API src

Found 1113 results.

Related terms

Demonstration eines voll-supraleitenden Generatorsystems, Teilvorhaben: Simulative Untersuchungen zu möglichen netzseitigen Stromrichtern für die Anbindung des voll-supraleitenden Generators

Mit dem Vorhaben SupraGenSys 2 soll ein skalierter Generator auf Basis des Entwurfs als Demonstrator unter Laborbedingungen aufgebaut und somit nahtlos an das Vorläuferprojekt SupraGenSys 1 angeknüpft werden. Das ETI führt in AP 4.3 eine Studie zur Netzanbindung des Multimegawatt-Generatorentwurfs durch. Dabei soll auf die Ergebnisse zum bereits untersuchten maschinenseitigen Stromrichter aufgebaut werden. Da das Generatorkonzept besonders aufgrund der relativ geringen Ströme bei gleichzeitig sehr hohen Spannungen eine Verwendung von kommerziellen Stromrichtern nicht erlaubt, wurden in SupraGenSys1 modulare Multilevel-Konzepte vorgeschlagen. Die untersuchten Konzepte erlauben eine Anbindung sowohl an klassische AC-Mittelspannungsnetze, als auch an zukünftige DC-Netze, wie sie z.B. in Offshore-Windparks eingesetzt werden könnten. Diese Konzeptvorschläge sollen in SupraGenSys2 in konkreten Simulationsmodellen aufgebaut und näher betrachtet werden. Dabei liegt der Fokus auf dem Stromrichterteil zur Netzanbindung und dessen Betriebsführung und Regelung. Die aufgebauten Modelle sollen ebenfalls die Möglichkeit bieten, Vor- und Nachteile der unterschiedlichen Stromrichter aufzuzeigen. Da DC-Mittelspannungsnetze bisher noch nicht kommerziell im Einsatz sind, soll der Fokus der Arbeiten des ETIs auf einer Anbindung an diese Netze und das Verhalten der Stromrichter für diesen Fall liegen. Die abgeleiteten Modelle für die einzelnen Stromrichter können dann simulativ in ein zukünftiges DC-Windparknetz eingebaut werden. Dies erlaubt Untersuchungen bzgl. des Stromrichterverhaltens sowohl im Normal- als auch im Fehlerfall. Die aufgebaute Simulation des Windparks soll zudem die Möglichkeit bieten das Zusammenspiel verschiedener Stromrichter näher zu betrachten, sowie Fragestellungen der DC-Netzstabilität und des sicheren Beherrschens von möglichen auftretenden Fehlerfällen adressieren.

BAW seit sechs Jahren auch 'offshore' aktiv - Die Sicherheit der Windenergieanlagen auf dem Meer muss gewährleistet sein

Da beim Bau von Offshore-Windenergieanlagen großenteils technisches Neuland betreten wird, gilt es, dafür den 'Stand der Technik' zu entwickeln und in Standards und Normen festzuhalten. Den Anteil der erneuerbaren Energien zu steigern, ist ein wichtiges energiepolitisches Ziel der Bundesregierung. Dabei soll die Windenergie auf dem Meer einen wesentlichen Teil der zukünftigen Energieversorgung sicherstellen. Im Vergleich zu den Bedingungen an Land (onshore) treten auf dem Meer (offshore) hohe stetige Windgeschwindigkeiten auf, sodass hohe Erträge zu erwarten sind. Offshore-Windparks sollen von der Küste und den Inseln aus nicht sichtbar sein, und sie sollen außerhalb der Küsten-Nationalparks Wattenmeer und Boddengewässer liegen. Deshalb werden Windpark-Projekte vorwiegend in großer Entfernung zur Küste und in großen Wassertiefen geplant. Sie liegen damit in der sogenannten 'ausschließlichen Wirtschaftszone' (AWZ) der Bundesrepublik Deutschland. Dies ist das Gebiet außerhalb der 12-Seemeilen-Zone bis zu einer Entfernung von 200 Seemeilen. Die Windenergieanlagen müssen dort in Wassertiefen bis zu 50 m errichtet werden. Aufgrund der anspruchsvollen Bedingungen - große Wassertiefen, starke Wind- und Wellenbelastungen, weite Entfernungen von der Küste - ist die in Deutschland geplante und begonnene Errichtung von Offshore-Windenergieanlagen (OWEA) weltweit einmalig. Diese schwierigen Randbedingungen machen eine sorgfältige Planung notwendig. Das zuständige Bundesamt für Seeschifffahrt und Hydrographie (BSH) hat bisher 28 Windparks unter der Auflage genehmigt, dass die Antragsteller planungsbegleitend bis zur Baufreigabe die Einhaltung des Standes der Technik nachweisen müssen. Da hier aber großenteils technisches Neuland betreten wird, musste und muss ein solcher Stand der Technik überhaupt erst geschaffen werden. Das BSH gibt Standards als technische Regelwerke für Offshore-Windenergieanlagen heraus, die unter Mitwirkung von Expertengruppen erarbeitet und weiterentwickelt werden. In diesen Standardisierungsprozess bringt die BAW ihr vorhandenes wasserbauliches und geotechnisches Expertenwissen ein und berät das BSH bei den technischen Fragen während des Genehmigungsprozesses. So sind im Rahmen der Freigabeprozesse umfangreiche technische Unterlagen der Antragsteller zu bearbeiten. Dabei werden immer wieder wesentliche fachliche Risiken für die Errichtung und den sicheren Betrieb deutlich, die in aufwändigen Fachgesprächen und Fachbeiträgen behoben werden müssen. Sie resultieren aus der Komplexität der Aufgabenstellung und der Randbedingungen, die nachfolgend beispielhaft betrachtet werden.

Optimierung der Produktivität bei der Herstellung von Gründungsstrukturen für Offshore-Windenergieanlagen durch die Implementierung des Laserstrahlschweißens im Vakuum, Teilvorhaben: Prozessentwicklung und Vorrichtungsentwicklung für das Laserstrahlschweißen mit mobilem Vakuum

Damit die Klimaziele der Bundesregierung erreicht werden, muss in den kommenden Jahren intensiv in die Erschließung und den Aufbau neuer Offshore-Windparks investiert werden. Um diese möglichst schnell und kostengünstig aufbauen zu können, bedarf es hochproduktiver Fertigungsprozesse. Die Schweißtechnik ist nach einer Studie des deutschen Verbandes für Schweißtechnik und verwandte Verfahren (DVS) aktuell der Flaschenhals bei der Herstellung von Offshore-Windenergieanlagen (OWEA). Da die maximale Produktivität konventioneller Schweißverfahren wie dem Unterpulverschweißen erreicht ist, kann eine nennenswerte Produktivitätssteigerung nur durch echte Innovationen wie der Substitution der konventionellen Verfahren durch Hochleistungsverfahren wie dem Laserstrahlschweißen im Vakuum (LaVa) erreicht werden. Ziel des Vorhabens ist ein ganzheitlicher Anlagenentwurf zur Implementierung des LaVa-Verfahrens in der Herstellung von OWEA, konkret am Beispiel von Monopiles, um so nennenswerte Produktivitätssteigerungen zu ermöglichen.

Optimierung der Produktivität bei der Herstellung von Gründungsstrukturen für Offshore-Windenergieanlagen durch die Implementierung des Laserstrahlschweißens im Vakuum, Teilvorhaben: Fertigungsspezifische Randbedingungen für das Laserstrahlschweißen bei der Monopile-Fertigung

Damit die Klimaziele der Bundesregierung erreicht werden, muss in den kommenden Jahren intensiv in die Erschließung und den Aufbau neuer Offshore-Windparks investiert werden. Um diese möglichst schnell und kostengünstig aufbauen zu können, bedarf es hochproduktiver Fertigungsprozesse. Die Schweißtechnik ist nach einer Studie des deutschen Verbandes für Schweißtechnik und verwandte Verfahren (DVS) aktuell der Flaschenhals bei der Herstellung von Offshore-Windenergieanlagen (OWEA). Da die maximale Produktivität konventioneller Schweißverfahren wie dem Unterpulverschweißen erreicht ist, kann eine nennenswerte Produktivitätssteigerung nur durch echte Innovationen wie der Substitution der konventionellen Verfahren durch Hochleistungsverfahren wie dem Laserstrahlschweißen im Vakuum (LaVa) erreicht werden. Ziel des Vorhabens ist ein ganzheitlicher Anlagenentwurf zur Implementierung des Verfahrens in der Herstellung von OWEA, konkret am Beispiel von Monopiles. Um LaVa in der Fertigung von Monopiles einsetzen zu können, müssen diverse Herausforderungen in Bezug auf die mechanisch-technologischen Eigenschaften der Schweißnaht, den fertigungsspezifischen Randbedingungen, der Anlagentechnologie und fertigungsspezifische Nachweise innerhalb der Fertigung bewältigt werden.

Optimierte Systemintegration von Offshore-Windenergie mittels intelligenter Verknüpfung verschiedener Prognosekonzepte und vorausschauendem Management von verteilten Kaskadenspeichern, Teilvorhaben: Netzdienlicher Speichereinsatz innerhalb bestehender und zukünftiger Marktszenarien

Optimierung der Produktivität bei der Herstellung von Gründungsstrukturen für Offshore-Windenergieanlagen durch die Implementierung des Laserstrahlschweißens im Vakuum

Damit die Klimaziele der Bundesregierung erreicht werden, muss in den kommenden Jahren intensiv in die Erschließung und den Aufbau neuer Offshore-Windparks investiert werden. Um diese möglichst schnell und kostengünstig aufbauen zu können, bedarf es hochproduktiver Fertigungsprozesse. Die Schweißtechnik ist nach einer Studie des deutschen Verbandes für Schweißtechnik und verwandte Verfahren (DVS) aktuell der Flaschenhals bei der Herstellung von Offshore-Windenergieanlagen (OWEA). Da die maximale Produktivität konventioneller Schweißverfahren wie dem Unterpulverschweißen erreicht ist, kann eine nennenswerte Produktivitätssteigerung nur durch echte Innovationen wie der Substitution der konventionellen Verfahren durch Hochleistungsverfahren wie dem Laserstrahlschweißen im Vakuum (LaVa) erreicht werden. Ziel des Vorhabens ist ein ganzheitlicher Anlagenentwurf zur Implementierung des Verfahrens in der Herstellung von OWEA, konkret am Beispiel von Monopiles. Um LaVa in der Fertigung von Monopiles einsetzen zu können, müssen diverse Herausforderungen bewältigt werden.

Optimierung der Produktivität bei der Herstellung von Gründungsstrukturen für Offshore-Windenergieanlagen durch die Implementierung des Laserstrahlschweißens im Vakuum, Teilvorhaben: Anlagenentwicklung für das Laserstrahlschweißen mit lokalem Vakuum

Damit die Klimaziele der Bundesregierung erreicht werden, muss in den kommenden Jahren intensiv in die Erschließung und den Aufbau neuer Offshore-Windparks investiert werden. Um diese möglichst schnell und kostengünstig aufbauen zu können, bedarf es hochproduktiver Fertigungsprozesse. Die Schweißtechnik ist nach einer Studie des deutschen Verbandes für Schweißtechnik und verwandte Verfahren (DVS) aktuell der Flaschenhals bei der Herstellung von Offshore-Windenergieanlagen (OWEA). Da die maximale Produktivität konventioneller Schweißverfahren wie dem Unterpulverschweißen erreicht ist, kann eine nennenswerte Produktivitätssteigerung nur durch echte Innovationen wie der Substitution der konventionellen Verfahren durch Hochleistungsverfahren wie dem Laserstrahlschweißen im Vakuum (LaVa) erreicht werden. Ziel des Vorhabens ist ein ganzheitlicher Anlagenentwurf zur Implementierung des Verfahrens in der Herstellung von OWEA, konkret am Beispiel von Monopiles. Um LaVa in der Fertigung von Monopiles einsetzen zu können, müssen diverse Herausforderungen bewältigt werden.

Optimierung der Produktivität bei der Herstellung von Gründungsstrukturen für Offshore-Windenergieanlagen durch die Implementierung des Laserstrahlschweißens im Vakuum, Teilvorhaben: Integration in Produktionsumgebung

Damit die Klimaziele der Bundesregierung erreicht werden, muss in den kommenden Jahren intensiv in die Erschließung und den Aufbau neuer Offshore-Windparks investiert werden. Um diese möglichst schnell und kostengünstig aufbauen zu können, bedarf es hochproduktiver Fertigungsprozesse. Die Schweißtechnik ist nach einer Studie des deutschen Verbandes für Schweißtechnik und verwandte Verfahren (DVS) aktuell der Flaschenhals bei der Herstellung von Offshore-Windenergieanlagen (OWEA). Da die maximale Produktivität konventioneller Schweißverfahren wie dem Unterpulverschweißen erreicht ist, kann eine nennenswerte Produktivitätssteigerung nur durch echte Innovationen wie der Substitution der konventionellen Verfahren durch Hochleistungsverfahren wie dem Laserstrahlschweißen im Vakuum (LaVa) erreicht werden. Ziel des Vorhabens ist ein ganzheitlicher Anlagenentwurf zur Implementierung des Verfahrens in der Herstellung von OWEA, konkret am Beispiel von Monopiles. Um LaVa in der Fertigung von Monopiles einsetzen zu können, müssen diverse Herausforderungen bewältigt werden.

Modellierung virtueller Offshore Windparks zum flexiblen Betrieb sowie zur Last- und Performanceoptimierung, Teilvorhaben: Methoden zur Lastenüberwachung und Schätzung des Lebensdauerverbrauchs

Aufgrund bestehender Regularien (fehlende Zertifizierung und feste Einspeisevergütungen) und technischer Limitierungen werden Windparks derzeit kollektiv mit dem Ziel geregelt, den Ertrag zu maximieren. Die flexible Regelung einzelner Anlagen hat das Potential Windfarmen optimal zu betreiben. Da jedoch da der Betrieb in direktem Zusammenhang mit der Materialermüdung steht, muss der Ermüdungsfortschritt der Turbinen-Tragstruktur für eine ganzheitliche Betrachtung mit einbezogen werden, um einen optimalen Betrieb über die gesamte Lebenszeit zu erreichen. Momentan zeigen Diskussionen über Lebenszeitverlängerungen für Windfarmen das Potential einer deutlichen Gewinnsteigerung. So kann sich beispielsweise das Ausnutzen kurzzeitiger Starkwind-Ereignisse oder eine stark gedrosselte Produktion auf lange Sicht durch hohen Materialverschleiß negativ auf die Struktur, und letztendlich auf den Gewinn, auswirken. Das zusätzliche Einbeziehen von Anforderungen aus dem Netz führt zu einem komplexen Optimierungsproblem. Die übergeordneten Ziele von FlexiWind bestehen aus der Erforschung des Potenzials und des Einflusses von flexiblen Regelungsstrategien an WEA bzw. Windparks. Dies soll in einer echtzeitfähigen Simulationsumgebung (digitaler Windparkzwilling) umgesetzt werden, mit der die Potenziale und Konsequenzen optimaler Regelungsstrategien analysiert werden können. Die Simulation von Ermüdungsfortschritt und erwarteter Restlebensdauer, abhängig vom gewählten Szenario, der Anlagen sind hierbei wichtige Eingangsparameter für die Regelung. Hierdurch kann der Einfluss von Strukturbelastung auf den erwarteten Gewinn theoretisch erfasst werden. Zusätzlich werden Messdaten in Betrieb befindlicher Windfarmen verwendet, um das Potential eines flexiblen Betriebs zu beziffern und die Relevanz des Themas für heutige Farmen zu verdeutlichen.

Modellierung virtueller Offshore Windparks zum flexiblen Betrieb sowie zur Last- und Performanceoptimierung, Teilvorhaben: Optimierung von flexiblen Windparkregelungsstrategien unter Berücksichtigung der Unsicherheiten

Aufgrund bestehender Regularien (fehlende Zertifizierung und feste Einspeisevergütungen) und technischer Limitierungen werden Windparks derzeit kollektiv mit dem Ziel geregelt, den Ertrag zu maximieren. Zukünftig ist eine stärkere Flexibilisierung der Regelung im Hinblick auf optimalen Betrieb und Netzstabilisierung notwendig, um den steigenden Anteil erneuerbarer Energieträger besser zu integrieren. Dies bedeutet neben einem hohen Ertrag eine Ausschöpfung der Lebensdauer der einzelnen Komponenten der Windenergieanlagen (WEA) sowie deren Regelung aufgrund der Anforderungen aus dem Netz. Dies kann beispielsweise durch die Steuerung der Nachläufe von WEA geschehen, bei der tiefer im Windpark stehende WEA eine höhere Stromproduktion erreichen. Die übergeordneten Ziele von FlexiWind bestehen aus der Erforschung des Potenzials und des Einflusses von flexiblen Regelungsstrategien an WEA bzw. Windparks. Im Teilvorhaben soll dazu die Strömungsmodellierung im Windpark für den Einsatz in aeroelastischen Simulationen weiterentwickelt werden. Dies soll zu einer erhöhten Genauigkeit und Recheneffizienz der Strömungssimulation führen, um möglichst viele Betriebsbedingungen im Windpark abzudecken. Mit recheneffizienten aeroelastischen Simulationen soll eine umfangreiche Datenbank erstellt werden, mit welcher Ersatzmodelle für die Strukturbelastung der Turbinen abgeleitet werden können. Flexible Regelungsstrategien für den Windpark werden im Teilvorhaben für aeroelastische Simulationen adaptiert und in einer Langzeitbetrachtung unter Berücksichtigung von Rahmenbedingungen (z.B. Strompreisinformationen) sowie Nutzung der Ersatzmodelle optimiert. Schlussendlich wird eine umfangreiche Analyse der Unsicherheiten (z.B. resultierend aus der Strömungsmodellierung, Abschätzung der Strukturlasten, Strompreis, Reglerverhalten) durchgeführt und Empfehlungen für die Implementierung von flexiblen Windparkregelungsstrategien abgeleitet.

1 2 3 4 5110 111 112