Zielsetzung: Der Klimawandel stellt ländliche Gemeinden in Mittelgebirgen vor spezielle Herausforderungen bezüglich des Wasserressourcenmanagements. Die Ereignisse im Sommer 2021 haben gezeigt, dass auch der ländliche Raum nicht hinreichend auf Hochwasser- und Starkregenereignisse vorbereitet ist. Gleichzeitig haben die Dürrejahre 2018 und 2019 erhebliche Auswirkungen auf die Forst- und Landwirtschaft gehabt. Dies unterstreicht den dringenden Bedarf an Konzepten der Klimaanpassung, die eng mit der Landnutzung verknüpft sind. Die Gemeinde Odenthal im Dhünntal des Bergischen Landes war vom Starkregenereignis 2021 stark betroffen und konnte einschlägige Erfahrungen sammeln. Die geo-morphologischen Verhältnisse, insbesondere die Hanglage und Bodenqualität, beeinflussen die Wasserrückhaltung erheblich und sorgen für eine geringe Versickerungsfähigkeit, wodurch Niederschlagswasser aufgrund der geringen Untergrunddurchlässigkeit größtenteils oberirdisch abfließt. Gleichzeitig führt der hohe Nutzungsdruck auf die wenigen verfügbaren ebenen Flächen - oft in Auengebieten - zu Nutzungskonflikten zwischen verschiedenen Akteuren. Um diesen Herausforderungen zu begegnen, müssen nachhaltige Strategien zur Wasserspeicherung und -bewirtschaftung der Flächen entwickelt und genutzt sowie Interessenkonflikte aufgelöst werden. Unter Einbeziehung der Bürger*innen und in Zusammenarbeit mit der Wissenschaft, vertreten durch die TH Köln, soll nun eine wasserkompetente und klimaangepasste Siedlungsentwicklung in einer Mittelgebirgsregion geschaffen werden. Ziel ist es, durch partizipative Ansätze die drei Dimensionen der Nachhaltigkeit - Wirtschaft, Soziales und Ökologie - zu stärken und die Akzeptanz der entwickelten Maßnahmen zu sichern. Die Gemeinde Odenthal wird zur Modellgemeinde und zum Reallabor für den innovativen Projektansatz und spielt eine zentrale Rolle im Modellflussgebiet Dhünn des :aqualon e.V.. In enger Zusammenarbeit mit allen Akteur*innen werden Strategien und Maßnahmen entwickelt, die den gesamten Wasserkreislauf, die Risiken des Klimawandels und die Gewässerökologie berücksichtigen. Ziel ist es, neue Wasser-Raum-Konzepte zu schaffen, die den Schutz der Gewässer fördern und die Klimaresilienz der Gemeinde stärken. Das Projekt schafft die Voraussetzungen für ein direkt anschließendes Umsetzungsprojekt, bei dem die gemeinsam entwickelten Lösungen von allen beteiligten Akteur*innen getragen und umgesetzt werden, um Odenthal als klimaresiliente Gemeinde zu etablieren.
Die weltweiten Warentransporte werden zu über 90 Prozent auf dem Seeweg abgewickelt. Die Seehäfen dienen den Warenströmen als Anlaufstelle und haben daher eine besondere Bedeutung für den gesamten Welthandel. Auch die deutsche Volkswirtschaft ist auf eine leistungsfähige Infrastruktur der Seehäfen angewiesen, um das Außenhandelsvolumen von jährlich rund zwei Billionen Euro effizient umsetzen zu können. Um die Wettbewerbsfähigkeit deutscher Seehäfen international zu sichern, wurden sie, wie auch ihre Zufahrten, in der Vergangenheit immer wieder an die Anforderungen der modernen Seeschifffahrt angepasst. So wurden seit dem Ende des 19. Jahrhunderts viele Fahrrinnen verändert, beispielsweise an Ems, Jade, Weser und Elbe. Zusätzlich haben umfangreiche Küstenschutzmaßnahmen, wie etwa Eindeichungen, die ursprünglich natürlichen Tideflusssysteme nachhaltig verändert. Auch heute sind noch weitere Fahrrinnenanpassungen für die Unter- und Außenelbe, die Unter- und Außenweser und die Außenems geplant. Die Pläne werden auf Antrag eines Bundeslandes (überwiegend Niedersachsen, Hamburg, Bremen) von der Wasserstraßen- und Schifffahrtsverwaltung (WSV) des Bundes durchgeführt und der Planfeststellungsbehörde zur Genehmigung vorgelegt. Die BAW ist im Auftrag der WSV als Sonderfachgutachter an den Planungen beteiligt. Da Seehafenzufahrten wie beim Hamburger Hafen leicht 100 Kilometer lang sein können, ergeben sich großflächige zusammenhängende Eingriffsflächen. Die geplanten Fahrrinnenanpassungen zählen entsprechend zu den größten Infrastrukturprojekten Deutschlands, bei denen zahlreiche Nutzungskonflikte beachtet werden müssen. Dazu gehört, dass die Seeschifffahrt auf den Tideflüssen in einem besonders schützenswerten Ökosystem stattfindet. Darüber hinaus schließen sich meist Schutzgebiete von nationaler und europäischer Bedeutung an. Fahrrinnenanpassungen können daher komplexe Auswirkungen auf die biotischen und abiotischen Systemparameter eines Tideflusses haben. Im Rahmen der für die Planungen nach nationaler und europäischer Gesetzgebung erforderlichen Umweltverträglichkeitsprüfung besteht somit eine hohe Verantwortung der Gutachter bei der Ermittlung und Prognose der ausbaubedingten Auswirkungen auf das Ökosystem. Hieraus ergibt sich die besondere Bedeutung der BAW-Gutachten: Die von der BAW prognostizierten Auswirkungen auf die abiotischen Systemparameter sind Grundlage für die ökologische Bewertung. So werden durch einen Ausbau der Wasserstand (z. B. Tidehochwasser, Tideniedrigwasser, Sturmflutscheitelwasserstände), die Strömungen und der Salzgehalt beeinflusst. Auch müssen die Auswirkungen auf den Sedimenttransport und das Gewässerbett (Morphodynamik) der von Gezeiten geprägten Flüsse ermittelt werden. (Text gekürzt)
Zielsetzung: Das gleichzeitige Streben nach mehr Holzernte gemäß den bioökonomischen Zielen und der Erhöhung des Waldschutzes gemäß der EU-Biodiversitätsstrategie ist in Regionen und Ländern mit derzeit intensiver Holzproduktion möglicherweise nicht gleichermaßen erreichbar. Die daraus resultierende Inkohärenz der Politik aufgrund von Zielkonflikten und inkongruenter Umsetzung wird wahrscheinlich verwirrend sein und möglicherweise die Multifunktionalität der Wälder beeinträchtigen. Die Förderung der Erhaltung der Waldökosysteme im Hinblick auf die zahlreichen Erwartungen der Gesellschaft ist ein entscheidendes Ziel der Forstwirtschaft und der Forschung. Frühere Forschung hat sich mit der Frage sich widersprechender Wald- und Umweltpolitik hauptsächlich aus der Sicht der Governance befasst, wobei der Schwerpunkt nicht auf den Auswirkungen der Inkohärenz oder auf den Auswirkungen und der Wirksamkeit von Policy-Mixen lag. Um neue Politiken und Forstwirtschaftspraktiken zu entwickeln, die die potenziellen Kompromisse zwischen verschiedenen sozialen, wirtschaftlichen und ökologischen Beiträgen identifizieren und in Einklang bringen können, ist eine systematische Analyse der Politik, ihrer Umsetzung und ihrer langfristigen Auswirkungen erforderlich. Unser Projekt plant, eine solche Analyse durchzuführen, um eine solide Grundlage für die Lösung der sozial-ökologischen Landnutzungskonflikte zu schaffen, die durch politische Inkohärenz verursacht werden. Dieses Projekt beabsichtigt, neue Erkenntnisse für die Forstpolitik, die Forstwirtschaft und die Raumplanung zu gewinnen, indem es die Auswirkungen von Politiken und Managementpraktiken quantitativ analysiert und groß angelegte Waldprogramme entwickelt, die gleichzeitig die Holzproduktion erhalten oder steigern und die Nachhaltigkeit und Widerstandsfähigkeit der Multifunktionalität in Wäldern gewährleisten können. Wir verwenden ein globales Modell, um nationale und regionale Schätzungen des Holzbedarfs in verschiedenen sozioökonomischen Entwicklungspfaden und Szenarien zur Klimaverminderung abzuleiten, und kombinieren Simulations- und Optimierungswerkzeuge mit einer umfassenden Reihe von Biodiversitätsindikatoren sowie monetären und nicht-monetären Wertindikatoren für Ökosystemdienstleistungen. Wir analysieren europäische und nationale Politiken, die auf mehrere Waldfunktionen ausgerichtet sind, entwickeln geeignete Multifunktionalitätsmetriken und kombinieren beteiligte Interessengruppen, um praktikable Politik- und Managementmaßnahmen zu identifizieren. Mit diesen Instrumenten bewerten wir empirisch und qualitativ die Nachhaltigkeitslücke, die sich aus der Inkohärenz der Politik ergibt. Aufgrund der Unterschiede zwischen den EU-Ländern und -Regionen in Bezug auf deren sozioökonomischen Rolle der Wälder oder in ihrer Verwaltung ist es sehr wahrscheinlich, dass die aus der Inkohärenz der Politik resultierende Nachhaltigkeitslücke geografisch sehr unterschiedlich ist. (Text gekürzt)
Zielsetzung: Gegenstand und Ziele des Projektes: Die Versorgung mit ausreichend Trinkwasser ist eine der Kernaufgaben der öffentlichen Daseinsvorsorge. Der Klimawandel führt jedoch zu einer zunehmenden Belastung der Wasserressourcen, was sich bereits in extremen Wetterereignissen wie Dürreperioden und Starkregenereignissen zeigt und zunehmend zu Nutzungskonflikten führt. Aus diesem Grund haben sich insgesamt 25 Trinkwasserversorgungsunternehmen aus der nördlichen Region Ostwestfalen-Lippe des Landes NRW (24) und dem angrenzenden Niedersachsen (1) zum Ziel gesetzt, ein versorgungsgebietsübergreifendes Zukunftskonzept zu erarbeiten. Dieses „Zukunftskonzept Wassermengenmanagement“ ist im Sinne einer gemeinsamen Planungs- und Handlungsgrundlage zu sehen und soll zu einer effizienten, ressourcenschonenden und zukunftssicheren Wasserwirtschaft in der Projektregion führen. Neben der technischen Umsetzung liegt der Fokus auf einem aktiven Dialog mit der Öffentlichkeit, um Akzeptanz und Bewusstsein für Aufgaben und Bedeutung des Wassermanagements zu fördern. Das Projekt dient als Modell für andere Regionen, die ähnliche Herausforderungen bewältigen müssen. Innovativer Ansatz Das Projekt wird die Methode der ‚System Dynamics – Modellierung‘ anwenden, um die komplexen Wechselwirkungen zwischen einer sicheren und wirtschaftlich vertretbaren Wasserversorgung und der Bevölkerung, Landwirtschaft und Wirtschaft unter den Auswirkungen des Klimawandels zu erfassen. Damit können nicht nur kurzfristige Maßnahmen, sondern auch langfristige strategische Planungen zur Wasserversorgung in der Region erstellt und in ihren Auswirkungen erprobt werden. Des Weiteren dient dieses Werkzeug dazu, die Kommunikation zwischen Fachleuten, betroffenen Bürgern und der Politik zu unterstützen. Projektdurchführung: - Ein Zusammenschluss von 25 Trinkwasserversorgungsunternehmen - Consulaqua Hildesheim Projektregion: 20 Kommunen im nördlichen Ostwestfalen-Lippe (NRW) und die Stadt Melle in Niedersachsen Gemeinsam für eine langfristig sichere Trinkwasserversorgung!
Bedingt durch den Klimawandel sind landwirtschaftliche Kulturpflanzen vermehrt Wasserstress und Frostschäden ausgesetzt. Gleichzeitig prognostiziert die FAO einen Anstieg des globalen Wasserbedarfs um 55% (Landwirtschaft um 11%), bei einem Anstieg der gesamten beregneten Fläche um 6% bis 2050. Diese Problematik, kombiniert mit dem Bevölkerungsanstieg, wachsendem Energiebedarf und dem Rückgang der nutzbaren landwirtschaftlichen Fläche in den Industriestaaten, verlangt nach Lösungen. Ein bedarfsgerechter, energiesparender und effizienter Einsatz der Ressourcen Wasser und Energie ist erforderlich, um eine zukunftsfähige und nachhaltige Bewässerung zu gewährleisten und der steigenden Nutzungskonkurrenz, um die Ressource Wasser, zu begegnen. Während eine automatisierte Bewässerung im Gewächshaus bereits Stand der Technik ist, wird die Freiflächen und Tröpfchenbewässerung wie z.B. im Gemüse bzw. Obstbau überwiegend manuell auf Basis von Erfahrungswerten der Anbauer oder aufgrund fest geplanter Bewässerungsintervalle durchgeführt. Dies führt in der Regel zu zu hohen Bewässerungsgaben und kann weiterhin zu Nährstoffauswaschungen führen. Ziel dieses Projektes ist es daher, Daten aus den unterschiedlichsten Quellen auf einer intelligenten Service-Plattform miteinander zu verknüpfen, um dadurch über eine digitale Entscheidungsunterstützung, eine bedarfsgerechte und (teil-)automatisierte Bewässerung zu ermöglichen. Gerade die Integration lokaler Sensoren in einem multivariaten Ansatz, soll dabei auch der zunehmenden Entwicklung von teilabgedeckten Agrarflächen durch Agri-Photovoltaik-Anlagen, Folien und Netzen gerecht werden. Kern des Projekts ist dabei ein Cloud-basierter Bewässerungsplaner, der sich automatisiert an die on-Site gemessenen Klimaparameter, sowie den aktuellen phänologischen Bedingungen in Echtzeit anpasst. Der Planer wird dann mit den bestehenden Systemen der Projektpartner vernetzt, um die Ausführung der Bewässerung zu (teil)-automatisieren.
Bedingt durch den Klimawandel sind landwirtschaftliche Kulturpflanzen vermehrt Wasserstress und Frostschäden ausgesetzt. Gleichzeitig prognostiziert die FAO einen Anstieg des globalen Wasserbedarfs um 55% (Landwirtschaft um 11%), bei einem Anstieg der gesamten beregneten Fläche um 6% bis 2050. Diese Problematik, kombiniert mit dem Bevölkerungsanstieg, wachsendem Energiebedarf und dem Rückgang der nutzbaren landwirtschaftlichen Fläche in den Industriestaaten, verlangt nach Lösungen. Ein bedarfsgerechter, energiesparender und effizienter Einsatz der Ressourcen Wasser und Energie ist erforderlich, um eine zukunftsfähige und nachhaltige Bewässerung zu gewährleisten und der steigenden Nutzungskonkurrenz, um die Ressource Wasser, zu begegnen. Während eine automatisierte Bewässerung im Gewächshaus bereits Stand der Technik ist, wird die Freiflächen und Tröpfchenbewässerung wie z.B. im Gemüse bzw. Obstbau überwiegend manuell auf Basis von Erfahrungswerten der Anbauer oder aufgrund fest geplanter Bewässerungsintervalle durchgeführt. Dies führt in der Regel zu hohen Bewässerungsgaben und kann weiterhin zu Nährstoffauswaschungen führen. Ziel dieses Projektes ist es daher, Daten aus den unterschiedlichsten Quellen auf einer intelligenten Service-Plattform miteinander zu verknüpfen, um dadurch über eine digitale Entscheidungsunterstützung, eine bedarfsgerechte und (teil-)automatisierte Bewässerung zu ermöglichen. Gerade die Integration lokaler Sensoren in einem multivariaten Ansatz, soll dabei auch der zunehmenden Entwicklung von teilabgedeckten Agrarflächen durch Agri-Photovoltaik-Anlagen, Folien und Netzen gerecht werden. Kern des Projekts ist dabei ein Cloud-basierter Bewässerungsplaner, der sich automatisiert an die on-Site gemessenen Klimaparameter, sowie den aktuellen phänologischen Bedingungen in Echtzeit anpasst. Der Planer wird dann mit den bestehenden Systemen der Projektpartner vernetzt, um die Ausführung der Bewässerung zu (teil)-automatisieren.
Bedingt durch den Klimawandel sind landwirtschaftliche Kulturpflanzen vermehrt Wasserstress und Frostschäden ausgesetzt. Gleichzeitig prognostiziert die FAO einen Anstieg des globalen Wasserbedarfs um 55% (Landwirtschaft um 11%), bei einem Anstieg der gesamten beregneten Fläche um 6% bis 2050. Diese Problematik, kombiniert mit dem Bevölkerungsanstieg, wachsendem Energiebedarf und dem Rückgang der nutzbaren landwirtschaftlichen Fläche in den Industriestaaten, verlangt nach Lösungen. Ein bedarfsgerechter, energiesparender und effizienter Einsatz der Ressourcen Wasser und Energie ist erforderlich, um eine zukunftsfähige und nachhaltige Bewässerung zu gewährleisten und der steigenden Nutzungskonkurrenz, um die Ressource Wasser, zu begegnen. Während eine automatisierte Bewässerung im Gewächshaus bereits Stand der Technik ist, wird die Freiflächen und Tröpfchenbewässerung wie z.B. im Gemüse bzw. Obstbau überwiegend manuell auf Basis von Erfahrungswerten der Anbauer oder aufgrund fest geplanter Bewässerungsintervalle durchgeführt. Dies führt in der Regel zu hohen Bewässerungsgaben und kann weiterhin zu Nährstoffauswaschungen führen. Ziel dieses Projektes ist es daher, Daten aus den unterschiedlichsten Quellen auf einer intelligenten Service-Plattform miteinander zu verknüpfen, um dadurch über eine digitale Entscheidungsunterstützung, eine bedarfsgerechte und (teil-)automatisierte Bewässerung zu ermöglichen. Gerade die Integration lokaler Sensoren in einem multivariaten Ansatz, soll dabei auch der zunehmenden Entwicklung von teilabgedeckten Agrarflächen durch Agri-Photovoltaik-Anlagen, Folien und Netzen gerecht werden. Kern des Projekts ist dabei ein Cloud-basierter Bewässerungsplaner, der sich automatisiert an die on-Site gemessenen Klimaparameter, sowie den aktuellen phänologischen Bedingungen in Echtzeit anpasst. Der Planer wird dann mit den bestehenden Systemen der Projektpartner vernetzt, um die Ausführung der Bewässerung zu (teil)-automatisieren.
| Origin | Count |
|---|---|
| Bund | 921 |
| Kommune | 3 |
| Land | 105 |
| Wirtschaft | 1 |
| Wissenschaft | 1 |
| Zivilgesellschaft | 5 |
| Type | Count |
|---|---|
| Daten und Messstellen | 1 |
| Ereignis | 5 |
| Förderprogramm | 755 |
| Text | 191 |
| Umweltprüfung | 10 |
| unbekannt | 60 |
| License | Count |
|---|---|
| geschlossen | 245 |
| offen | 768 |
| unbekannt | 9 |
| Language | Count |
|---|---|
| Deutsch | 983 |
| Englisch | 137 |
| Resource type | Count |
|---|---|
| Bild | 3 |
| Datei | 2 |
| Dokument | 167 |
| Keine | 574 |
| Multimedia | 1 |
| Unbekannt | 11 |
| Webdienst | 5 |
| Webseite | 297 |
| Topic | Count |
|---|---|
| Boden | 822 |
| Lebewesen und Lebensräume | 874 |
| Luft | 468 |
| Mensch und Umwelt | 1022 |
| Wasser | 514 |
| Weitere | 1022 |