As part of the CDRmare joint project GEOSTOR (https://geostor.cdrmare.de/), the BGR created detailed static geological 3D models for two potential CO2 storage structures in the Middle Buntsandstein in the Exclusive Economic Zone (EEZ) of the German North Sea and supplemented them with petrophysical parameters (e.g. porosities, permeabilities). The 3D geological model (Pilot area B; ~560 km2) is located in the north-western part of the German North Sea sector, the so-called “Entenschnabel”, an approximately 150 kilometer long and 30 kilometer wide area between the offshore sectors of the Netherlands, Denmark and Great Britain (pilot region B). The model in the Ducks Beak is based on several high-resolution 3D seismic data and geophysical/geological information from four exploration wells. It includes 20 generalized faults and the following 16 horizon surfaces: 1) Sea Floor, 2) Mid Miocene Unconformity, 3) Base Tertiary, 4) Base Upper Cretaceous, 5) Base Lower Cretaceous, 6) Base Upper Jurassic, 7) Base Lower Jurassic, 8) Base Muschelkalk, 9) Base Röt, 10) Base Solling Formation, 11) Base Detfurth Formation, 12) Base Volpriehausen Wechselfolge, 13) Base Volpriehausen Formation, 14) Base Triassic, 15) Base Zechstein, 16) Top Basement. The reservoir formed by sandstones of the Middle Buntsandstein is located within the Mads Graben, which is bounded to the west by the extensive Mads Fault (normal fault). Marine mudstones of the Upper Jurassic and Lower Cretaceous serve as the main seal formations. Petrophysical analyses of all considered well data were conducted and reservoir properties (including porosity and permeability) were calculated to determine the static reservoir capacity for these potential CO2 storage structures. The model parameterized and can be used for further dynamic simulations of storage capacity, geo-risk, and infrastructure analyses, in order to develop a comprehensive feasibility study for potential CO2 storage within the project framework. The 3D models were created by the BGR between 2021 and 2024. SKUA-GOCAD was used as the modeling software. We would like to thank AspenTech for providing licenses for their SSE software package as part of the Academic Program (https://www.aspentech.com/en/academic-program).
Zielsetzung und Anlass: Die Eutrophierung stellt eine der größten ökologischen Bedrohungen der Ostsee dar, was sich aktuell in einer riesigen Todeszone (Sauerstoffmangel) am Meeresboden der tiefen Becken wiederspiegelt. Deshalb soll in dieser Machbarkeitsstudie eine nachhaltige marine Biomasse-Produktion des Blasentangs (Fucus vesiculosus) in Freilandversuchen in der Ostsee durchgeführt werden, um mit Hilfe dieser Makroalge eine Abreicherung von überschüssigen Nährstoffen herbeizuführen. In mehreren Schritten werden wir untersuchen inwiefern eine Hochskalierung vom Labor- zum offshore-Maßstab möglich und wie groß das Potenzial von großflächigen offshore-Freilandkulturen von Makroalgen ist. Weiterhin untersuchen wir ob die Biomasse umweltschonend produziert und als Wertstoff (Kosmetik), organischer Dünger, und/oder Biogas-Rohstoff (Energieträger) genutzt werden kann. Das Gesamtziel des Vorhabens in diesem Konsortium ist somit die Beurteilung der Chancen und Möglichkeiten von großflächigen Makroalgen-Freilandkulturen hinsichtlich: I. Schaffung eines regional möglichst geschlossenen Nährstoffkreislaufs zur Reduzierung der Nährstoffanreicherung in der südwestlichen Ostsee, II. Produktion von nachhaltigen Rohstoffen ohne dünge-, pflanzenschutz- und wasser-intensiven Landverbrauch, sowie III. Prüfung zusätzlicher Ertragsmöglichkeiten für Fischer und Einsparmöglichkeiten für Landwirte. Das vielfältige Potenzial der Ökosystemdienstleistungen von Blasentang-Freilandkulturen wird somit erstmalig experimentell in der Ostsee untersucht, und trägt zu den UN Nachhaltigkeitszielen bei. Das Projekt wird in enger Zusammenarbeit zwischen Wissenschaft und regionalen Stakeholdern (Fischer, Windparkbetreiber, Landwirte, Anlagenbetreiber für Biogas) durchgeführt. Arbeitsschritte und Methoden: Während der Projektdauer von drei Jahren bearbeiten wir vier Schwerpunkte: I. Kultivierung, II. Biomassecharakterisierung, III. Ernte und IV. Nutzung des Blasentangs. I. die bereits etablierte Nachzucht von Blasentang auf für die Freilandkultur geeignete Substrate wird optimiert. Danach wird die gut funktionierende Algenkultivierung vom Labor- und Mesokosmen-Maßstab zu mittleren Feldkulturen in der Eckernförder Bucht ( Prototyp einer Offshore-Kultur) heraufskaliert. Während all der Stufen der Hochskalierung werden die Effekte auf die Umwelt (abiotisch: Nährstoffgehalte, Sauerstoffkonzentration, pH; biotisch: Biodiversität organismisch und per eDNA) detailliert untersucht. Weiterhin soll die Zusammenarbeit mit Fischern und Windanlagenbetreibern als auch Genehmigungsbehörden (BSH, LLUR etc.) als Stakeholdern in Anspruch genommen werden, zu denen bereits intensive Kontakte bestehen. II. Die erzeugte Blasentasng-Biomasse wird ökophysiologisch und biochemisch charakterisiert, um bspw. Überlebensgrenzen, optimale Erntezeitpunkte und vielversprechende Wertstoffe zu identifizieren. III. Die Erntemethodik und Erstbehandlung an Land muss sorgfältig untersucht werden. Hier ist zum einen die Expertise von Fischern gefragt, die zumindest partiell von Fischfang auf die Wartung der Algenkulturen und die Algenernte umsteigen wollen. Der Schwerpunkt liegt auf der Nutzung der Biomasse an Land. Eine energieaufwändige Trocknung soll als Vorbehandlung vermieden werden. IV. Aus den biochemischen Analysen unter II. lassen sich bereits interessante Wertstoffe (Naturstoffe) z.B. für die kosmetische Industrie ableiten. Ansonsten ist die einfachste und bereits bewährte Nutzungsmöglichkeit das Einarbeiten der Algenbiomasse nach vorheriger Extraktion von Wertstoffen als Ersatz für mineralische Kunstdünger. Vor einer großflächigen und langfristigen Nutzung der Algenbiomasse als natürlicher Mineraldüngerersatz muss deren Belastung mit Schadstoffen, z.B. Schwermetallen, geprüft werden. (Text gekürzt)
Eine der häufigsten Gründe für Ertragsverluste und für Reparaturen an Rotorblättern (RB) von Windenergieanlagen (WEA) sind die Degradation und die Beschädigung von Beschichtungen. Insbesondere werden im Betrieb von offshore Anlagen häufiger und signifikantere Schäden beobachtet als an onshore Standorten. Ursachen werden u.a. in den höheren Blattspitzengeschwindigkeiten, der höheren Anzahl an Volllaststunden und den anspruchsvolleren Witterungsbedingungen gesehen. Innerhalb des MARiLEP Vorhabens werden Ursachen für verstärkte Erosionserscheinungen an offshore Anlagen untersucht, Materialinnovationen entwickelt und Verfahren zur effizienten Vorortreparatur von offshore Anlagen erprobt. Mit klassischen Beschichtungssystemen auf Polymerbasis und mit zusätzlichen Selbstheilungseigenschaften, polymeren Halbzeugen und metallischen Schutzsystemen werden drei unterschiedliche Technologien verfolgt. Dabei wird ein besonderer Fokus auf der Erosionsbeständigkeit nach Bewitterung und einer hohen Reparaturfähigkeit gelegt, da heute verfügbare Systeme oft nur unter idealen Bedingungen gute Erosionsbeständigkeiten zeigen. Innerhalb des Verbundvorhabens MARiLEP arbeiten international anerkannte Partner aus dem Anlagenbetrieb, der Materialentwicklung und der Forschung eng zusammen um technische Lösungen für die Offshore Windindustrie zu entwickeln.
Aufbauend auf Vorarbeiten des Autors und der Gastinstitution sollen Modelle zur Vorhersage von Offshore Rammschall beim Bau von Offshore-Windenergieanlagen und anderen impulshaltigen Unterwasserschallsignalen in beliebigen Umgebungen ermöglicht werden. Im Mittelpunkt steht die Entwicklung eines Ausbreitungsmodells für komplexe Umgebungen, welches die gleichzeitige Berücksichtigung von starken Bathymetrieänderungen (sowohl in zwei wie auch in drei Dimensionen) und Böden mit hohen Scheer Geschwindigkeiten ermöglicht. Hauptanwendungsgebiet soll zunächst die Akustik von Offshore Pfahlrammungen sein, bei der vor allem die Entwicklung von geeigneten Modellen zur Verwendung von Schallschutzsystemen im Vordergrund steht. Aufgrund der in weiten Teilen nur sehr ungefähr bekannten Eingangsparameter für die entsprechenden Modelle, vor allem in Bezug auf die Bodenparameter, soll außerdem die Abschätzung der Vorhersagegenauigkeit unter Berücksichtigung weiterer Parameter vertieft werden. Für alle Teilpakete existieren bereits Messdaten, die für eine entsprechende Validierung genutzt werden sollen.
Climate change-driven deglaciation and erosion in high-latitude regions enhance the flux of terrigenous material to the coastal ocean. Newly exposed land surfaces left behind by retreating glaciers are covered by glacial till, which is rich in fine-grained minerals. Many of these minerals are undersaturated in seawater and thus prone to dissolution (i.e., seafloor weathering). Consequently, intensified erosion and mineral weathering may act as an additional CO₂ sink while supplying alkalinity to coastal waters. To evaluate this hypothesis, we carried out a sediment geochemical study in the southwestern Baltic Sea, where coastal erosion of glacial till is the dominant source of terrigenous material to offshore depocenters. We analyzed glacial till from coastal cliffs, sediments, and pore waters for major element composition using inductively coupled plasma optical emission spectroscopy and an elemental analyzer. Water samples were further analyzed for dissolved redox species and dissolved silica by photometry and ion chromatography. These data were then used to quantify mineral dissolution and precipitation processes and to assess their net effect on inorganic carbon cycling.
This dataset includes both original and previously published paleomagnetic data. The new data refer to a marine sediment sequence (ANTA02-AV43 core) collected in the in Wood Bay, located along the coast of Victoria Land, within the western Ross Sea (Antarctica) and spanning the last ca. 10 ka. The formerly published paleomagnetic data from coeval sediment cores refer to the from the RS15‐GC57 core of Truax et al. (2025) collected in the adjacent Robertson Bay, and from the PC18 and PC19 cores of Macrì et al. (2005), recovered from the continental rise of the Wilkes Land basin offshore the coast of East Antarctica. The data from these two latter cores were relocated to the location of the ANTA02-AV43 core with the Noel and Batt (1990) method. The estimated age of the formerly published dataset has been re-evaluated after correlation of paleomagnetic trends with the ANTA02-AV43 core and prediction of geomagnetic variation at the ANTA02-AV43 site according to the CALS10k.2 model of Constable et al. (2016). We then combined the new ANTA02-AV43 dataset with existing Holocene records from sediment cores of comparable resolution (PC18 and PC19) to develop the paleomagnetic “HOLOANTA” stack. This composite record averages paleomagnetic data over the last 10,000 years in 200-year intervals. It includes relative paleointensity (RPI) as well as paleomagnetic inclination and declination data, providing a robust regional Holocene RPI curve alongside directional secular variation (PSV) trends.
The IGME5000-EU (INSPIRE) represents the pre-quaternary bedrock geology (onshore and offshore) of the European map on a scale of 1:5,000,000. According to the Data Specification on Geology (D2.8.II.4_v3.0) the content of the geological map is stored in two INSPIRE-compliant GML files: IGME5000-EU_GeologicUnit.gml contains the geologic units and IGME5000-EU_GeologicStructure.gml comprises the faults. The GML files together with a Readme.txt file are provided in ZIP format (IGME5000-EU-INSPIRE.zip). The Readme.text file (German/English) contains detailed information on the GML files content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.
<p>Megafauna plays an important role in benthic ecosystems and contributes significantly to benthic biomass in the Arctic. The distribution is mostly studied using towed cameras. Here, we compare the megafauna from two sites located at different distances from the Kongsfjord: one station at the entrance to the fjord, another on the outer shelf. Although they are only located 25 km apart and at comparable depth, there were significant differences in their species composition. While the inshore station was characterized by shrimps (2.57 +/- 2.18 ind./m**2) and brittlestars (3.21 +/- 3.21 ind./m**2), the offshore site harboured even higher brittlestar densities (15.23 +/- 9.32 ind./m**2) and high numbers of the sea urchin Strongylocentrotus pallidus (1.23 +/- 1.09 ind./m**2). Phytodetrital concentrations of the upper sediment centimetres were significantly higher inshore compared with offshore. At a smaller scale, there were also differences in the composition of different transect sections. Several taxa were characterized by a patchy distribution along transects. We conclude that these differences were caused primarily by habitat characteristics. The seafloor inshore was characterized by glacial soft sediments, whereas the station offshore harboured large quantities of stones. Although the use of a new web-2.0-based tool, BIIGLE (http://www.BIIGLE.de), allowed us to analyse more images (~90) than could have been achieved by hand, taxon area curves indicated that the number of images analysed was not sufficient to capture the species inventory fully. New automated image analysis tools would enable a rapid analysis of larger quantities of camera footage.</p>
| Origin | Count |
|---|---|
| Bund | 1478 |
| Land | 662 |
| Wissenschaft | 745 |
| Type | Count |
|---|---|
| Daten und Messstellen | 91 |
| Ereignis | 5 |
| Förderprogramm | 801 |
| Taxon | 14 |
| Text | 5 |
| unbekannt | 692 |
| License | Count |
|---|---|
| geschlossen | 34 |
| offen | 1558 |
| unbekannt | 2 |
| Language | Count |
|---|---|
| Deutsch | 1343 |
| Englisch | 303 |
| Resource type | Count |
|---|---|
| Archiv | 44 |
| Datei | 693 |
| Dokument | 7 |
| Keine | 469 |
| Unbekannt | 15 |
| Webdienst | 15 |
| Webseite | 402 |
| Topic | Count |
|---|---|
| Boden | 499 |
| Lebewesen und Lebensräume | 516 |
| Luft | 1594 |
| Mensch und Umwelt | 1590 |
| Wasser | 1214 |
| Weitere | 1566 |