API src

Found 8 results.

Euroregion Neisse-Nisa-Nysa - Modellregion fuer die deutsch-tschechische Zusammenarbeit im Umweltbereich

RS92 GRUAN Data Product (v2) - Barrow 2012

This product is based on Vaisala RS92 radiosonde measurements of temperature, humidity, wind and pressure that have been processed following the requirements of the GCOS Reference Upper Air Network (GRUAN) that were described in Immler et al. [2010]. The GRUAN data product file comply to the requirements of GRUAN in particular by providing a full uncertainty analysis. The uncertainty is calculated according to the recommendations of the “Guide for expressing uncertainty in measurement” [GUM2008]. The total uncertainty is assessed from estimates of the calibration uncertainty, the uncertainty of corrections and statistical standard deviations. Corrections are applied such that the data is bias free according to current knowledge.

RS92 GRUAN Data Product (v2) - Barrow 2010

This product is based on Vaisala RS92 radiosonde measurements of temperature, humidity, wind and pressure that have been processed following the requirements of the GCOS Reference Upper Air Network (GRUAN) that were described in Immler et al. [2010]. The GRUAN data product file comply to the requirements of GRUAN in particular by providing a full uncertainty analysis. The uncertainty is calculated according to the recommendations of the “Guide for expressing uncertainty in measurement” [GUM2008]. The total uncertainty is assessed from estimates of the calibration uncertainty, the uncertainty of corrections and statistical standard deviations. Corrections are applied such that the data is bias free according to current knowledge.

RS92 GRUAN Data Product (v2) - Barrow 2009

This product is based on Vaisala RS92 radiosonde measurements of temperature, humidity, wind and pressure that have been processed following the requirements of the GCOS Reference Upper Air Network (GRUAN) that were described in Immler et al. [2010]. The GRUAN data product file comply to the requirements of GRUAN in particular by providing a full uncertainty analysis. The uncertainty is calculated according to the recommendations of the “Guide for expressing uncertainty in measurement” [GUM2008]. The total uncertainty is assessed from estimates of the calibration uncertainty, the uncertainty of corrections and statistical standard deviations. Corrections are applied such that the data is bias free according to current knowledge.

RS92 GRUAN Data Product (v2) - Barrow 2011

This product is based on Vaisala RS92 radiosonde measurements of temperature, humidity, wind and pressure that have been processed following the requirements of the GCOS Reference Upper Air Network (GRUAN) that were described in Immler et al. [2010]. The GRUAN data product file comply to the requirements of GRUAN in particular by providing a full uncertainty analysis. The uncertainty is calculated according to the recommendations of the “Guide for expressing uncertainty in measurement” [GUM2008]. The total uncertainty is assessed from estimates of the calibration uncertainty, the uncertainty of corrections and statistical standard deviations. Corrections are applied such that the data is bias free according to current knowledge.

RS92 GRUAN Data Product (v2) - Barrow 2013

This product is based on Vaisala RS92 radiosonde measurements of temperature, humidity, wind and pressure that have been processed following the requirements of the GCOS Reference Upper Air Network (GRUAN) that were described in Immler et al. [2010]. The GRUAN data product file comply to the requirements of GRUAN in particular by providing a full uncertainty analysis. The uncertainty is calculated according to the recommendations of the “Guide for expressing uncertainty in measurement” [GUM2008]. The total uncertainty is assessed from estimates of the calibration uncertainty, the uncertainty of corrections and statistical standard deviations. Corrections are applied such that the data is bias free according to current knowledge.

Raw pollen data from kasten core CON01-605-5 (Vydrino)

Sediment slices of 0.5 cm thickness were obtained from gravity core segments and of 1 cm thickness from the Vydrino piston core. Volumetric subsamples of 5 cm3 (10 cm3 in case of the lowermost samples from Continent core) were prepared according to standard procedures, including 7-μm ultrasonic fine-sieving (Cwynar et al., 1979, Fægri et al., 1989 K. Fægri, P.E. Kaland and K. Krzywinski, Textbook of Pollen Analysis (4th edition), John Wiley & Sons, Chichester (1989) 328 pp..Fægri et al., 1989 and PALE Steering Committee, 1994). Two tablets of Lycopodium marker spores were added to each sample for calculating total pollen and spore concentrations (Stockmarr, 1971). Water-free glycerol was used for storage and preparation of microscopic slides. The palynological samples were counted at magnifications of 400–600×, applying 1000× for the identification of difficult pollen types, e.g., including Saxifragaceae, Crassulaceae, and Rosaceae.

Raw pollen data from piston core CON01-605-3 (Vydrino)

Sediment slices of 0.5 cm thickness were obtained from gravity core segments and of 1 cm thickness from the Vydrino piston core. Volumetric subsamples of 5 cm3 (10 cm3 in case of the lowermost samples from Continent core) were prepared according to standard procedures, including 7-μm ultrasonic fine-sieving (Cwynar et al., 1979, Fægri et al., 1989 K. Fægri, P.E. Kaland and K. Krzywinski, Textbook of Pollen Analysis (4th edition), John Wiley & Sons, Chichester (1989) 328 pp..Fægri et al., 1989 and PALE Steering Committee, 1994). Two tablets of Lycopodium marker spores were added to each sample for calculating total pollen and spore concentrations (Stockmarr, 1971). Water-free glycerol was used for storage and preparation of microscopic slides. The palynological samples were counted at magnifications of 400–600×, applying 1000× for the identification of difficult pollen types, e.g., including Saxifragaceae, Crassulaceae, and Rosaceae.

1