Bei den globalen Veränderungen und deren Mitigation durch Umstellung auf erneuerbare Energiequellen (z. B. Offshore-Wind- und Solarparks) müssen nachteilige Auswirkungen auf die Lebensräume im Meer besser erkannt und vermieden werden. So hat die internationale Fischereipolitik in letzter Zeit der marinen Aquakultur Vorrang eingeräumt, um die globale Nahrungsmittel- und Ernährungssicherheit vieler Staaten zu gewährleisten, ohne deren tatsächliche Auswirkungen auf die Meeresumwelt zu kennen. Das Verständnis der räumlichen Ökologie freilebender Tiere, einschließlich ihrer Verbreitung, Bewegungen und Wanderungen, ihrer Phänologie und ihrer Ernährung, führt zu einer besseren Bewirtschaftung und Erhaltung. So können beispielsweise Bemühungen zur Erhaltung wandernder Populationen, die sich ausschließlich auf Brutgebiete konzentrieren, diese Populationen nicht vor Bedrohungen entlang der Wanderrouten oder in Nicht-Brutgebieten schützen. Tierbewegungen und Wanderungen sind auch deshalb wichtig, weil sie das Verhalten, die Lebensweise und sogar die Anatomie vieler Arten beeinflussen. Darüber hinaus kann sich das Wander- und Ernährungsverhalten innerhalb und zwischen den Arten und Populationen unterscheiden. Daher ist es von entscheidender Bedeutung, die auf jeder dieser Ebenen genutzten Routen und Nichtbrutgebiete zu ermitteln, zumal sie auch mit unterschiedlichen Bedrohungen verbunden sein können. Darüber hinaus kann die Untersuchung verschiedener Populationen auch dazu beitragen, zu verstehen, ob die räumliche Ökologie der Art durch genetischen und/oder Umweltvariablen bestimmt wird. Eine Möglichkeit, die Bewegungen und die Verteilung außerhalb der Fortpflanzungszeit bei wandernden Arten zu bestimmen, und zwar neuerdings auch bei den kleinsten Arten, ist der Einsatz von Geolokatoren auf Lichtniveau. Darüber hinaus können feinräumige Bewegungen mit dem kleinsten GPS-Gerät von nur 0,95 g verfolgt werden. Sturmschwalben (Familien Hydrobatidae und Oceanitidae) sind die kleinsten Seevögel und für die Forscher normalerweise nur zugänglich, wenn sie während der Brutzeit in den Kolonien an Land sind. Daher ist es besonders schwierig, sie außerhalb dieses Zeitraums zu untersuchen, wenn sie sich irgendwo auf dem Meer aufhalten und während dieser Zeit wandern und normalerweise ihr Gefieder mausern. Von den meisten Arten ist bekannt, dass sie sich während der Brutzeit bevorzugt von Ichthyoplankton und Zooplankton ernähren, und oft wird diese Beute zusammen mit einem relevanten Anteil an Mikroplastik verzehrt. Obwohl die Interaktion von Sturmschwalben mit anthropogenen Offshore-Aktivitäten teilweise untersucht wurde, zielt der vorliegende Vorschlag darauf ab, wichtige Erkenntnisse über die globale räumliche Ökologie dieser wenig erforschten Taxa zu sammeln und dazu beizutragen, Wissenslücken in Bezug auf die biologische Vielfalt der Meere und die anthropogenen Einflüsse auf sie entlang der europäischen Meere zu bewerten.
Der Status quo in der Regelung von Windparks ist die Maximierung des Ertrags. Dies liegt einerseits an einer festen Einspeisevergütung nach EEG für Windparks in den ersten Betriebsjahren, zum anderen existieren keine zertifizierten Regler, die einen Betrieb bspw. in Abhängigkeit der ertragenen Lasten von Windenergieanlagen (WEA) zulassen. In diesem Projekt baut das IWES eine Echtzeitsimulation für Windparks auf, sodass die Windparkregelung effizient angepasst werden kann, dass ein Optimum aus Betriebslasten und Ertrag zu erzielt wird. Die Echtzeitsimulation erlaubt es hierbei, ohne Eingriff in einen realen Park, die Funktionsweise der Regelung zu testen und somit bspw. den Einfluss von 'Wake-Steering' oder Abregelung der Leistung einzelner WEA zu untersuchen. Hierbei wird durch die Echtzeitsimulation auch ein Abschätzen der bereits ertragenen Lasten eines Windparks ermöglicht. Dadurch kann der Betrieb der Turbinen so angepasst werden, dass stärker belastete WEA durch Lastreduzierung geschont und schwachbelastete WEA durch eine erhöhte Ertragsvorgabe mehr belastet werden. Hierbei kann durch die Echtzeitsimulation vom IWES dynamisch auf sich ändernde Umgebungsbedingungen des Windparks reagiert und ein Windparkregler getestet werden. Somit wird durch den digitalen Windparkzwilling ein Optimum aus Lasten und Ertrag ermöglicht.
Eine der häufigsten Gründe für Ertragsverluste und für Reparaturen an Rotorblättern (RB) von Windenergieanlagen (WEA) sind die Degradation und die Beschädigung von Beschichtungen. Insbesondere werden im Betrieb von offshore Anlagen häufiger und signifikantere Schäden beobachtet als an onshore Standorten. Ursachen werden u.a. in den höheren Blattspitzengeschwindigkeiten, der höheren Anzahl an Volllaststunden und den anspruchsvolleren Witterungsbedingungen gesehen. Innerhalb des MARiLEP Vorhabens werden Ursachen für verstärkte Erosionserscheinungen an offshore Anlagen untersucht, Materialinnovationen entwickelt und Verfahren zur effizienten Vorortreparatur von offshore Anlagen erprobt. Mit klassischen Beschichtungssystemen auf Polymerbasis und mit zusätzlichen Selbstheilungseigenschaften, polymeren Halbzeugen und metallischen Schutzsystemen werden drei unterschiedliche Technologien verfolgt. Dabei wird ein besonderer Fokus auf der Erosionsbeständigkeit nach Bewitterung und einer hohen Reparaturfähigkeit gelegt, da heute verfügbare Systeme oft nur unter idealen Bedingungen gute Erosionsbeständigkeiten zeigen. Innerhalb des Verbundvorhabens MARiLEP arbeiten international anerkannte Partner aus dem Anlagenbetrieb, der Materialentwicklung und der Forschung eng zusammen um technische Lösungen für die Offshore Windindustrie zu entwickeln.
Das Projekt DIMOR zielt auf die Verbesserung und Validierung aerodynamischer Modelle für die Auslegung großer Rotoren von Off- und Onshore-Windturbinen, um die Energiegestehungskosten weiter zu senken. Die verbesserte Genauigkeit aerodynamischer Modelle wird die Entwicklungsrisiken sehr großer Windenergieanlagen senken. Die binationale Zusammenarbeit zwischen den Niederlanden und Deutschland unter dem Schirm der SET Wind-Initiative besteht aus zwei komplementären, national geförderten Teilprojekten. In aeroelastischen Simulationen basierend auf der industriell angewandten Blattelementimpulstheorie haben sich erhebliche Unsicherheiten in der Modellierung und eine Überschätzung von Ermüdungslasten aufgrund der stark inhomogenen und dynamischen Einströmung gezeigt. Bei ForWind - Universität Oldenburg sollen avancierte Windkanaluntersuchungen mit einem aktiven Gitter zur Erzeugung realitätsnaher Windfelder mit Scherung, Turbulenz und Böen, einer regelbaren, instrumentierten Modellwindturbine sowie umfangreicher Strömungsmesstechnik durchgeführt werden. Hiermit kann die Lücke zwischen klassischen Windkanalexperimenten in homogener Anströmung und Freifelduntersuchungen gefüllt werden. Aeroelastische Simulationen mit Free Vortex Wake Modellen bei TNO, Niederlande sollen den Datensatz erweitern. Hiermit sollen verbesserte Ingenieurmodelle und deren Implementierung zur genaueren Abbildung des Dynamic Inflow-Effekts in realitätsnaher inhomogener Anströmung erforscht und validiert werden. Die durch den Industriepartner Suzlon Energy Ltd. in Deutschland bzw. den Niederlanden durchgeführte Freifeldexperimente bzw. weitere Simulationsstudien sollen zur Validierung und Bewertung anhand realer Anlagen genutzt werden. Der Einfluss der Verbesserungen auf die Regelung und Lasten soll untersucht werden. Die verbesserten aerodynamischen Modellierungen, die in industrielle Entwurfssoftware implementiert werden können, sollen der gesamten Windenergiebranche zur Verfügung stehen.
Dieser Datensatz enthält Windkraftanlagen Offshore und an Land (5 km landeinwärts). Hierfür werden wöchentlich aktuelle Daten der Stromerzeugungseinheiten aus dem Marktstammdatenregister (MaStR) heruntergeladen und als Geodaten-Dienst (WMS und WFS) bereitgestellt. Die Offshore-WEA werden auch geclustert mit der Anlagen-Anzahl angezeigt. Alle Anlagen werden erst ab einer bestimmten Zoom-Stufe sichtbar. Der Energie-Anlagen-Dienst enthält ausserdem WEA der Küstenländer und PV-ANlagen. Quelle: MaStR. In den Anlagen-Attributen ist auch die MaStR-Nr. (SEE) enthalten, mit welcher unter folgender URL (über die "Schnellsuche") weitere Anlagen-Informationen angezeigt werden können: https://www.marktstammdatenregister.de/MaStR. Bei Daten-Fehlern wenden Sie sich bitte an die Bundesnetzagentur (BNetzA).
1
2
3
4
5
…
158
159
160