Das Projekt "Wissenschaftliche Begleitung von Probefeldern mit Kapillarsystemen auf den Deponien 'Am Stempel', Marburg und 'Monte Scherbelino', Frankfurt" wird vom Umweltbundesamt gefördert und von Technische Universität Darmstadt, Institut für Wasserbau und Wasserwirtschaft, Fachgebiet Wasserbau und Hydraulik durchgeführt. Das Konzept der Kapillarsperre ist eine vielversprechende Alternative zu herkoemmlichen Oberflaechenabdichtungen von Deponien und Altlasten. Versuche am Institut fuer Wasserbau und Wasserwirtschaft haben die grundsaetzliche Eignung der Kapillarsperre unter Laborbedingungen nachgewiesen. Mit dem Bau grossmassstaeblicher Probefelder mit Kapillarsperrensystemen auf den o.g. Deponien wurde die bautechnische Herstellbarkeit belegt. Die Versuchseinrichtungen gestalten eine vollstaendige Bilanzierung des Wasserhaushaltes der Dichtungssysteme und ermoeglichen, das Langzeitverhalten unter natuerlichen klimatischen Bedingungen naeher zu untersuchen.
Das Projekt "Nr. 4.3.6 Thermisches und mechanisches Verhalten von Turbinengehäusen" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Institut für Energietechnik, Professur für thermische Energiemaschinen und -anlagen durchgeführt. Auf Grund ihrer modularen Bauweise weisen Industriedampfturbinen zwischen ihren Leitgitterträgern und dem Außengehäuse dampfgefüllte Seitenräume auf. Das Fluid in diesen Umfangskavitäten mit T- oder L-förmigen Querschnitt wird durch die äußere Hauptströmung (Ringspaltströmung) angetrieben. Die sich ausbildenden mehrdimensionalen Wirbelstrukturen, die durch mögliche Dampfanzapfungen, -entnahmen oder -einkopplungen noch zusätzlich beeinflusst werden können, bestimmen das Wärmeübergangsverhalten zwischen Fluid und Außenwand. Mischkonvektion führt in diesen Bereichen zur ungleichmäßigen Aufheizung des Außengehäuses. Vor allem im instationären sowie im Teillastbetrieb haben die damit verbunden thermischen Gehäuseverformungen starken Einfluss auf die Teilfugendichtheit sowie auf die Radialspiele zwischen Rotor und Stator. Um das thermomechanische Verhalten des Gehäuses bereits im Auslegungsprozess für verschiedene Lastfälle zuverlässig und effektiv mittels Finite-Elemente-Methode (FEM) vorherzusagen und entsprechend zu optimieren, reicht der Wissensstand zum Wärmeübergang in den Seitenräumen nicht aus. Aus diesem Grund wird in Zusammenarbeit mit der Siemens AG ein druckluftbetriebener, skalierter Versuchsstand entwickelt und am Zentrum für Energietechnik der TU Dresden errichtet. Mit der modularen, größenverstellbaren Versuchsanordnung sind systematische Untersuchungen zum Wärmeübergang in repräsentativen Seitenräumen in Abhängigkeit von deren Geometrie und von den Strömungsverhältnissen (Reynolds-Zahl, Drall) in der Hauptströmung möglich. Für die Messung der lokalen Wärmeübergangskoeffizienten entlang der Innenoberfläche der Seitenraumaußenwand kommen gleichzeitig zwei verschiedene, rückwirkungsarme Messverfahren mit nur sehr geringem Wärmeeintrag in das System zur Anwendung: die stationäre inverse Methode sowie die lokale Übertemperaturmethode. Parallel erfolgt die Nachrechnung ausgewählter Fälle mittels numerischer Strömungssimulation (CFD), mit der die experimentellen Ergebnisse verglichen werden. Neben der weiteren Qualifikation der verwendeten Messmethoden zur Bestimmung von Wärmeübergangkoeffizienten für ähnliche Aufgabenstellungen sowie für industrierelevante Anwendungen besteht das Ziel der Untersuchungen in der Entwicklung allgemein gültiger Ansätze (Aufstellen von NUSSELT-Korrelationen) und damit in der Erweiterung des Wissensstandes für den Wärmeübergang in Seitenräumen von Dampfturbinengehäusen sowie in Kavitäten allgemein. Durch Einpflegen der Ergebnisse als thermische Randbedingungen in die FEM-Berechnung werden die Vorhersagequalität des thermomechanischen Verhaltens im instationären Betrieb und damit die Lastflexibilität von Industriedampfturbinen verbessert und Optimierungspotentiale bei der Gehäusegestaltung aufgezeigt.
Das Projekt "Ein GIS-Simulationsmodell für Granulat- und Schuttströme" wird vom Umweltbundesamt gefördert und von Universität für Bodenkultur Wien, Institut für Angewandte Geologie durchgeführt. Granulat- und Schuttströme führen in vielen Gebirgsregionen weltweit regelmäßig zu Zerstörungen. Schneelawinen, Fels- oder Fels-Eis-Lawinen, Muren, Lahare oder pyroklastische Ströme sind nur einige Beispiele für derartige Prozesse. Ein angemessener Umgang mit den damit verbundenen Risiken erfordert eine detaillierte und zuverlässige Analyse der diesen Phänomenen zu Grunde liegenden Mechanismen. Zwar wurde dieses Thema in der Vergangenheit schon ausführlich bearbeitet und existiert eine Reihe einschlägiger physikalisch basierter Modelle, jedoch bleiben bis dato einige Probleme ungelöst: (1) das Fließen über natürliches (beliebig geformtes) Gelände und der Einfluss des viskosen Porenfluids bzw. die Modellierung der Bewegung als Zweiphasenströmung, sowie die Aufnahme von festem und/oder flüssigem Material wurden bisher nicht angemessen behandelt; (2) es existiert zum gegenwärtigen Zeitpunkt keine benutzerfreundliche, frei verfügbare Software, die zur Simulation solcher Phänomene in ihrer vollen Komplexität geeignet ist. Eine derartige Software könnte jedoch entscheidend dazu beitragen, die Modelle für einen breiteren Anwenderkreis an Universitäten und im öffentlichen Dienst zugänglich zu machen. Das vorliegende Projekt zeigt einen effektiven, innovativen und vereinheitlichten Weg für die Lösung dieser beiden Probleme auf. Er beschäftigt sich deshalb mit schnellen geophysikalischen Massenbewegungen wie Lawinen und echten zweiphasigen Schuttströmen von einem genau definierten Anrissgebiet entlang des Fließweges über natürliches Gebirgsgelände bis zum Ablagerungsgebiet. Für eine in ihrem Volumen und in ihrer Verteilung definierte Masse im Anrissgebiet sollen die Bewegung und die geometrische Deformation entlang des beliebig geformten Fließweges simuliert werden. Diese Simulation soll die Aufnahme und Ablagerung von festem Material einerseits und Fluiden andererseits entlang des Fließweges sowie die endgültige Verteilung der abgelagerten Masse einschließen. Die Modellierung wird ebenfalls die Effekte des sich dynamisch entwickelnden Porenfluiddrucks und/oder der zeitlichen Entwicklung der Mischungsverhältnisse der Feststoffe und Fluide inkludieren. Ein ebenso wichtiger Schwerpunkt soll auf die Entwicklung einer benutzerfreundlichen und frei verfügbaren Anwendungssoftware des entwickelten Modells gelegt werden. Dafür soll die GIS Software GRASS genutzt werden, die als Open Source Produkt unter der GNU General Public License verfügbar ist. Die neue Software soll mit physikalischen Modellen (Laborversuchen) sowie mit gut dokumentierten Massenbewegungen evaluiert werden. Hierbei sollen verschiedenste durch das Modell abbildbare Prozesse und Prozessketten wie Muren bzw. Schuttströme, Schuttlawinen und Schnee- oder Felslawinen betrachtet werden.
Das Projekt "Auswirkungen von Mischprozessen auf die Abbauleistung und die Verteilung von Mikroorganismen in stationären und nicht-stationären Kontaminationsverfahren" wird vom Umweltbundesamt gefördert und von Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH in der Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., Institut für Grundwasserökologie durchgeführt.