Starkes Nachtleuchten tritt in der oberen Mesosphäre und der unteren Thermosphäre (MUT) der oberen Erdatmosphäre auf und enthält eine Emissionsschicht, die von angeregtem Stickstoffdioxid (NO2) hervorgerufen wird. Anregungsmechanismen, die zum angeregten Stickstoffdioxid in der MUT und Stratosphäre beitragen, stehen im Mittelpunkt dieses Projekts, da sie nicht gut verstanden sind. Stickstoffdioxid ist auch in der Stratosphäre wichtig, da es zum Ozonabbau beiträgt. Die Photochemie von reaktiven Stickstoffverbindungen (N, NO, NO2) wird in der MUT und der Stratosphäre auf der Grundlage der jetzt verfügbaren globalen Emissionsmessungen analysiert. Für diese Aufgabe wird das MAC-Modell (Multiple Airglow Chemie) erweitert, um Reaktionen mit reaktiven Sauerstoff- und Wasserstoffverbindungen (O(3P), O(1D), O3 und H, OH, HO2) zu berücksichtigen. Berechnungen mittels der aktuellen MAC Version ermöglichen die Berücksichtigung von reaktiven Sauerstoff- und Wasserstoff-verbindungen. Diese Berechnungen wurden auf der Grundlage von in situ Raketenmessungen in der MUT validiert. In Anbetracht früherer Studien zur Untersuchung der Stickstoffdioxid-emissionen wird die Berechnung der Konzentrationen der wichtigsten Repräsentanten von reaktiven Sauerstoff-, Wasserstoff- und Stickstoffverbindungen in der Stratosphäre unter Verwendung der erweiterten Version des MAC-Modells auf der Grundlage neuer Messungen durchgeführt. Reaktionen, die in der erweiterten Version des MAC-Modells berücksichtigt werden, können in ein photochemisches Modul eines GCM (general circulation model) übernommen werden.
Leuchtende Nachtwolken (NLCs, von engl. Noctilucent clouds) sind optisch dünne Wassereiswolken, die nahe der polaren Sommermesopause bei geographischen Breiten polwärts von etwa 50 Grad auftreten. NLCs wurden in den vergangenen Jahrzehnten intensiv untersucht, insbesondere aufgrund ihrer Rolle als Indikatoren der globalen Veränderung. Langzeitsatellitenmessungen der NLCs mit Hilfe der SBUV/2 Instrumente auf Nimbus-7 und der NOAA-Satellitenreihe zeigen eine signifikante Zunahme der NLC Albedo (DeLand et al., 2007) sowie der NLC Häufigkeit (Shettle et al., 2009). Dieser langfristige Trend wurde durch eine Studie von Stevens et al. (2007) in Frage gestellt, in der die Langzeittrends in SBUV/2 NLC Albedo und der NLC Eismasse bei einer konstanten Lokalzeit untersucht wurden. Erstaunlicherweise führte die ausschließliche Berücksichtigung von Messungen bei konstanter Lokalzeit dazu, dass der Langzeittrend in der NLC Albedo praktisch vollständig verschwand. Diese Ergebnisse suggerieren, dass die veränderlichen Lokalzeiten, die mit der langsamen Veränderung der Orbitparameter der NOAA Satelliten verbunden sind, den scheinbaren Langzeittrend in NLC Albedo und NLC Häufigkeiten in früheren Studien verursachen. Dieser Sachverhalt ist noch immer nicht verstanden, obwohl die Frage nach den tatsächlichen Langzeitvariationen in NLCs von entscheidender Bedeutung für das wissenschaftliche Verständnis des Klimawandels in der mittleren Atmosphäre ist. Das wissenschaftliche Hauptziel des hier vorgeschlagenen Projekts ist es die Ursachen für die oben skizzierten Diskrepanzen zwischen den verschiedenen Analysen der SBUV/2 Daten zu untersuchen, und festzustellen, ob NLC-Parameter einer Langzeitvariation unterliegen oder nicht. Zu diesem Zweck sollen Messungen der europäischen Nadir-Beobachtungsinstrumente GOME und SCIAMACHY zur Bestimmung von NLCs verwendet werden. Nadir-Messungen dieser Satelliteninstrumente sind hervorragend geeignet, um diese wissenschaftliche Fragestellung zu untersuchen, weil die Satelliten sich in Sonnen-synchronen Erdumlaufbahnen befinden, und somit Messungen bei einer bestimmten geographischen Breite stets zur selben Lokalzeit durchführt werden. Da die GOME und SCIAMACHY Nadir-Messungen bisher nicht zur Untersuchung von NLCs verwendet wurden, soll im Rahmen dieses Projekts ein NLC Auswertealgorithmus implementiert und auf den gesamten GOME und SCIAMACHY Datensatz angewandt werden. Die zu bestimmenden NLC Parameter umfassen NLC Albedo, NLC Häufigkeit sowie NLC Eismasse. Die abgeleiteten NLC Datenprodukte werden verwendet, und Sonnenzyklusvariationen und Langzeittrends in NLCs zu quantifizieren, sowie zur Untersuchung der Frage, ob die Langzeittrends in SBUV/2 NLC Messungen durch die veränderlichen Lokalzeiten dieser Satellitenmessungen beeinflusst oder gar maßgeblich verursacht werden.
Eine Fülle an wissenschaftlichen Studien hat sich mit der Reaktion der stratosphärischen und troposphärischen Dynamik auf vulkanische Aerosole beschäftigt. Wegen der geringen Anzahl an gut beobachteten großen Eruptionen sowie der internen Variabilität des Systems gibt es zwar immer noch einige unbeantwortete Fragen, aber dennoch einen allgemeinen Konsens dass große Eruptionen insbesondere zu einer Beschleunigung der stratosphärischen Meridionalzirkulation, einer Verstärkung des stratosphärischen Polarwirbels und einer troposphärischen Reaktion auf diese stratosphärische Anomalien führen. Wenig ist hingegen über die Auswirkung auf die Mesosphäre bekannt. Es gibt indirekte Hinweise auf Temperaturanomalien durch die Beobachtung von polaren mesosphärischen Wolken (PMC) sowie direkte aus Lidarbeobachtungen nach der Pinatuboeruption. Der potenzielle Mechanismus dahinter ist allerdings weitgehend unbekannt. Unser Projekt möchte diese Wissenslücke schließen.In Phase I von VolDyn konnten wir zeigen, dass Daten des HALOE (Halogen Occultation Experiment) Satelliteninstruments, welches seine Beobachtung kurz nach dem Pinatuboausbruch aufnahm, auf positive Temperaturanomalien in der oberen Mesosphäre hindeuten, die möglicherweise mit dieser Eruption zusammenhängen. Erste Simulationen mit dem UA-ICON (upper atmosphere icosahedral non-hydrostatic) Modell zeigen für die Sommerhemisphäre einen starken Einfluss der stratosphärischen Zirkulationsanomalien auf die Mesosphäre. Derzeit untersuchen wir inter-hemisphärische Kopplungsprozesse.In Phase II von VolDyn werden wir weiterhin UA-ICON nutzen, um die Sensitivität der mesosphärischen Störung systematisch auf spezifische Charakteristika einer Eruption zu untersuchen, etwa die emittierte Schwefelmasse, den Breitengrad der Eruption oder die Jahreszeit während des Ausbruches.Da die mesosphärischen Anomalien wahrscheinlich sensitiv gegenüber der Charakteristik von stratosphärischen Zirkulationsanomalien sind, wollen wir die Pinatuboeruption (der größte Vulkanausbruch in der Satellitenära) und ihren Einfluss bis in die Mesosphäre so realistisch wie möglich simulieren und dabei auf ein Nudging der Stratosphäre zurückgreifen. Unser Ziel besteht darin, nicht nur einen qualitativen, sondern auch einen quantitativen Vergleich mit existierenden Beobachtungen zu ziehen – etwas, dass für andere massive Eruptionen wie die des Tambora oder Krakatau nicht möglich ist. Um die Simulationsergebnisse mit Beobachtungen zu vergleichen, werden wir praktisch alle verfügbaren Temperaturmessungen nutzen, welche die Mesosphäre zum Zeitpunkt des Pinatuboausbruches (oder kurz danach) erfasst haben.Nicht nur die Zirkulation, sondern auch Wasserdampfanomalien könnten zu den beobachteten PMC-Signalen beigetragen haben. Aus diesem Grund wollen wir den Transport von vulkanischem Wasserdampf bis in die polare Sommermesopausenregion in weiteren Modellstudien analysieren.
Die Variabilität der oberen Atmosphäre der Erde wird durch die Schwankungen in der Absorption solarer UV- und EUV-Strahlung die Ionosphäre hervorgerufen. Dabei tritt jedoch eine Verzögerung auf, die durch das Zusammenspiel verschiedener physikalischer und chemischer Prozesse verursacht wird. So haben die bestimmenden Ionisations- und Rekombinationsprozesse in den verschiedenen Schichten der Ionosphäre, aber auch Transportprozesse einen entscheidenden Einfluss. Die Rolle dieser Prozesse wurde in verschiedenen Studien untersucht, jedoch haben sich diese Analysen bisher nur mit einzelnen Aspekten der Verzögerung beschäftigt.Im Projekt DRIVAR II werden jene Aspekte der Verzögerung untersucht werden, die bisher nicht in Studien aufgenommen wurden. Dies beinhaltet die Variation der Verzögerung in hohen und niedrigen Breiten und die Rolle von Kopplungsprozessen zwischen Thermosphäre und Ionosphäre. Aufbauend auf diesen Ergebnissen und vorangegangenen Studien wird im Rahmen des Projektes eine globale Beschreibung der Verzögerung bereitgestellt.Die Analyse wird dabei einerseits auf etablierten Datensätzen (z.B. SDO-EVE, GOES, GUVI, Ionosonde oder TEC-Karten) aufbauen, aber andererseits auch neue Daten berücksichtigen (z.B. GOLD und ICON). Diese Vielzahl an solaren, thermosphärischen und ionosphärischen Parametern wird eine detaillierte Beschreibung der ionosphärischen Verzögerung ermöglichen. Hinzu kommen Modelluntersuchungen mit dem Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics (CTIPe) Modell und dem Thermosphere-Ionosphere- Electrodynamics General Circulation (TIE-GCM) Modell. Die Untersuchungen mithilfe dieser Modelle werden die verantwortlichen Prozesse ionosphärischer Variabilität zu bestimmen. Mit den Ergebnissen der Untersuchungen sollen dann ggf. auch Vorschläge für die Optimierung dieser Modelle formuliert werden und empirische Modelle ergänzt werden.Mit dem DRIVAR-II-Projekt werden die ionosphärischen und thermosphärischen Prozesse, welche die verzögerte Reaktion der Ionosphäre bestimmen umfassender und genauer analysiert. Diese Untersuchungen werden auch das generelle Verständnis von Prozessen in der oberen Atmosphäre verbessern und sind für das Vorhersagen von ionosphärischen Bedingungen interessant.Das Projekt ist eine Kooperation zwischen dem Institut für Solar-Terrestrische Physik in Neustrelitz und dem Institut für Meteorologie der Universität Leipzig.
Die Struktur und Zusammensetzung des Thermosphäre-Ionosphäre Systems (T-I) wird stark durch die solare EUV-Strahlung beeinflusst. Die andere wichtige externe Quelle von Variabilität in dieser Atmosphärenregion ist das geomagnetische Feld, das geladene Teilchen in die Atmosphäre leitet wo sie insbesondere um die Pole herum ihre Energie abgeben. Wie neue Daten zeigen, können auch interne Antriebsprozesse sowohl auf kurzen (Tage) als auch langen (Jahre) Zeitskalen die T-I Variabilität dominieren. Eine wesentliche Rolle wird dabei dem langsamen aber kontinuierlichen Anstieg von CO2 in der Mesosphäre und unteren Thermosphäre (MLT) zugeschrieben, der zu verstärkter Strahlungskühlung und damit einhergehender Kontraktion der Atmosphäre führt. Auch andere Treibhausgase können auf kürzeren Zeitskalen die T-I Variabilität stark modulieren, u.a. O3 und NO. Das Hauptziel dieses Projektes ist zu untersuchen, wie die räumliche Verteilung von Langzeittrends in MLT Treibhausgasen mit der T-I Langzeit Variabilität gekoppelt ist. Dabei sollen sowohl bodengebundene als auch Satellitendaten von CO2, O3, NO, H2O sowie Elektronendichten herangezogen werden. Durch Kombination von Daten der Satelliten CHAMP, GRACE, SWARM, COSMIC, GOMOS, ACE-FTS, MLS, SABER, MIPAS, HALOE und AIM soll eine nahezu globale Abdeckung über einen Zeitraum von 2 Sonnenzyklen erreicht werden. Aus diesen Daten soll eine globale Klimatologie erstellt werden als Grundlage für die Ableitung von Langzeittrends und ihrer Korrelation in Zeit, Raum und T-I Parametern, einschließlich der Untersuchung von möglichen zeitlichen Verzögerungen in der Variabilität. Ferner sollen chemische und dynamische Wirkmechanismen der T-I Reaktion auf diese Variabilität identifiziert sowie zum ersten Mal echte Abkühlungs- und Aufheizraten aus der globalen Klimatologie und ihre Korrelationen in der T-I Region berechnet werden. Diese können direkt in allgemeinen Zirkulationsmodellen anstatt der aus Volumenemissionsraten gewonnenen Abkühlraten verwendet werden.
In der oberen Erdatmosphäre ab 70 km herrschen spezielle Bedingungen, die ein Leuchten im sichtbaren und infraroten Licht verursachen. Die Airglow genannten Emissionen werden durch solare extreme Ultraviolettstrahlung hervorgerufen, die Luftmoleküle zerstört und Atome ionisert. Daraufhin finden diverse chemische Reaktionen und physikalische Prozesse statt, die teilweise zur Lichtemission durch verschiedene Atome und Moleküle führen. Bedeutend sind z.B. die Beiträge durch Sauerstoff- und Natriumatome sowie Hydroxyl-, Sauerstoff- und Eisenoxidmoleküle. Airglow ist zeitlich und räumlich sehr variabel und die damit verbundenen komplexen Prozesse sind noch nicht vollständig verstanden.Die direkte Erforschung der oberen Atmosphäre ist schwierig, da nur Raketen diese Höhe erreichen können. Daher werden hauptsächlich erd- und satellitengebundene Fernerkundungsmethoden angewendet. Die verbreitetsten Messverfahren erfassen nur einen kleinen Teil des Lichtspektrums, womit viele der gleichzeitigen und teilweise verknüpften Emissionen nicht studiert werden können.Eine bisher wenig genutzte aber vielversprechende Methode zur Airglowmessung sind astronomische Spektren von bodengebundenen Teleskopen. Neben dem Licht vom astronomischen Objekt zeigen diese immer auch atmosphärische Emissionen. Für astronomische Anwendungen müssen diese Beiträge aufwändig entfernt werden, aber für die Atmosphärenforschung sind sie wertvoll, zumal die Spektrographen an großen Teleskopen besonders leistungsfähig sind. Speziell Instrumente, die einen großen Spektralbereich abdecken, erlauben simultane Messungen von vielen verschiedenen Airglowemissionen.Das geplante Projekt wird auf Aufnahmen verschiedener Spektrographen am Very Large Telescope in Nordchile und Apache Point Observatory in New Mexico basieren. Der volle Datensatz, beginnend im Jahr 2000, wird um die 100.000 Spektren umfassen. Er wird viel größer sein als alles was bisher unter Nutzung von astronomischen Daten zur Erdatmosphäre publiziert worden ist.Das Projektziel ist die Charakterisierung der zeitlichen Variationen aller beobachtbaren Airglowemissionen in der oberen Erdatmosphäre mit besonderen Fokus auf (1) Linienemissionen von Hydroxyl- und Sauerstoffmolekülen, besonders im Hinblick auf ihren Wert als Temperaturindikator für die Klimaforschung, (2) Kontinuumsemission von Metall- und Stickoxiden und (3) hochvariablen aber zumeist schwachen Linienemissionen in der Ionosphäre. Die Analyse wird auch Modell-, ergänzende Satelliten- und bodengestützte Daten berücksichtigen. Die dabei gewonnenen Erkenntnisse werden einen signifikanten Beitrag zum Verständnis der chemischen und physikalischen Prozesse in der oberen Atmosphäre, aber auch zur Atom- und Molekülphysik liefern. Mit besseren Modellen der Emissionen wird es auch möglich werden die natürliche Nachthimmelshelligkeit genauer abzuschätzen und astronomische Daten besser zu verarbeiten.
Interne Schwerewellen (SW) verbinden verschiedene Schichten der Atmosphäre von der Troposphäre bis zur Thermosphäre und treiben die großskalige Zirkulation der mittleren Atmosphäre an. Viele der für SW relevanten Prozesse, von ihrer Entstehung über die Ausbreitung bis zur Dissipation sind jedoch unvollständig verstanden und, wegen der geringen typischen Wellenlänge, meist schlecht in numerischen Wettervorhersage- und Klimamodellen repräsentiert. GWING ist eines der Projekte der Forschergruppe MS-GWaves, die darauf abzielt, unser Verständnis der oben angesprochenen multi-skalaren dynamischen Schwerewellenprozesse zu verbessern, um letztendlich eine einheitliche Parametrisierung der in Atmosphärenmodellen nicht auflösbaren Schwerewellen (und ihrer Effekte) von der Entstehung bis zur Dissipation zu entwickeln. Um hierzu beizutragen, ist das zentrale Ziel von GWING die Entwicklung und Anwendung des atmosphärischen Zirkulationsmodells UA-ICON. Mit diesem Modell integriert GWING das in der Forschergruppe MS-GWaves entwickelte Wissen. In der zweiten Phase von GWING stehen zwei übergeordnete wissenschaftliche Fragen im Fokus: a) Welche Bedeutung haben Eigenschaften von Schwerewellen, die in klassischen Parametrisierungen nicht berücksichtigt werden, also insbesondere horizontale und nicht-inständige Propagation sowie die Wechselwirkung transienter Wellen mit dem Grundstrom? b) Welche Rolle spielen Schwerewellen für die globale Zirkulation und ihre Variabilität? Um diese Fragen zu beantworten, werden wir UA-ICON global sowohl mit einer Maschenweite von etwa 20 km (d.h. mit Auflösung von SW bis etwa 100 km Wellenlänge) als auch mit grober Auflösung, dafür aber mit der State-of-the-art Parametrisierung MS-GWaM nutzen. Weiterhin werden spezielle Beobachtungsepisoden mit sehr hoch (ca. 1,5 km) aufgelösten Nestern simuliert. Zur Evaluation und Analyse werden diese Modellsimulationen mit Beobachtungen der Partnerprojekte zusammengeführt. Die wesentlichen Entwicklungsziele für UA-ICON in Phase 2 des Projekts sind dementsprechend die Implementierung von MS-GWaM (entwickelt im Partnerprojekt 3DMSD), die Einführung physik-basierter Schwerewellenquellen (zusammen mit 3DMSD und SV) und eine verbesserte Behandlung von SW bei sehr hoher Modellauflösung. Die Nutzung der verschiedenen UA-ICON-Konfigurationen wird schließlich erlauben, die Bedeutung bisher vernachlässigter Eigenschaften von SW zu untersuchen, d.h. die erste der oben genannten Fragestellungen zu beantworten. Ein spezielles Ziel im Rahmen von GWING ist diese Untersuchung für Episoden plötzlicher Stratosphärenerwärmungen, die durch sich schnell ändernde und zonal nicht symmetrische Bedingungen des Grundstroms gekennzeichnet sind. Im Hinblick auf die zweite übergeordnete Fragestellung, wird sich GWING auf a) die Rolle der SW und einer hohen Modellausdehnung für die Simulation von Zirkulationsänderungen bei globaler Erwärmung und b) die Rolle für die Güte von Wettervorhersagen konzentrieren.
Methan ist ein bedeutendes Treibhausgas, das einen starken Einfluss auf die Klimaentwicklung der Erde nimmt. Zurzeit sind das Wissen um die verschiedenen Methanquellen und deren atmosphärischer Einfluss noch äußerst lückenhaft. Eine Quelle, die hier von besonderer Wichtigkeit sein könnte, ist die mikrobielle Methanproduktion innerhalb des Darms bestimmter Zooplanktonorganismen bzw. der von ihnen ausgeschiedenen Kotpillen. Diese Quelle ist hauptsächlich in der oberen sauerstoffhaltigen Wassersäule angesiedelt und kann somit einen unmittelbaren Einfluss auf den Methanfluss zwischen Ozean und Atmosphäre nehmen. In unserem Projekt stellen wir die Hypothese auf, dass in hochproduktive Regionen, wie z.B. in Randmeeren, diese Zooplankton-basierte Methanproduktion besonders stark ausgeprägt ist. Des Weiteren vermuten wir, dass die zeitweise in der Ostsee beobachtete subthermokline Methananomalie durch diese Methanquelle hervorgerufen wird. Im ZooM-Projekt werden wir deshalb die Zooplankton-assoziierte Methanproduktion im Modellgebiet Ostsee mit Hilfe eines multidisziplinären Ansatzes untersuchen, indem wir die Fachgebiete Methanchemie, Mikrobiologie und Zooplanktologie konzertiert einsetzen. Im Detail wollen wir die folgenden Schlüsselfragen beantworten: (1) Ist die subthermokline Methananomalie ein verbreitetes Phänomen in der Ostsee und können wir saisonale und regionale Unterschiede in ihrer Ausprägung identifizieren? (2) Besitzt die Zooplankton-assoziierte Methanproduktion das Potential die beobachtete Methananomalie auszubilden und wie beeinflussen Copepodenarten und Umweltbedingungen (wie die Nahrungszusammensetzung) die Methanproduktion? (3) Welche methanogenen Mikroorganismen sind in die subthermokline Methanproduktion im Copepoden-Darm und ihren Kotpillen involviert und lassen sich Unterschiede der beteiligten methanogenen Gemeinschaften und deren Aktivität ausmachen?
Neuere Forschungsergebnisse legen nahe, dass Ozon in der mittleren Atmosphäre (10 bis 90 km) von der oberen Atmosphäre beeinflusst werden kann, durch Absinken von NOx (N, NO, NO2) aus Quellregionen in der unteren Thermosphäre (90 bis 120 km) im polaren Winter. Da Ozon eine der wesentlichen strahlungsaktiven Substanzen in der mittleren Atmosphäre ist, können Änderungen im Ozonbudget Temperaturen und Zirkulation der Atmosphäre bis zum Erdboden herunter beeinflussen. Da die Stärke dieser thermosphärischen Einträge mit der geomagnetischen Aktivität variiert, stellen diese winterlichen NOx-Zunahmen einen möglichen Mechanismus der Sonne-Klimakopplung dar. Derzeit sind gängige Chemie-Klimamodelle aber nicht in der Lage, die Quellregion des NOx in der unteren Thermosphäre und den Transport in die mittlere Atmosphäre im polaren Winter realistisch zu simulieren. Um diese Kopplung von der oberen Atmosphäre in die mittlere und untere Atmosphäre in den Modellen realistisch darzustellen, ist eine gute Darstellung der primären Prozesse notwendig: Änderungen der chemischen Zusammensetzung durch präzipitierende Elektronen aus der Aurora, Joule-Heizen, und das daraus folgende Kühlen im infraroten Spektralbereich sowie die Anregung von Schwerewellen. Da in der unteren Thermosphäre angeregte Schwerewellen sich nach oben ausbreiten, kann der letztgenannte Prozess auch einen Einfluss auf die Umgebung von Satelliten in niedrigen Orbits haben. In dem hier vorgeschlagenen Projekt werden wir das gekoppelte Chemie-Klimamodell xEMAC verwenden, welches in seiner derzeitigen Konfiguration bis in die untere Thermosphäre (170 km) reicht, um den Einfluss der verschiedenen mit geomagnetischer Aktivität verbundenen Prozesse auf den Zustand der unteren Thermosphäre, und deren Darstellung in Chemie-Klimamodellen, zu untersuchen. Dazu wollen wir in Zusammenarbeit mit unserem Kooperationspartner an der Jacobs-Universität Bremen die zeitliche und räumliche Variation von Joule-Heizen und Teilchenniederschlag im Modell durch Beobachtungen des Swarm-Instrumentes vorgeben. Sowohl geomagnetisch ruhige als auch sehr aktive Zeiten sollen untersucht werden. Das Modell wird im Rahmen dieses Projektes weiter nach oben erweitert werden, um voraussichtlich in der zweiten Phase des SPPs auch den Einfluss auf die Umgebung von Satelliten zu untersuchen. Der modellierte Einfluss von geomagnetischer Aktivität soll durch adäquate Beobachtungen validiert werden, und Modellergebnisse werden analysiert, um den Einfluss von Joule-Heizen und Teilchenniederschlag auf die chemische Zusammensetzung, Temperatur, und Zirkulation der unteren Thermosphäre sowie deren Kopplung einerseits in die untere und mittlere Atmosphäre, andererseits in die obere Atmosphäre, zu untersuchen. Ziel dieses Projektes ist es, das Verständnis von Sonne-Klimakopplung und die Darstellung der beteiligten Prozesse in Chemie-Klimamodellen zu verbessern, sowie geomagnetische Einflüsse auf die Umgebung von Satelliten zu untersuchen.
Kopplungsprozesse zwischen der Ionosphäre und der neutralen Atmosphäre spielen eine wichtige Rolle für die dynamischen Prozesse in der oberen Atmosphäre. Neue Fortschritte im Verständnis dieser Prozesse wurden erreicht seitdem Satelliten im erdnahen Orbit kontinuierlich hochgenaue Daten der thermosphärischen und ionosphärischen Parameter (z.B. Massendichten, zonale Winde und Elektronendichteprofile) bereitstellen. Mit diesem Projekt planen wir die Beobachtung der Auftretenshäufigkeit und Eigenschaften sporadischer E Schichten auf globaler Skala. Die Untersuchungen basieren auf GPS Radiookkultationen der Satelliten CHAMP, GRACE, TerraSAR-X, TanDEM-X und FORMOSAT-3/COSMIC. Seit dem Start des Satelliten CHAMP im Jahre 2001 wurden mehr als 5 Millionen der Radiookkultationsprofile aufgezeichnet, was ermöglicht, dass das Auftreten und die Eigenschaften der sporadischen E Schichten in hoher räumlicher Auflösung analysiert werden können. Weiterhin ermöglicht die Zeitreihe erste statistische Trendanalysen der genannten Parameter. Während der Durchführung des Projektes soll der momentan genutzt numerischer Algorithmus zur Detektion von sporadischen E Schichten um ein Modul erweitert werden, der ermöglichen wird auch Rückschlüsse auf die Eigenschaften der Schichten zu ziehen. Globale Beobachtungen der Intensitäten sporadischer E Schichten existieren aktuell nicht und werden von uns zum erstmalig bereitgestellt werden. Diese Datenbasis kann genutzt werden, um statistische Änderungen im Verhalten der sporadischen E Schichten zu Untersuchen. Ebenfalls werden wir untersuchen, ob Abhängigkeit der sporadische Eigenschaften von anderen geophysikalischen Parametern, wie beispielsweise die Abnahme des Erdmagnetfeldes, der Solarzyklus, atmosphärische Gezeiten, Meteoreinfall oder Plamadichteabnahmen in der Ionosphäre zu finden sind.
Origin | Count |
---|---|
Bund | 28 |
Land | 1 |
Wissenschaft | 1 |
Type | Count |
---|---|
Daten und Messstellen | 1 |
Förderprogramm | 28 |
Text | 1 |
License | Count |
---|---|
geschlossen | 1 |
offen | 29 |
Language | Count |
---|---|
Deutsch | 15 |
Englisch | 28 |
Resource type | Count |
---|---|
Archiv | 1 |
Bild | 1 |
Dokument | 1 |
Keine | 28 |
Webseite | 1 |
Topic | Count |
---|---|
Boden | 28 |
Lebewesen und Lebensräume | 25 |
Luft | 30 |
Mensch und Umwelt | 30 |
Wasser | 21 |
Weitere | 29 |