Die Heidelberg Materials AG betreibt auf ihrem Betriebsgelände Fl.-Nr. 7312, Gemarkung Lengfurt ein Zementwerk. Die Anlage zur Herstellung von Zementklinker oder Zementen mit einer Produktionskapazität von 500 Tonnen oder mehr je Tag ist nach Nr. 2.3.1 des Anhanges 1 der 4. BImSchV immissionsschutzrechtlich genehmigt. Die Cap2U GmbH (ein Gemeinschaftsunternehmen der Linde GmbH und der Heidelberg Materials AG) plant im Bereich des Bauhof-Gebäudes im Nordwesten des Werksgeländes des Zementwerks in Lengfurt die Errichtung und den Betrieb einer eigenständig betriebenen CO2-Produktionsanlage. Zweck dieser Neuanlage ist die Abscheidung von CO2 aus einem Teil-Abgasstrom (ca. 10 % des Ofenabgas-Volumenstroms bei Volllast) des Zementwerks sowie dessen Veredlung (Reinigung), Verflüssigung und anschließende kommerzielle Nutzung in der Industrie, insb. der Getränke- und Lebensmittelindustrie. Das CO2 aus den Lagertanks wird über Tankwagen an die Kunden verteilt. Ein weiteres Ziel des Vorhabens ist die großtechnische Demonstration der Abscheidung, Aufbereitung, Verbringung und Nutzung von CO2 mittels Aminwäsche aus dem Abgasstrom eines Zementklinkerofens zur Vorbereitung der zukünftigen Verbreitung dieser Technologie zu ökonomischen Konditionen in der Zementindustrie als Grundlage für den Aufbau einer klimafreundlichen Kohlenstoff-Kreislaufwirtschaft. Für die CO2-Produktionsanlage selbst hat die Cap2U GmbH als Errichter- und Betreiberin eine eigenständige Genehmigung nach Baurecht beantragt. Das mit Schreiben der Heidelberg Materials AG vom 13.12.2023 beantragte immissionsschutzrechtliche Genehmigungsvorhaben beschränkt sich auf die Änderungen am bestehenden, immissionsschutzrechtlich genehmigten Zementwerk zur Anpassung an den geplanten Betrieb der als Neuanlage zu errichtenden CO2-Produktionsanlage („Schnittstellen“). Im Wesentlichen umfasst der Antragsgegenstand das Ausschleusen von Ofenabgasen zur Anlage der Cap2U GmbH und die Rückführung des nach erfolgter CO2-Abscheidung verbleibenden Rest-Abgases in das Ofenabgassystem. Zur Dampferzeugung soll in der CO2-Produktionsanlage Wärme aus dem bestehenden Thermalölkreislauf, der bis zur CO2-Produktionsanlage erweitert werden soll, genutzt werden. Weiterhin ist es geplant, dass bestimmte in der CO2-Produktionsanlage anfallenden Prozesskondensate und Flüssigkeiten aus der Amin-Aufbereitungsanlage (flüssige Abfälle) übernommen und ggf. zwischengepuffert werden, bevor sie an Stelle von bisher eingesetztem Brauchwasser (Grundwasser bzw. Mainwasser) im Bereich des Bypasses in das Ofensystem eingedüst und verdampft werden. Der Abfallkatalog bei der Klinkerherstellung soll für den Einsatz der neuen flüssigen Abfälle entsprechend erweitert werden. Zudem soll der in der CO2-Produktionsanlage in einem Filter abgeschiedene Staub aus dem Ofenabgas vom Zementwerk übernommen und im Produktionsprozess eingesetzt werden. Weiterhin soll durch das Zementwerk die Brauchwasserversorgung der CO2-Produktionsanlage erfolgen. Im Durchschnitt werden hierfür durch das Zementwerk ca. 3 m³/h Wasser aus dem Main entnommen und in dem bestehenden Sandfilter vorgereinigt. Das Brauchwasser wird über eine neue, begleitbeheizte und isolierte Rohrleitung der CO2-Produktionsanlage zugeführt. Die Brauchwasserbelieferung selbst soll im Rahmen der für das Zementwerk der Heidelberg Materials AG erteilten wasserrechtlichen Entnahmeerlaubnis für Grund- und Mainwasser (Bescheid des LRA Main-Spessart vom 03.05.2016, Az. 41-641-K) erfolgen. Eine Erhöhung der genehmigten Entnahmemenge aufgrund der Belieferung der CO2-Produktionsanlage ist nicht erforderlich. Zusammenfassend erstreckt sich der immissionsschutzrechtliche Genehmigungsantrag auf: • Ausschleusen von bis zu 100 % der Ofenabgase (max. 296.000 m³/h i.N. fe im Jahresmittel) nach dem SCR-Reaktor (SCR - selektive katalytische Reduktion) zur geplanten CO2-Produktionsanlage der Cap2U GmbH (zum Zwecke der dort erfolgenden CO2-Abscheidung mittels Aminwäsche) und Rückführung des nach erfolgter CO2-Abscheidung verbleibenden Rest-Abgases (bis zu 290.000 m³/h i.N. fe im Jahresmittel) in das Ofenabgassystem unmittelbar hinter dem Ausschleusepunkt Anmerkung: Innerhalb der baurechtlich zu genehmigenden CO2-Produktionsanlage der Cap2U GmbH erfolgen dann zum einen die Entnahme von Abwärme zur Dampferzeugung aus dem Gesamt-Abgasstrom sowie anschließend die Ausschleusung eines Teilabgasstroms von bis zu 34.000 m³/h i.N. fe im Jahresmittel, die CO2-Abscheidung mittels Aminwäsche aus diesem Teilabgasstrom und die Rückführung des danach verbleibenden Rest-Teilabgasstroms mit bis zu 28.000 m³/h i.N. fe im Jahresmittel in den Gesamt-Abgasstrom. • Erweiterung des bestehenden Thermalölkreislaufes der SCR-Anlage (Thermoöl-Wärmeverschiebesystem) zur Dampferzeugung in der CO2-Produktionsanlage • Übernahme und Zwischenlagerung (max. 25 m³) sowie Dosierung (max. 2,7 m³/h) von Prozesskondensaten der CO2-Produktionsanlage (AVV-Nr. 16 10 02) über die vorhandenen 8 Düsen in den Bypass-Verdampfungskühler oder im Falle einer Betriebsstörung über die SNCR-Anlage in den Steigschacht des Wärmetauscherturms • Übernahme und Zwischenlagerung (max. 1,5 m³) sowie Dosierung (max. 0,7 m³/h) von Flüssigkeit aus der Amin-Aufbereitungsanlage der CO2-Produktionsanlage (AVV-Nr. 16 10 02) in die vorhandene Eindüsung in die Bypass-Mischkammer vor dem By-pass-Verdampfungskühler (Bypass-VDK) oder im Falle einer Betriebsstörung in die vorhandene Eindüsung im Steigschacht des Wärmetauscherturms • Übernahme und Dosierung von in der CO2-Produktionsanlage abgeschiedenem Filterstaub (überwiegend unreagiertes Kalkhydrat, max. 0,05 t/h, AVV-Nr. 10 13 04) aus dem Ofenabgas über das Kalkhydratsilo in die Ofenanlage Ergänzende materielle Anträge für das Vorhaben: • Antrag auf Festlegung eines Überwachungswerts von 40 mg/m³ im ersten Betriebsjahr nach Inbetriebnahme (Einfahrbetrieb) und eines Überwachungswerts von 20 mg/m³ nach Abschluss des Einfahrbetriebes für die Schadstoffe nach Nr. 5.2.5 Klasse I i.V.m. Anhang 3 TA Luft 2021 für den aus der CO2-Produktionsanlage kommenden Teil-Abgasstrom vor dessen Einleitung in den Haupt-Abgasstrom des Zementwerks. • Antrag auf Festlegung eines Emissionsgrenzwert für Formaldehyd in Höhe von 5 mg/m³ gemäß Nr. 5.2.7.1.1 Abs. 10 TA Luft 2021 für das Ofenabgas am Schornstein der Ofenanlage. • Antrag auf Festlegung eines Emissionsgrenzwerts für Acetaldehyd in Höhe von 10 mg/m³ im Ofenabgas am Schornstein der Ofenanlage gemäß LAI-Vollzugsempfehlung vom 21.06.2023 für Acetaldehyd.
<p>Kleinfeuerungsanlagen für feste Brennstoffe sind eine wesentliche Quelle von Luftbelastungen. Bei winterlichen Inversionswetterlagen sowie in Tal- und Kessellagen kommt es zusätzlich zur bestehenden Hintergrundbelastung zur Belastung der Atemluft mit Feinstaub und anderen Luftschadstoffen. Vor allem unsachgemäße Bedienung und unsachgemäße Brennstoffbeschaffenheit führen zu hohen Emissionen.</p><p>Feinstaub-Emissionen aus Kleinfeuerungsanlagen</p><p>Kleinfeuerungsanlagen erzeugen durch das Verbrennen von Erdgas, Heizöl, Holz oder Kohle Heizwärme oder erwärmen das Brauchwasser. Überwiegend handelt es sich um Heizkessel, die ganze Wohnungen oder Häuser beheizen, etwa Festbrennstoff-, Öl- oder Gasheizungen. Bei Feuerungsanlagen, die einzelne Zimmer beheizen, wie Kamin- oder Kachelöfen, handelt es sich um Einzelraumfeuerungsanlagen, die meist mit Holz oder Kohle befeuert werden. Im Folgenden werden unter Kleinfeuerungsanlagen alle Anlagen mit einer Feuerungswärmeleistung unter 1.000 kW verstanden, die in der Ersten Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verordnung über kleine und mittlere Feuerungsanlagen - <a href="https://www.gesetze-im-internet.de/bimschv_1_2010/">1. BImSchV)</a> geregelt sind.</p><p>Die im Folgenden dargelegten Emissionsdaten stammen aus dem nationalen Emissionsinventar für Luftschadstoffe, Submission 2025, und spiegeln den Stand für das Jahr 2023 wider.</p><p>Die Staubemissionen werden hierbei in den Größenklassen <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a> (Partikel mit einem aerodynamischen Durchmesser ≤ 10 µm) und <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a> (Partikel mit einem aerodynamischen Durchmesser ≤ 2,5 µm) angegeben. Feinstaub (PM2,5) ist aus gesundheitlicher Sicht relevanter und sollte im Hinblick auf die Empfehlungen der Weltgesundheitsorganisation prioritär reduziert werden. </p><p>Die Feinstaub-Emissionen (PM10) aus allen Kleinfeuerungsanlagen (Öl, Gas, Kohle und Holz) liegen bei 17,3 Tausend Tonnen (Tsd. t) (siehe Abb. „Feinstaub-Emissionen (PM10) aus Kleinfeuerungsanlagen“). Hiervon machen die Emissionen aus Holzfeuerungen (Holzkessel und Einzelraumfeuerungsanlagen) mit 15,7 Tsd. t den größten Anteil der Feinstaub-Emissionen aus (Nationales Emissionsinventar für Luftschadstoffe, Submission 2025).</p><p>Bei der Feinstaubfraktion (PM2,5) liegen die Emissionen aus allen Kleinfeuerungsanlagen (Öl, Gas, Kohle und Holz) bei 16,3 Tausend Tonnen (Tsd. t) (siehe Abb. „Feinstaub-Emissionen (PM2,5) aus Kleinfeuerungsanlagen“). Auch hier machen Holzfeuerungen (Holzkessel und Einzelraumfeuerungsanlagen) mit 14,9 Tsd. t den größten Anteil der Feinstaub-Emissionen aus (<a href="https://www.umweltbundesamt.de/themen/luft/emissionen-von-luftschadstoffen">Nationales Emissionsinventar für Luftschadstoffe, Submission 2025</a>).</p><p>Die Verbrennung von Holz in privaten Haushalten sowie in gewerblich genutzten Gebäuden ist somit eine wesentliche Quelle der Feinstaubemissionen in Deutschland. Die Emissionen von Kleinfeuerungsanlagen sind stark von der <a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Witterung#alphabar">Witterung</a> während der Heizperiode abhängig: Bei niedrigen Außentemperaturen in der Heizperiode ergeben sich höhere Emissionen aufgrund des höheren Brennstoffeinsatzes. Bei höheren Außentemperaturen in der Heizperiode ergeben sich geringere Emissionen aufgrund des gesunkenen Brennstoffeinsatzes. Außerdem ist die Verwendung ordnungsgemäßer Brennstoffe sowie eine sachgerechte Bedienung und regelmäßige Wartung der Anlagen notwendig, um die Emissionen so gering wie möglich zu halten.</p><p>Weitere Informationen zur Organisation und Methodik der Luftschadstoff- Emissionsberichterstattung erhalten Sie <a href="https://www.umweltbundesamt.de/themen/luft/emissionen-von-luftschadstoffen/wie-funktioniert-die-berichterstattung">hier</a>.</p><p>Emissionen unterschiedlicher Feuerungssysteme </p><p>Bei Holzfeuerungen in privaten Haushalten ist zwischen Einzelraumfeuerungsanlagen wie Kamin- oder Kachelöfen, die einzelne Räume beheizen, und Zentralheizungskesseln, die Wohnungen oder Häuser mit Wärme versorgen, zu unterscheiden. Einzelraumfeuerungsanlagen verbrennen meist entweder Scheitholz oder Kohle die von Hand in die Feuerungsanlage eingebracht werden oder Holzpellets, die mechanisch der Feuerungsanlage zugeführt werden. Bei Festbrennstoffkesseln gibt es neben Pellet-, Scheitholz- und Kohlekesseln auch noch automatisch betriebene Hackschnitzelkessel. Dabei werden die Holzhackschnitzel mechanisch dem Brennraum zugeführt.</p><p>Ein Problem für die Luftreinhaltung stellen die – zumeist älteren – Einzelraumfeuerungen dar. Diese verursachen bei gleichem (Primär-) Energieeinsatz um ein Vielfaches höhere Feinstaub-Emissionen als moderne Festbrennstoffkessel. Wie hoch diese Emissionen tatsächlich sind, hängt nicht nur von Art und Alter der Anlage ab. Auch die Art der Brennstoffzufuhr (automatisch oder manuell), der Wartungszustand der Anlage, die Bedienung sowie die Auswahl und Qualität des genutzten Holzes haben einen großen Einfluss auf die Emissionen.</p><p>Gas- und Ölfeuerungen stoßen bei gleichem Energiebedarf sehr viel weniger Feinstaub aus als Festbrennstoffkessel: So liegen die <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a>- bzw. <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a> -Emissionen aller Gasheizungen, die in der 1. <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BImSchV#alphabar">BImSchV</a> geregelt sind, bei 35 t (inklusive Flüssiggas mit 1 t) und die PM10 bzw. PM2,5 -Emissionen aller Ölheizungen bei 380 t (<a href="https://www.umweltbundesamt.de/themen/luft/emissionen-von-luftschadstoffen">Nationales Emissionsinventar für Luftschadstoffe, Submission 2025</a>).</p><p>Anforderungen an Holzfeuerungsanlagen</p><p>Für die Begrenzung der Emissionen aus Kleinfeuerungsanlagen gilt in Deutschland die 1. Bundesimmissionsschutzverordnung (<a href="https://www.gesetze-im-internet.de/bimschv_1_2010/">1. BImSchV).</a> Sie gibt vor, welche Emissionsgrenzwerte Feuerungsanlagen der Haushalte und Kleinverbraucher einhalten müssen und welche Brennstoffe in solchen Anlagen zulässig sind. Diese Vorschrift wurde im Jahr 2010 novelliert. Für Feuerungsanlagen, die ab 2015 errichtet wurden, gelten Emissionsgrenzwerte, die nur mit moderner Technik eingehalten werden können. Auch für kleinere Heizkessel ab vier Kilowatt (kW) gelten Emissionsgrenzwerte und Überwachungspflichten abhängig vom Errichtungsjahr. Alte Öfen und Kessel mit hohen Emissionen müssen die Betreiber*innen nach entsprechenden Übergangsfristen nachrüsten oder stilllegen.</p><p>Angesichts des hohen Ausstoßes an Feinstaub sollte bei Holzfeuerungen nur modernste Anlagentechnik mit möglichst niedrigen Emissionen zum Einsatz kommen. Relativ niedrige Emissionsgrenzwerte gelten für Holzpelletheizungen. Besonders emissionsarme Holzfeuerungen erfüllen die Anforderungen des Umweltzeichens „Blauer Engel“ oder erhalten im Rahmen der „Bundesförderung für effiziente Gebäude - Einzelmaßnahmen“ (<a href="https://www.bafa.de/DE/Energie/Effiziente_Gebaeude/effiziente_gebaeude_node.html">BEG EM</a>) einen Bonus (sog. Emissionsminderungs-Zuschlag).</p><p>Eine weitere Minderung der Emissionen kann durch eine Kombination aus Nutzung einer erneuerbaren Energiequelle (Sonne, Erd- oder Luftwärme) zur Abdeckung der Grundlast und der Holzfeuerung zur Abdeckung von Zeiten hohen Energiebedarfs erreicht werden. Auf das Verbrennen von Holz ausschließlich aus Behaglichkeitsgründen sollte nach Möglichkeit verzichtet werden.</p><p>Anteil an den Stickstoffoxid-Emissionen</p><p>Die Emissionen von Stickstoffoxiden aus Kleinfeuerungsanlagen machten 2023 mit rund 67 Tausend Tonnen etwa 8 % der Gesamtemissionen in Deutschland aus (<a href="https://www.umweltbundesamt.de/themen/luft/emissionen-von-luftschadstoffen">Nationales Emissionsinventar für Luftschadstoffe, Submission 2025</a>). Hier bestehen zwischen Anlagen mit unterschiedlichen Brennstoffen geringere Unterschiede als bei den Feinstaubemissionen.</p><p>Kohlendioxid-Emissionen aus Kleinfeuerungsanlagen</p><p>Die Kohlendioxid-Emissionen fossiler Energieträger (Heizöl, Erdgas, Flüssiggas, Kohle) aus Kleinfeuerungsanlagen lagen im Jahr 2023 mit 100 Millionen Tonnen etwas niedriger als im Vorjahr <a href="https://www.umweltbundesamt.de/themen/klima-energie/treibhausgas-emissionen">(Nationales Treibhausgasinventar, Submission 2025)</a>.</p><p>Weitere Informationen zur Organisation und Methodik der Treibhausgas-Emissionsberichterstattung erhalten Sie <a href="https://www.umweltbundesamt.de/themen/klima-energie/klimaschutz-energiepolitik-in-deutschland/treibhausgas-emissionen/wie-funktioniert-die-berichterstattung">hier</a>.</p><p>Anteil an den Emissionen gasförmiger organischer Luftschadstoffe (ohne Methan)</p><p>Die Emissionen von gasförmigen organischen Luftschadstoffen ohne Methan (sog. <a href="https://www.umweltbundesamt.de/service/glossar/n?tag=NMVOC#alphabar">NMVOC</a>) aus Kleinfeuerungsanlagenmachten 2023 mit rund 36 Tausend Tonnen etwa 3,7 % der Gesamtemissionen in Deutschland aus (<a href="https://www.umweltbundesamt.de/themen/luft/emissionen-von-luftschadstoffen">Nationales Emissionsinventar für Luftschadstoffe, Submission 2025</a>).</p><p>Weitere Informationen zur Organisation und Methodik der Emissionsberichterstattung für Treibhausgase und Luftschadstoffe erhalten Sie hier (<a href="https://www.umweltbundesamt.de/themen/klima-energie/treibhausgas-emissionen/wie-funktioniert-die-berichterstattung">Treibhausgase</a> bzw. <a href="https://www.umweltbundesamt.de/themen/luft/emissionen-von-luftschadstoffen/wie-funktioniert-die-berichterstattung">Luftschadstoffe</a>).</p>
Ziel der Studie war, die vorgeschlagenen Moeglichkeiten zur Bestimmung der Quellen polyzyklischer Aromaten zu ueberpruefen. Diskutiert werden: die Mengenverhaeltnisse von Benzo(a)pyren zu Benzo(ghi)perylen und zu Coronen, das Vorkommen einzelner Verbindungen, die Profile schwefelhaltiger Di- und Polyzyklen, die vollstaendigen Profile, die Intensitaeten homologer Polyzyklenserien. Das Ergebnis ist, dass keine dieser Ueberlegungen zur Herkunftsbestimmung polyzyklischer Aromaten nuetzlich ist. Es wird erwogen, ob manche Vorschlaege einfach durch die unzureichende Analytik veranlasst wurden. In diesem Zusammenhang werden wichtige Analysenverfahren und damit erhaltene Ergebnisse diskutiert. Fuer Zimmeroefen mit Leistungen bis zu 9 kW wird folgende Abschaetzung gegeben: Die gesamten Polyzyklenemissionen von Gasofen, Oelofen und Kohleofen verhalten sich naeherungsweise wie 0,001:1:100. Bei solchen Verhaeltnissen wird schon die Unterscheidung zwischen den Beitraegen von Feuerungen schwierig, da bei einem geringen Anteil von Kohleheizungen deren Emissionen ueberwiegen. Mit der Hochaufloesungs-Niedervolt-Massenspektrometrie wurden bisher in verschiedenartigen Umweltproben stets sehr viele Verbindungstypen nachgewiesen. Diese Vielfalt und damit die analytische Problematik werden durch neuartige graphische Profile veranschaulicht. Wegen der Schwierigkeiten der exakten Strukturbestimmung von Polyzyklen in Umweltproben wird erneut die Frage gestellt, ob es sinnvoll ist, am Grundsatz der Analyse einzelner Verbindungen festzuhalten.
Hauptziel des beantragten Projektes Hybrid-Fire ist, eine neue Methode zur hybriden Beheizung von Ofenanlagen zu entwickeln die es ermöglich CO2-arm bzw. CO2-frei zu Arbeiten. Die Grundlagen hierfür soll umweltfreundlich erzeugter H2 sowie Elektroenergie darstellen. Durch Kombination eines Erdgas-Brenners, dessen Brenngas teilweise durch H2 ersetzt wird, mit einem bzw. mehreren Mikrowellenplasmabrennern soll durch gezielte Steuerung dies ermöglicht werden. Am Beispiel von ausgewählten keramischen Massenerzeugnissen aus dem Bereich Feuerfest (MgO-Stein), Technischer Keramik (ZrO2) sowie Baukeramik (Ziegel, Fließe) sowie am Beispiel Stahlschmelze aus dem Metallurgiesektor, soll gezeigt werden, dass diese zurzeit stark CO2-lastige Verfahren CO2-arm bzw. -neutral betrieben werden können. Hierzu wird an den ausgewählten Erzeugnissen (keram. Werkstoff sowie Stahl) umfangreiche Forschungsarbeit in mikrowellenplasmabeheizten Ofen, in elektrisch beheizten sowie in industriell oft gasbeheizten Öfen zur Eigenschaftsentwicklung betrieben. Im Lauf des Projektes ist geplant einen hybrid-beheizten Demonstrator zu konzipieren und für umfangreiche Versuche mit den genannten Produktgruppen zu bauen. Aufgrund der Änderungen in der Beheizungsart ist damit zu rechnen, dass geänderte Anteile an H2O-dampf bzw. H2-gehalte u.a. Abgasbestandteile die Eigenschaften beeinflussen. Hierzu können Änderungen in der Sinter- bzw. Schmelztechnologie bzw. auch am Werkstoff erforderlich werden. Im letzten Teil des Projektes sollen die gewonnenen Erkenntnisse im Industrieeinsatz (Feuerfesthersteller, Stahlgießerei) zum Einsatz unter industriellen Bedingungen kommen und erprobt werden. Am Ende des Projektes soll es möglich sein die Erkenntnisse auch auf weitere Ofenanlagen zu übertragen bzw. auch auf andere Industriezweige mit ähnlichen temperaturintensiven Technologien zu adaptieren.
Zement wird mit Hilfe des Trocken- oder Nassverfahrens im Drehrohrofen hergestellt. Beim Nassverfahren ist der spezifische Energiebedarf zum Brennen des Klinkers ca. 40 Prozent höher als beim Trockenverfahren, da im Gegensatz zum Trockenverfahren das feuchte Vormaterial direkt in den Drehrohrofen eingebracht wird und so das Wasser im Drehrohrofen sehr energieintensiv verdampft werden muss. Eine Möglichkeit den Energiebedarf beim Nassverfahren zu senken, ist die Verbesserung des Wärmeübergangs von den heißen Rauchgasen auf das Vormaterial im Drehrohrofen, indem im Drehofen Ketten angebracht werden. Die Ketten werden im heißen Rauchgas aufgeheizt und durch die Drehbewegung des Ofens in das kältere Vormaterial gefördert, wo sie ihre Wärme entsprechend abgeben. Dadurch sind Energieeinsparungen von rd. 15 Prozent möglich. Im Rahmen dieses Forschungsprojekts soll ein mathematisches Modell, basierend auf Stoff-, Massen-, Energie- und Impulsbilanzen, zur Beschreibung des Betriebsverhaltens dieser Kettensysteme formuliert werden, um durch eine verbesserte Auslegung des Kettensystems im Drehofen den Energiebedarf und damit Umweltbelastungen und Energiekosten bei der Zementherstellung zu minimieren.
Hauptziel des beantragten Projektes Hybrid-Fire ist, eine neue Methode zur hybriden Beheizung von Ofenanlagen zu entwickeln die es ermöglich CO2-arm bzw. CO2-frei zu Arbeiten. Die Grundlagen hierfür soll umweltfreundlich erzeugter H2 sowie Elektroenergie darstellen. Durch Kombination eines Erdgas-Brenners, dessen Brenngas teilweise durch H2 ersetzt wird, mit einem bzw. mehreren Mikrowellenplasmabrennern soll durch gezielte Steuerung dies ermöglicht werden. Am Beispiel von ausgewählten keramischen Massenerzeugnissen aus dem Bereich Feuerfest (MgO-Stein), Technischer Keramik (ZrO2) sowie Baukeramik (Ziegel, Fließe) sowie am Beispiel Stahlschmelze aus dem Metallurgiesektor, soll gezeigt werden, dass diese zurzeit stark CO2-lastige Verfahren CO2-arm bzw. -neutral betrieben werden können. Hierzu wird an den ausgewählten Erzeugnissen (keram. Werkstoff sowie Stahl) umfangreiche Forschungsarbeit in mikrowellenplasmabeheizten Ofen, in elektrisch beheizten sowie in industriell oft gasbeheizten Öfen zur Eigenschaftsentwicklung betrieben. Im Lauf des Projektes ist geplant einen hybrid-beheizten Demonstrator zu konzipieren und für umfangreiche Versuche mit den genannten Produktgruppen zu bauen. Aufgrund der Änderungen in der Beheizungsart ist damit zu rechnen, dass geänderte Anteile an H2O-dampf bzw. H2-gehalte u.a. Abgasbestandteile die Eigenschaften beeinflussen. Hierzu können Änderungen in der Sinter- bzw. Schmelztechnologie bzw. auch am Werkstoff erforderlich werden. Im letzten Teil des Projektes sollen die gewonnenen Erkenntnisse im Industrieeinsatz (Feuerfesthersteller, Stahlgießerei) zum Einsatz unter industriellen Bedingungen kommen und erprobt werden. Am Ende des Projektes soll es möglich sein die Erkenntnisse auch auf weitere Ofenanlagen zu übertragen bzw. auch auf andere Industriezweige mit ähnlichen temperaturintensiven Technologien zu adaptieren.
Hauptziel des beantragten Projektes Hybrid-FIRE ist, eine neue Methode zur hybriden Beheizung von Ofenanlagen zu entwickeln, die es ermöglicht, kohlendioxidarm bzw. kohlendioxidfrei zu arbeiten. Die Grundlagen hierfür bieten umweltfreundlich erzeugter Wasserstoff sowie Elektroenergie. Durch Kombination eines Erdgas-Brenners, dessen Brenngas teilweise durch Wasserstoff ersetzt wird, mit einem bzw. mehreren Mikrowellenplasmabrennern soll durch gezielte Steuerung dies ermöglicht werden. Am Beispiel von ausgewählten keramischen Massenerzeugnissen aus dem Bereich Feuerfest (MgO-Stein), Technischer Keramik (ZrO2) sowie Baukeramik (Ziegelstein, Fließe) sowie am Beispiel Stahlschmelze aus dem Metallurgiesektor, soll gezeigt werden, dass diese zurzeit stark kohlendioxidlastige Verfahrensschritte kohlendioxidarm bzw. -neutral betrieben werden können. Hierzu wird an den ausgewählten Erzeugnissen umfangreiche Entwicklungsarbeit in mikrowellenplasmabeheizten Ofen, in elektrisch beheizten sowie in industriell oft gasbeheizten Öfen zur Eigenschaftsentwicklung betrieben. Im Lauf des Projektes ist geplant einen hybrid beheizten Demonstrator zu konzipieren, zu bauen und für umfangreiche Versuche mit den genannten Produktgruppen einzusetzen. Aufgrund der Änderungen in der Beheizungsart ist damit zu rechnen, dass geänderte Anteile an Wasserdampf bzw. Wasserstoffgehalte u.a. Abgasbestandteile die Eigenschaften beeinflussen. Hierzu können Änderungen in der Sintertechnologie bzw. auch am Werkstoff erforderlich werden. Im letzten Teil des beantragten Projektes sollen die gewonnenen Erkenntnisse im Industrieeinsatz zum Einsatz unter industriellen Bedingungen kommen und erprobt werden. Am Ende des Projektes soll es möglich sein die gewonnenen Erkenntnisse auch auf weitere kontin (Text abgebrochen)
| Origin | Count |
|---|---|
| Bund | 410 |
| Land | 9 |
| Wissenschaft | 29 |
| Type | Count |
|---|---|
| Daten und Messstellen | 18 |
| Förderprogramm | 392 |
| Text | 8 |
| Umweltprüfung | 5 |
| unbekannt | 25 |
| License | Count |
|---|---|
| geschlossen | 27 |
| offen | 415 |
| unbekannt | 6 |
| Language | Count |
|---|---|
| Deutsch | 340 |
| Englisch | 133 |
| Resource type | Count |
|---|---|
| Archiv | 2 |
| Datei | 16 |
| Dokument | 13 |
| Keine | 339 |
| Webseite | 82 |
| Topic | Count |
|---|---|
| Boden | 320 |
| Lebewesen und Lebensräume | 312 |
| Luft | 302 |
| Mensch und Umwelt | 448 |
| Wasser | 265 |
| Weitere | 428 |