Anisotropie von Sedimentkörpern, wird eine effizientere Beratung im Vorfeld von Baumaßnahmen an Bundeswasserstraßen ermöglicht. Planung und Dimensionierung von Wasserhaltungsmaßnahmen können effizienter erfolgen. Außerdem kann die Prognose der Auswirkungen von baulichen Maßnahmen an Bundeswasserstraßen auf den angrenzenden Grundwasserleiter verbessert werden.
Es ist das Ziel des Vorhabens, ein physikalisch realistisches Rechenmodell zu schaffen, dass den Auf- und Abbau der naechtlichen und winterlichen Inversionen ueber dem Stadtgebiet vorherzusagen ermoeglicht. Die Kontrolle und Erfassung der Phaenomenologie erfolgen durch vertikal sondierenden Schallradar und staendige Messung der Strahlung, Feuchte, Temperatur und des Windes. Der Aufbau eines Messnetzes innerhalb des Stadtgebietes wird vorbereitet. Bereits vorhandene Windmessungen werden ausgewertet und mit gleichzeitigen Schadstoffmessungen korreliert.
Im Rahmen einer Erschließungsmaßnahme der Stadt Jülich wurden die Entwässerungsgräben 'Mühlenteich' und 'Iktebach' im Bereich der Kreuzungen mit der geplanten Erschließungsstraße hydraulisch nachgewiesen. Hierzu wurden mit dem Programmsystem HEC-Ras eindimensionale numerische Modelle erstellt.
Fischaufstiegsanlagen können nur dann richtig funktionieren, wenn die Tiere den Einstieg schnell und leicht finden. Dieser befindet sich in der Regel direkt am Wanderhindernis, möglichst nah an der Hauptströmung. An Bundeswasserstraßen ist sein Standort häufig neben der Wasserkraftanlage, auf Höhe des Saugschlauchendes (Bild 1). So sollen Sackgassen für aufwärts wandernde Fische vermieden werden. Die sogenannte Leitströmung soll dem Fisch dabei den Weg zum Einstieg weisen; sie wird meist durch Zugabe eines zusätzlichen Abflusses im unteren Bereich der Fischaufstiegsanlage erzeugt. Da durch die räumliche Nähe Wechselwirkungen zwischen der Hydraulik von Kraftwerksabströmung und Leitströmung unvermeidlich sind, ist es für die Dimensionierung des Einstiegs der Fischaufstiegsanlage wichtig, die Charakteristik der Strömung im Unterwasser der Wasserkraftanlage zu kennen. Vor diesem Hintergrund entstand das BAW-Forschungsprojekt 'Strömungsuntersuchungen an Niederdruckwasserkraftanlagen'. Dessen Ziel ist es, Aufschlüsse über Strömungsmuster im Unterwasser von Wasserkraftanlagen zu erhalten - abhängig von verschiedenen Turbinenparametern und hydraulischen Randbedingungen. Die Erkenntnisse sollen zum einen helfen, die Dimensionierung des Einstiegsbereichs von Fischaufstiegsanlagen hinsichtlich geometrischer Gestalt und Leitströmung zu verbessern. Zum anderen sollen die Messdaten zur Weiterentwicklung numerischer Modelle genutzt werden. Das Projekt gliedert sich in eine Vorstudie, Messungen am Turbinenversuchsstand des Dieter-Thoma-Labors an der TU München, numerische Modellierungen sowie Naturmessungen.
Das Vorhaben baut auf die im Projekt SupraGenSys (Förderkennzeichen 03EE3010B) erarbeiteten Ergebnisse zum Entwurf und zur Optimierung eines vollsupraleitend ausgeführten und direkt angetriebenen Generators für WEA (Windenergieanlagen) mit 10 MW Bemessungsleistung auf. Die sich abzeichnende Verringerung der Stromgestehungskosten spielt eine wesentliche Rolle und verspricht den Ausbau der Windenergienutzung zu beschleunigen. Bisher durchgeführte Berechnungen berücksichtigen komplexe Systeme und deren Abhängigkeiten voneinander. Daraus ergibt sich die Wichtigkeit eines 'Proof-of-Concept', um anhand experimenteller Untersuchungen an einem Demonstrationsgenerator die ökonomische und technische Sinnhaftigkeit zu bestätigen und nachzuweisen, dass die Realität durch die Berechnungsmodelle hinreichend gut abgebildet wird. So kann das Vertrauen der Industrie in diese vielversprechende Technologie gestärkt werden. Ziel des Vorhabens ist somit die Entwicklung und der Aufbau eines 250-kW-Demonstrationsgenerators im Labor auf Basis des optimierten 10-MW-Voll-HTS-Generators. Mit Hilfe dieser Maschine werden die in SupraGenSys erarbeiteten Ergebnisse validiert und die entwickelten Berechnungsroutinen überprüft. Die Siemens AG trägt innerhalb des Konsortiums im Rahmen ihres Teilvorhabens zum Konzept und zum konzeptionellen Design des Demonstrationsgenerators bei. Besonderes Augenmerk gilt dabei der Untersuchung und Optimierung von Wechselstromverlusten in den supraleitenden Spulen von Rotor und Stator des neuartigen Generators. Die langjährige Erfahrung bei der Entwicklung von Elektromaschinen mit supraleitenden Rotorwicklungen fließt in die elektromagnetische Auslegung des 250-kW-Voll-HTS-Generators ein. Schließlich werden die Testergebnisse auf einen Multi-MW-Generatorentwurf übertragen.
Grönland beheimatet, abgesehen von seinem großen Eisschild, eine Vielzahl von weitaus kleineren peripheren Gletschern. Der Anteil dieser Gletscher am gesamten Eismassenverlust Grönlands geht weit über den Anteil hinaus, den diese Gletscher an der gesamten Eismasse und –fläche einnehmen. Da sie sich meist in gebirgigem Gelände entlang der Küsten befinden, erfordern numerische Modelle dieser Eismassen geeignete räumliche Auflösungen, die nicht von Eisschildmodellen erreicht werden können. Kalbende Gletscher tragen in besonderem Maße zum Gesamtmassenverlust bei. Über den Zeitraum 2003-2008 trugen die peripheren Gletscher 14% zum grönlandweiten Eismassenverlust bei. Ihr Beitrag zum Meeresspiegelanstieg wird Prognosen zufolge in Zukunft weiter ansteigen, wobei aktuell verfügbare Projektionen unter Annahme einer Klimaentwicklung entlang des RCP 8.5 einen Eismassenverlust von bis zu ~50% im 21. Jahrhundert vorhersagen. Es existiert eine deutliche regionale Variabilität, die eine komplexe Kombination von atmosphärischen und ozeanischen Antriebsmechanismen widerspiegelt. Nichtsdestotrotz ist keines der aktuell verfügbaren regionalskaligen Gletschermodelle in der Lage, ozeanische Einflüsse auf die Frontalablation an den kalbenden Gletscherzungen explizit aufzulösen. Abgesehen von zwei Modellen wird Frontalablation sogar vollständig ignoriert. Folglich existieren auch bisher keinerlei Abschätzungen bezüglich der Mengen von Frontalablation an Grönlands peripheren Gletschern, weder für Vergangenheit, Gegenwart, noch Zukunft.Das Ziel des Projektes ist die Erstellung von CMIP6-basierten Projektionen der zukünftigen Entwicklung von Grönlands peripheren Gletschern im 21. Jahrhundert unter besonderer Berücksichtigung von kalbenden Gletschern. Wir werden sowohl Schmelzwasserabflüsse als auch Beiträge zum Meeresspiegelanstieg quantifizieren. Wir werden das Open Global Glacier Model (OGGM) dahingehend weiterentwickeln, dass es in seinem Frontalablationsmodul ozeanische Antriebsmechanismen berücksichtigt. Dies wird durch spezielle Downscaling-Routinen für Klima- und Ozeandaten unterstützt werden. Wir werden die Modelperformance von OGGM in Abhängigkeit von verschiedenen räumlichen Auflösungen der Antriebsdaten im Detail evaluieren, um herauszufinden, ob und inwieweit die Anwendung optimierter Skalenübergänge von der großen synoptischen hinunter auf die kleinere, lokale Skala der peripheren Gletscher dazu beiträgt, die Modelperformance zu steigern. Die Ergebnisse des Projektes werden ein gesteigertes Maß an Verständnis bezüglich der atmosphärischen und ozeanischen Einflüsse auf die Entwicklung der peripheren Gletscher Grönlands liefern. Weiterhin werden wird Empfehlungen bezüglich der optimalen Komplexität zukünftiger, regionalskaliger Gletschermodellierungen abgeben und dabei besonders kalbende Gletscher berücksichtigen.
| Origin | Count |
|---|---|
| Bund | 3710 |
| Kommune | 1 |
| Land | 82 |
| Wissenschaft | 9 |
| Type | Count |
|---|---|
| Daten und Messstellen | 10 |
| Ereignis | 6 |
| Förderprogramm | 3592 |
| Text | 123 |
| unbekannt | 54 |
| License | Count |
|---|---|
| geschlossen | 133 |
| offen | 3641 |
| unbekannt | 11 |
| Language | Count |
|---|---|
| Deutsch | 3539 |
| Englisch | 600 |
| Resource type | Count |
|---|---|
| Archiv | 8 |
| Bild | 14 |
| Datei | 24 |
| Dokument | 81 |
| Keine | 2481 |
| Unbekannt | 1 |
| Webdienst | 9 |
| Webseite | 1233 |
| Topic | Count |
|---|---|
| Boden | 2489 |
| Lebewesen und Lebensräume | 2394 |
| Luft | 2205 |
| Mensch und Umwelt | 3785 |
| Wasser | 2215 |
| Weitere | 3673 |