Die Abgrenzung des Hauptkonzentrationsgebietes der Seetaucher umfasst alle Bereiche sehr hoher und den Großteil der Bereiche mit hoher Seetaucherdichte. Die Abgrenzung des Hauptkonzentrationsgebietes im Westen und Südwesten wurde so gewählt, dass alle wichtigen und bekannten regelmäßigen Vorkommen enthalten sind. Gemeinsame Position des Geschäftsbereichs des BMU ist es, dass im Rahmen zukünftiger Genehmigungsverfahren zu Offshore-Windparks (OWP) das „Hauptkonzentrationsgebiet“ derart als Maßstab für die kumulative Bewertung des Seetaucherhabitatverlustes herangezogen werden soll, dass innerhalb dieses Gebietes keine weiteren OWP mehr genehmigt werden.
Mit dem Vorhaben SupraGenSys 2 soll ein skalierter Generator auf Basis des Entwurfs als Demonstrator unter Laborbedingungen aufgebaut und somit nahtlos an das Vorläuferprojekt SupraGenSys 1 angeknüpft werden. Das ETI führt in AP 4.3 eine Studie zur Netzanbindung des Multimegawatt-Generatorentwurfs durch. Dabei soll auf die Ergebnisse zum bereits untersuchten maschinenseitigen Stromrichter aufgebaut werden. Da das Generatorkonzept besonders aufgrund der relativ geringen Ströme bei gleichzeitig sehr hohen Spannungen eine Verwendung von kommerziellen Stromrichtern nicht erlaubt, wurden in SupraGenSys1 modulare Multilevel-Konzepte vorgeschlagen. Die untersuchten Konzepte erlauben eine Anbindung sowohl an klassische AC-Mittelspannungsnetze, als auch an zukünftige DC-Netze, wie sie z.B. in Offshore-Windparks eingesetzt werden könnten. Diese Konzeptvorschläge sollen in SupraGenSys2 in konkreten Simulationsmodellen aufgebaut und näher betrachtet werden. Dabei liegt der Fokus auf dem Stromrichterteil zur Netzanbindung und dessen Betriebsführung und Regelung. Die aufgebauten Modelle sollen ebenfalls die Möglichkeit bieten, Vor- und Nachteile der unterschiedlichen Stromrichter aufzuzeigen. Da DC-Mittelspannungsnetze bisher noch nicht kommerziell im Einsatz sind, soll der Fokus der Arbeiten des ETIs auf einer Anbindung an diese Netze und das Verhalten der Stromrichter für diesen Fall liegen. Die abgeleiteten Modelle für die einzelnen Stromrichter können dann simulativ in ein zukünftiges DC-Windparknetz eingebaut werden. Dies erlaubt Untersuchungen bzgl. des Stromrichterverhaltens sowohl im Normal- als auch im Fehlerfall. Die aufgebaute Simulation des Windparks soll zudem die Möglichkeit bieten das Zusammenspiel verschiedener Stromrichter näher zu betrachten, sowie Fragestellungen der DC-Netzstabilität und des sicheren Beherrschens von möglichen auftretenden Fehlerfällen adressieren.
Da beim Bau von Offshore-Windenergieanlagen großenteils technisches Neuland betreten wird, gilt es, dafür den 'Stand der Technik' zu entwickeln und in Standards und Normen festzuhalten.
Den Anteil der erneuerbaren Energien zu steigern, ist ein wichtiges energiepolitisches Ziel der Bundesregierung. Dabei soll die Windenergie auf dem Meer einen wesentlichen Teil der zukünftigen Energieversorgung sicherstellen. Im Vergleich zu den Bedingungen an Land (onshore) treten auf dem Meer (offshore) hohe stetige Windgeschwindigkeiten auf, sodass hohe Erträge zu erwarten sind.
Offshore-Windparks sollen von der Küste und den Inseln aus nicht sichtbar sein, und sie sollen außerhalb der Küsten-Nationalparks Wattenmeer und Boddengewässer liegen. Deshalb werden Windpark-Projekte vorwiegend in großer Entfernung zur Küste und in großen Wassertiefen geplant. Sie liegen damit in der sogenannten 'ausschließlichen Wirtschaftszone' (AWZ) der Bundesrepublik Deutschland. Dies ist das Gebiet außerhalb der 12-Seemeilen-Zone bis zu einer Entfernung von 200 Seemeilen. Die Windenergieanlagen müssen dort in Wassertiefen bis zu 50 m errichtet werden. Aufgrund der anspruchsvollen Bedingungen - große Wassertiefen, starke Wind- und Wellenbelastungen, weite Entfernungen von der Küste - ist die in Deutschland geplante und begonnene Errichtung von Offshore-Windenergieanlagen (OWEA) weltweit einmalig.
Diese schwierigen Randbedingungen machen eine sorgfältige Planung notwendig. Das zuständige Bundesamt für Seeschifffahrt und Hydrographie (BSH) hat bisher 28 Windparks unter der Auflage genehmigt, dass die Antragsteller planungsbegleitend bis zur Baufreigabe die Einhaltung des Standes der Technik nachweisen müssen. Da hier aber großenteils technisches Neuland betreten wird, musste und muss ein solcher Stand der Technik überhaupt erst geschaffen werden. Das BSH gibt Standards als technische Regelwerke für Offshore-Windenergieanlagen heraus, die unter Mitwirkung von Expertengruppen erarbeitet und weiterentwickelt werden.
In diesen Standardisierungsprozess bringt die BAW ihr vorhandenes wasserbauliches und geotechnisches Expertenwissen ein und berät das BSH bei den technischen Fragen während des Genehmigungsprozesses. So sind im Rahmen der Freigabeprozesse umfangreiche technische Unterlagen der Antragsteller zu bearbeiten. Dabei werden immer wieder wesentliche fachliche Risiken für die Errichtung und den sicheren Betrieb deutlich, die in aufwändigen Fachgesprächen und Fachbeiträgen behoben werden müssen. Sie resultieren aus der Komplexität der Aufgabenstellung und der Randbedingungen, die nachfolgend beispielhaft betrachtet werden.
Damit die Klimaziele der Bundesregierung erreicht werden, muss in den kommenden Jahren intensiv in die Erschließung und den Aufbau neuer Offshore-Windparks investiert werden. Um diese möglichst schnell und kostengünstig aufbauen zu können, bedarf es hochproduktiver Fertigungsprozesse. Die Schweißtechnik ist nach einer Studie des deutschen Verbandes für Schweißtechnik und verwandte Verfahren (DVS) aktuell der Flaschenhals bei der Herstellung von Offshore-Windenergieanlagen (OWEA). Da die maximale Produktivität konventioneller Schweißverfahren wie dem Unterpulverschweißen erreicht ist, kann eine nennenswerte Produktivitätssteigerung nur durch echte Innovationen wie der Substitution der konventionellen Verfahren durch Hochleistungsverfahren wie dem Laserstrahlschweißen im Vakuum (LaVa) erreicht werden. Ziel des Vorhabens ist ein ganzheitlicher Anlagenentwurf zur Implementierung des Verfahrens in der Herstellung von OWEA, konkret am Beispiel von Monopiles. Um LaVa in der Fertigung von Monopiles einsetzen zu können, müssen diverse Herausforderungen bewältigt werden.
Damit die Klimaziele der Bundesregierung erreicht werden, muss in den kommenden Jahren intensiv in die Erschließung und den Aufbau neuer Offshore-Windparks investiert werden. Um diese möglichst schnell und kostengünstig aufbauen zu können, bedarf es hochproduktiver Fertigungsprozesse. Die Schweißtechnik ist nach einer Studie des deutschen Verbandes für Schweißtechnik und verwandte Verfahren (DVS) aktuell der Flaschenhals bei der Herstellung von Offshore-Windenergieanlagen (OWEA). Da die maximale Produktivität konventioneller Schweißverfahren wie dem Unterpulverschweißen erreicht ist, kann eine nennenswerte Produktivitätssteigerung nur durch echte Innovationen wie der Substitution der konventionellen Verfahren durch Hochleistungsverfahren wie dem Laserstrahlschweißen im Vakuum (LaVa) erreicht werden. Ziel des Vorhabens ist ein ganzheitlicher Anlagenentwurf zur Implementierung des Verfahrens in der Herstellung von OWEA, konkret am Beispiel von Monopiles. Um LaVa in der Fertigung von Monopiles einsetzen zu können, müssen diverse Herausforderungen bewältigt werden.
1
2
3
4
5
…
110
111
112