Windenergieanlagen in Deutschland, die im Marktstammdatenregister (MaStR) der Bundesnetzagentur registriert sind. Enthalten sind Onshore- als auch Offshore-Windkraftanlagen mit technischen Merkmalen wie Nabenhöhe, Rotordurchmesser, Hersteller, Typenbezeichnung sowie Standortdaten (z. B. Koordinaten, Adresse, Bundesland). Die Daten werden täglich aus dem MaStR aktualisiert und als Dienst bereitgestellt. Sie spiegeln den aktuellen Stand der registrierten Stromerzeugungseinheiten wieder. Bei Daten-Fehlern wenden Sie sich bitte an die Bundesnetzagentur (BNetzA).
Im Projekt 'Planungswerkzeuge für die energetische Stadtplanung sind erste Ansätze zur energetischen Stadtplanung auf Basis des Energiemodells URBS entwickelt worden. Die Analyse erlaubt eine Einteilung der Stadt in Vorranggebiete bezüglich der Wärmeversorgung. Die Arbeit basiert auf verschiedenen Analysemodulen. Der erste Schritt besteht in der Erstellung einer Gebäudedatenbank. Alle Gebäude der Stadt sollen hinsichtlich ihrer Geometrie, des Gebäudealters, der Bauweise, des aktuellen Energieverbrauches usw. enthalten sein. Diese Informationen werden dann genutzt, um den gegenwärtigen und zukünftigen Wärmeverbrauch zu bestimmen. Der zukünftige Gebrauch wird unter der Annahme verschiedener Sanierungsmaßnahmen bestimmt. Der erste Schwerpunkt der Arbeit liegt auf einer Analyse der Verdichtung und Ausweitung des bestehenden Fernwärmenetzes. Mit Hilfe der Gebäudedatenbank wird analysiert wo und zu welchen Kosten die Fernwärme ausgebaut werden könnte. Die Erhebungen aus dieser Analyse werden dann im nächsten Schritt an das Optimierungsmodell IJRBS übergeben. Im nächsten Schritt werden verschiedene Wärmeversorgungsmöglichkeiten hinsichtlich der technischen Realisierbarkeit und der wirtschaftlichen Wettbewerbsfähigkeit untersucht. Der zweite Schwerpunkt der Untersuchung liegt auf Wärmepumpen. Hierfür wurde ein eigenes Bodenmodell entworfen. Mit dem Modell kann bestimmt werden, wo welche Menge an Energie aus dem Boden entzogen werden kann, ohne bestimmte Nachhaltigkeitskriterien zu verletzten. All diese Informationen werden in das Energiemodell URBS-Augsburg eingepflegt. Neben der Warme- wird auch die Stromversorgung im Modell abgebildet. Anhand des Modells kann dann untersucht werden welche Technologien und Maßnahmen eingesetzt werden sollten um gesetzte Klimaschutzziele zu erreichen. Ein entscheidendes Ergebnis des Modells zeigt die starke Abhängigkeit der lokalen Entwicklung in Augsburg von der allgemeinen Entwicklung der Stromerzeugung in Deutschland. Wenn eine überregionale Lösung beispielsweise mit viel off-shore Wind und Ansätzen wie Desertec realisiert wird, dann wird in Augsburg durch die Optimierung wenig eigner Strom erzeugt, Kraft- Wärme-Kopplung und Fernwärme werden nicht ausgebaut. Städtische Klimaschutzziele sollten in diesem Fall durch Einsparungsmaßnahmen im Gebäude-Wärmebereich vorangetrieben werden. Ist die Entwicklung hin zu klimaneutralem Strom in Deutschland schleppend, dann muss in Augsburg viel mehr 'grüner ' Strom erzeugt werden. Hier kann dann der Kraft-Wärme-Kopplung eine zentrale Rolle zukommen. Die Ausweitung dieses Ergebnisses ist dringend notwendig, da sie für die aktuelle politische Diskussion von zentraler Bedeutung sind.
Da beim Bau von Offshore-Windenergieanlagen großenteils technisches Neuland betreten wird, gilt es, dafür den 'Stand der Technik' zu entwickeln und in Standards und Normen festzuhalten. Den Anteil der erneuerbaren Energien zu steigern, ist ein wichtiges energiepolitisches Ziel der Bundesregierung. Dabei soll die Windenergie auf dem Meer einen wesentlichen Teil der zukünftigen Energieversorgung sicherstellen. Im Vergleich zu den Bedingungen an Land (onshore) treten auf dem Meer (offshore) hohe stetige Windgeschwindigkeiten auf, sodass hohe Erträge zu erwarten sind. Offshore-Windparks sollen von der Küste und den Inseln aus nicht sichtbar sein, und sie sollen außerhalb der Küsten-Nationalparks Wattenmeer und Boddengewässer liegen. Deshalb werden Windpark-Projekte vorwiegend in großer Entfernung zur Küste und in großen Wassertiefen geplant. Sie liegen damit in der sogenannten 'ausschließlichen Wirtschaftszone' (AWZ) der Bundesrepublik Deutschland. Dies ist das Gebiet außerhalb der 12-Seemeilen-Zone bis zu einer Entfernung von 200 Seemeilen. Die Windenergieanlagen müssen dort in Wassertiefen bis zu 50 m errichtet werden. Aufgrund der anspruchsvollen Bedingungen - große Wassertiefen, starke Wind- und Wellenbelastungen, weite Entfernungen von der Küste - ist die in Deutschland geplante und begonnene Errichtung von Offshore-Windenergieanlagen (OWEA) weltweit einmalig. Diese schwierigen Randbedingungen machen eine sorgfältige Planung notwendig. Das zuständige Bundesamt für Seeschifffahrt und Hydrographie (BSH) hat bisher 28 Windparks unter der Auflage genehmigt, dass die Antragsteller planungsbegleitend bis zur Baufreigabe die Einhaltung des Standes der Technik nachweisen müssen. Da hier aber großenteils technisches Neuland betreten wird, musste und muss ein solcher Stand der Technik überhaupt erst geschaffen werden. Das BSH gibt Standards als technische Regelwerke für Offshore-Windenergieanlagen heraus, die unter Mitwirkung von Expertengruppen erarbeitet und weiterentwickelt werden. In diesen Standardisierungsprozess bringt die BAW ihr vorhandenes wasserbauliches und geotechnisches Expertenwissen ein und berät das BSH bei den technischen Fragen während des Genehmigungsprozesses. So sind im Rahmen der Freigabeprozesse umfangreiche technische Unterlagen der Antragsteller zu bearbeiten. Dabei werden immer wieder wesentliche fachliche Risiken für die Errichtung und den sicheren Betrieb deutlich, die in aufwändigen Fachgesprächen und Fachbeiträgen behoben werden müssen. Sie resultieren aus der Komplexität der Aufgabenstellung und der Randbedingungen, die nachfolgend beispielhaft betrachtet werden.
Damit die Klimaziele der Bundesregierung erreicht werden, muss in den kommenden Jahren intensiv in die Erschließung und den Aufbau neuer Offshore-Windparks investiert werden. Um diese möglichst schnell und kostengünstig aufbauen zu können, bedarf es hochproduktiver Fertigungsprozesse. Die Schweißtechnik ist nach einer Studie des deutschen Verbandes für Schweißtechnik und verwandte Verfahren (DVS) aktuell der Flaschenhals bei der Herstellung von Offshore-Windenergieanlagen (OWEA). Da die maximale Produktivität konventioneller Schweißverfahren wie dem Unterpulverschweißen erreicht ist, kann eine nennenswerte Produktivitätssteigerung nur durch echte Innovationen wie der Substitution der konventionellen Verfahren durch Hochleistungsverfahren wie dem Laserstrahlschweißen im Vakuum (LaVa) erreicht werden. Ziel des Vorhabens ist ein ganzheitlicher Anlagenentwurf zur Implementierung des Verfahrens in der Herstellung von OWEA, konkret am Beispiel von Monopiles. Um LaVa in der Fertigung von Monopiles einsetzen zu können, müssen diverse Herausforderungen bewältigt werden.
Damit die Klimaziele der Bundesregierung erreicht werden, muss in den kommenden Jahren intensiv in die Erschließung und den Aufbau neuer Offshore-Windparks investiert werden. Um diese möglichst schnell und kostengünstig aufbauen zu können, bedarf es hochproduktiver Fertigungsprozesse. Die Schweißtechnik ist nach einer Studie des deutschen Verbandes für Schweißtechnik und verwandte Verfahren (DVS) aktuell der Flaschenhals bei der Herstellung von Offshore-Windenergieanlagen (OWEA). Da die maximale Produktivität konventioneller Schweißverfahren wie dem Unterpulverschweißen erreicht ist, kann eine nennenswerte Produktivitätssteigerung nur durch echte Innovationen wie der Substitution der konventionellen Verfahren durch Hochleistungsverfahren wie dem Laserstrahlschweißen im Vakuum (LaVa) erreicht werden. Ziel des Vorhabens ist ein ganzheitlicher Anlagenentwurf zur Implementierung des Verfahrens in der Herstellung von OWEA, konkret am Beispiel von Monopiles. Um LaVa in der Fertigung von Monopiles einsetzen zu können, müssen diverse Herausforderungen bewältigt werden.
Damit die Klimaziele der Bundesregierung erreicht werden, muss in den kommenden Jahren intensiv in die Erschließung und den Aufbau neuer Offshore-Windparks investiert werden. Um diese möglichst schnell und kostengünstig aufbauen zu können, bedarf es hochproduktiver Fertigungsprozesse. Die Schweißtechnik ist nach einer Studie des deutschen Verbandes für Schweißtechnik und verwandte Verfahren (DVS) aktuell der Flaschenhals bei der Herstellung von Offshore-Windenergieanlagen (OWEA). Da die maximale Produktivität konventioneller Schweißverfahren wie dem Unterpulverschweißen erreicht ist, kann eine nennenswerte Produktivitätssteigerung nur durch echte Innovationen wie der Substitution der konventionellen Verfahren durch Hochleistungsverfahren wie dem Laserstrahlschweißen im Vakuum (LaVa) erreicht werden. Ziel des Vorhabens ist ein ganzheitlicher Anlagenentwurf zur Implementierung des Verfahrens in der Herstellung von OWEA, konkret am Beispiel von Monopiles. Um LaVa in der Fertigung von Monopiles einsetzen zu können, müssen diverse Herausforderungen bewältigt werden.
Bis zum Jahr 2040 müssen jährlich über 500 Offshoregründungsstrukturen in Europa zurückgebaut werden. Geeignete Verfahren müssen bis zu diesem Zeitpunkt erprobt, validiert und öffentlich diskutiert werden. Aufgabenstellung und Ziel Das Vorhaben untersucht umfassend den aktuellen Stand der Technik und Forschung zum Rückbau von Offshore-Windenergieanlagen (OWEA) mit besonderem Fokus auf die Gründungsstrukturen. Die Planung und Durchführung des Rückbaus stellen erhebliche technische und geotechnische Herausforderungen dar. Ziel des Vorhabens ist es, die Machbarkeit und Effizienz bestehender Verfahren zu bewerten und eine Analyse der geotechnischen und bauverfahrenstechnischen Aspekte durchzuführen. Dabei soll u. a. geprüft werden, ob ein vollständiger Rückbau möglich ist oder ob auch Teillösungen nachhaltig realisiert werden können. Ein zentraler Bestandteil der Untersuchung ist die systematische Erhebung von Branchenwissen, welches aufgrund der Verschwiegenheit im OffshoreSektor oft nur schwer zugänglich ist. Durch Experteninterviews soll ein offener Austausch ermöglicht werden, um Erkenntnisse über abgeschlossene Projekte, aktuelle Forschungen und zukünftige Entwicklungen zu gewinnen. Auf Basis dieser Daten werden der Status quo des Rückbaus dokumentiert, bestehende Lücken identifiziert und der Bedarf für weitere Forschung und Entwicklung abgeleitet. Es soll erreicht werden, dass Behörden wie das Bundesamt für Seeschifffahrt und Hydrographie (BSH) fundierte Entscheidungsgrundlagen erhalten und die Standardisierung von Rückbauverfahren vorangetrieben wird. Die Ergebnisse sollen helfen, technische Entwicklungen im Bereich des Rückbaus zu bündeln, Transparenz zu fördern und parallele, isolierte Arbeiten zu reduzieren. Gleichzeitig wird angestrebt, die Rückbauprozesse ökologisch und ökonomisch nachhaltig zu gestalten und damit zukünftigen Herausforderungen gerecht zu werden. Bedeutung für das Bundesamt für Seeschifffahrt und Hydrographie (BSH) Gemäß den Vorgaben des „Standards Konstruktion“ (BSH 2021) muss rechtzeitig vor dem Ende der Betriebszeit einer Offshore-Windenergieanlage eine auf einem Rückbaukonzept basierende Rückbauplanung erstellt werden. Sollte sich der Stand der Technik zwischen Konstruktions- und Betriebsphase weiterentwickelt haben, ist die Planung entsprechend anzupassen. Die Rückbauplanung wird anschließend der zuständigen Genehmigungsbehörde vorgelegt, die eine Plausibilitätsprüfung durchführt. Durch einen effektiven Informationsfluss zwischen Wirtschaft und genehmigenden Behörden werden die Genehmigungs- und Prüfverfahren effizienter gestaltet und auf eine fundierte Wissensbasis gestellt. Dies bedeutet auch zusätzliche Planungssicherheit für die Wirtschaft. Damit neue Entwicklungen und Erkenntnisse aus der Praxis frühzeitig in die behördlichen Entscheidungsprozesse einfließen können, ist ein permanenter Informationsfluss erforderlich, für den die Grundlagen geschaffen werden sollen. Darüber hinaus könnte eine breitere Öffentlichkeit besser über die Fortschritte und die Herausforderungen beim Rückbau von OffshoreGründungsstrukturen informiert werden. Untersuchungsmethoden In der Erhebungsphase wird durch leitfadenbasierte Experteninterviews der aktuelle Stand des Rückbaus von Offshore-Windenergieanlagen erfasst. Ziel ist es, ein möglichst breites und detailliertes Bild der bestehenden Technologien, Herausforderungen und Entwicklungspotenziale zu erhalten. Die Auswahl der Expertinnen und Experten umfasst ein breites Spektrum relevanter Akteure, darunter Forschungseinrichtungen, Dienstleister, Zulieferer sowie Energieversorger. Die Interviews werden gemeinsam von Personen der BAW und der zuständigen Zulassungsbehörden durchgeführt, um eine fundierte und praxisnahe Erhebung sicherzustellen. Zur Vorbereitung und strukturierten Durchführung der Interviews wird ein spezialisiertes Beratungsbüro hinzugezogen, das bei der Entwicklung und Erstellung des Leitfadens unterstützt. (Text gekürzt)
Damit die Klimaziele der Bundesregierung erreicht werden, muss in den kommenden Jahren intensiv in die Erschließung und den Aufbau neuer Offshore-Windparks investiert werden. Um diese möglichst schnell und kostengünstig aufbauen zu können, bedarf es hochproduktiver Fertigungsprozesse. Die Schweißtechnik ist nach einer Studie des deutschen Verbandes für Schweißtechnik und verwandte Verfahren (DVS) aktuell der Flaschenhals bei der Herstellung von Offshore-Windenergieanlagen (OWEA). Da die maximale Produktivität konventioneller Schweißverfahren wie dem Unterpulverschweißen erreicht ist, kann eine nennenswerte Produktivitätssteigerung nur durch echte Innovationen wie der Substitution der konventionellen Verfahren durch Hochleistungsverfahren wie dem Laserstrahlschweißen im Vakuum (LaVa) erreicht werden. Ziel des Vorhabens ist ein ganzheitlicher Anlagenentwurf zur Implementierung des LaVa-Verfahrens in der Herstellung von OWEA, konkret am Beispiel von Monopiles, um so nennenswerte Produktivitätssteigerungen zu ermöglichen.
Damit die Klimaziele der Bundesregierung erreicht werden, muss in den kommenden Jahren intensiv in die Erschließung und den Aufbau neuer Offshore-Windparks investiert werden. Um diese möglichst schnell und kostengünstig aufbauen zu können, bedarf es hochproduktiver Fertigungsprozesse. Die Schweißtechnik ist nach einer Studie des deutschen Verbandes für Schweißtechnik und verwandte Verfahren (DVS) aktuell der Flaschenhals bei der Herstellung von Offshore-Windenergieanlagen (OWEA). Da die maximale Produktivität konventioneller Schweißverfahren wie dem Unterpulverschweißen erreicht ist, kann eine nennenswerte Produktivitätssteigerung nur durch echte Innovationen wie der Substitution der konventionellen Verfahren durch Hochleistungsverfahren wie dem Laserstrahlschweißen im Vakuum (LaVa) erreicht werden. Ziel des Vorhabens ist ein ganzheitlicher Anlagenentwurf zur Implementierung des Verfahrens in der Herstellung von OWEA, konkret am Beispiel von Monopiles. Um LaVa in der Fertigung von Monopiles einsetzen zu können, müssen diverse Herausforderungen in Bezug auf die mechanisch-technologischen Eigenschaften der Schweißnaht, den fertigungsspezifischen Randbedingungen, der Anlagentechnologie und fertigungsspezifische Nachweise innerhalb der Fertigung bewältigt werden.
Das Verbundvorhaben 'Lösungsansätze zur Vermeidung von Kabelschäden im Nahbereich von Offshore-Gründungsstrukturen unter Berücksichtigung der Fluid-Struktur-Boden Interaktion (CableProtect)' widmet sich den komplexen Wechselwirkungen zwischen Stromkabel, Struktur, Kolkschutz und Meeresboden im Anschlussbereich des Kabels an die Tragstruktur. Anlass dafür waren Schäden in signifikanter Größenordnung insbesondere am Schutzsystem der Unterwasserverkabelung. Derartige Schäden sind zurückzuführen auf hydrodynamische Prozesse im Umfeld der Gründungsstrukturen. Wellen und Strömungen verursachen dort Bewegungen des frei hängenden Kabels, welche sich auch auf den Teil des Kabels auswirken, der auf dem Kolkschutz bzw. Meeresboden aufliegt. Außerhalb des Kolkschutzes kommt es zu Sedimentumlagerungen und zur Bildung von Randkolken, welche einen wechselseitigen Einfluss auf die Kabelbewegungen nehmen und zu Lageinstabilitäten führen. Das Teilvorhaben 'Partikelbasierte Analyse von Sedimentumlagerungen und ihres Einflusses auf die Kabeldynamik (CableProtect)' widmet sich im Rahmen dieses Verbundvorhabens hydrodynamisch induzierten Sedimentumlagerungen im Auflagerbereich des Kabels. Mit einer gekoppelten CFD-DEM Modellierung wird ein innovativer Ansatz verwendet, um Erosionsprozesse auf der Mikro-Ebene der Körner zu betrachten und so neue Einblicke in deren Wirkmechanismen zu erhalten. Durch Kopplung mit den Fluid-Struktur Modellen der Verbundpartner können die Einflüsse aus dem oszillierenden Stromkabel sowie aus Gründungsstruktur und Kolkschutz unter realitätsnahen Randbedingungen abgebildet werden. Ziel dieses Teilvorhabens ist es, auf der Grundlage eines verbesserten Verständnisses der Sedimentumlagerungsprozesse wissenschaftlich abgesicherte und praxistaugliche Bemessungsregeln für die geomechanischen Aspekte der Kabelanbindung zu erarbeiten und so zu einer höheren Zuverlässigkeit von Offshore-Windenergieanlagen beizutragen.
Origin | Count |
---|---|
Bund | 864 |
Land | 20 |
Wissenschaft | 11 |
Type | Count |
---|---|
Daten und Messstellen | 7 |
Ereignis | 26 |
Förderprogramm | 792 |
Text | 31 |
Umweltprüfung | 18 |
unbekannt | 10 |
License | Count |
---|---|
geschlossen | 49 |
offen | 832 |
unbekannt | 3 |
Language | Count |
---|---|
Deutsch | 855 |
Englisch | 108 |
Resource type | Count |
---|---|
Archiv | 4 |
Bild | 2 |
Datei | 33 |
Dokument | 25 |
Keine | 348 |
Webdienst | 7 |
Webseite | 515 |
Topic | Count |
---|---|
Boden | 382 |
Lebewesen und Lebensräume | 460 |
Luft | 617 |
Mensch und Umwelt | 884 |
Wasser | 494 |
Weitere | 832 |