API src

Found 8 results.

Results of Experimental Simulations on Hydrogen Migration through Potential Storage Rocks

Data on the diffusivity of hydrogen through rocks are published here. The studied rocks are related to storage formations, namely rock salt (salt caverns), sandstone (porous aquifer) and mudstone (cap rock). To quantify hydrogen diffusion rates in these rocks, a new experimental set up was build and tested to obtain break-through times and diffusion coefficients for dry and wet rock samples. The first data set is presented here. The main objectives of the study were (i) to verify the functionality and practicability of the experimental setup and (ii) to provide a first characterization of the H2 permeability of different rock types in context of hydrogen reservoirs.

Seismic pilot survey in the Mont Terri Underground Rock Laboratory (URL)

This data publication contains a seismic survey which was acquired in the Mont Terri Underground Rock Laboratory (URL) in January 2019. The aim of the SI-A experiment (Seismic Imaging Ahead of and around underground infrastructure) is to provide a seismic characterization at the meso scale and to investigate the feasibility of tomographic and reflection imaging in argillaceous environments. The survey covered the different facies types of Opalinus Clay: shaly facies, carbonate -rich sandy facies and sandy facies (Bossart et al. 2017). Three different seismic sources (impact, vibro, ELVIS) were used to acquire the seismic data. The impact and magnetostrictive vibro sources were particularly designed for seismic exploration in the underground (Giese et al. 2005, Richter et al. 2018). The ELVIS source was mainly designed for near-surface investigations on roads or in open terrain (Krawczyk et al. 2012). All data were recorded on 32 3-component geophones (GS-14-L3, 28 Hz) which were deployed in 2 m deep boreholes, fixed at the tip of rock anchors. The data publication covers raw and preprocessed data stored in SEG-Y format.

Seismic repeat survey acquired in the Mont Terri Underground Rock Laboratory (URL), Switzerland

The dataset contains SEG-Y data of a 3D seismic in situ experiment in the Mont Terri URL, Switzerland. The data were acquired using a pneumatic impact source and 3-C geophones, installed in boreholes or on the tunnel wall. The data publication covers the raw data (individual hits per shot point) and the vertically stacked data stored in SEG-Y format. The survey geometry (source coordinates, receiver coordinates) is included.

Mineralogy and cation exchange capacity obtained from Röttingen core

XRD patterns of whole rock material were recorded using a PANalytical X'Pert PRO MPD θ - θ diffractometer (Co-Kα radiation generated at 40 kV and 40 mA). The samples were investigated from 3° to 80° 2 θ with a step size of 0.03° 2 θ and a measuring time of 3 sec per step. Quantitative Rietveld refinements of the experimental XRD data were conducted using the software Profex/BGMN (Döbelin & Kleeberg, 2015; Bergmann et al., 1998). Determination of cation exchange capacity (CEC) was carried out using always two different samples masses (typically 400 and 600 mg) according to the method of Meier and Kahr (1999), based on a Cu(II)triethylentetramine complex ("Cu-trien method") and measurement using VIS spectroscopy. According to Dohrmann et al. (2012), the analytical error as determined for high-CEC bentonites is generally smaller than ±3.9 cmol(+)kg-1.

Organic parameters obtained from Röttingen core

The total carbon (TC), total organic carbon (TOC), and total sulfur (TS) were determined using a LECO CS-230 system (Laboratory Equipment Corporation). Samples were heated up to 2000 °C under an oxygen atmosphere and an infrared detector subsequently measured the amount of produced CO2 and SO2. TOC was measured the same way after removing inorganic carbonates using 10 % HCl solution at 80 °C. Rock-Eval Pyrolyses were performed on a Rock-Eval-6 analyser (Vinci Technologies) using up to 180 mg initial sample material and a standard program (Espitalié et al., 1977; Lafargue et al., 1998), starting isothermal with 300°C for 3 min, succeeded by a heating rate of 25°C/min up to 650°C. Standard deviations for hydrogen indices (HI) and Tmax values are ± 5 % and ± 2°C, respectively.

Whole rock mineralogy and organic parameters of Opalinus Clay: insights from sediment cores from the Swabian Alb (southern Germany)

The Middle Jurassic Opalinus Clay (OPA) in Switzerland and southern Germany is regarded as a potential host rock for the disposal of high-level radioactive waste. This study investigates sediment samples from drill cores taken from the Swabian Alb region (southern Germany), and employs a facies-based approach combined with mineralogical analyses, measurements of cation exchange capacity (CEC), LECO and Rock-Eval pyrolysis. Results are based on analyses of two fully cored scientific drillings conducted by the Federal Institute for Geosciences and Natural Resources (BGR) in the framework of the research project "SEPIA" in the Swabian Alb in Baden-Württemberg, southern Germany. The drill sites are located in the vicinity of the villages Metzingen (48.51149° N, 9.26464° E) and Röttingen (48.89905° N, 10.29520° E). At the drilling sites, the OPA is between approx. 100 m – 150 m thick and overlain by 50 m – 70 m of overburden. In Germany, the OPA can be lithostratigraphically divided into two subunits: the Teufelsloch member and the overlying Zillhausen member. This division is based on a combined lithological and stratigraphic framework (Dietze et al., 2021). Regarding lithofacies, the OPA in Switzerland and southern Germany can be broadly divided into several distinct units ("facies associations" according to Zimmerli et al., 2024). For Germany, the following three lithological facies associations (FA) were identified based on a subfacies approach: (1) a lower part that is rich in clay (FA-1), (2) a middle part that is silty (FA-2) and (3) an upper part that is silty and interbedded with calcareous(-sandy) beds (FA-3). XRD patterns of whole rock material were recorded using a PANalytical X'Pert PRO MPD θ - θ diffractometer (Co-Kα radiation generated at 40 kV and 40 mA). The samples were investigated from 3° to 80° 2 θ with a step size of 0.03° 2 θ and a measuring time of 3 sec per step. Quantitative Rietveld refinements of the experimental XRD data were conducted using the software Profex/BGMN (Döbelin & Kleeberg, 2015; Bergmann et al., 1998). Determination of cation exchange capacity (CEC) was carried out using always two different samples masses (typically 400 and 600 mg) according to the method of Meier and Kahr (1999), based on a Cu(II)triethylentetramine complex ("Cu-trien method") and measurement using VIS spectroscopy. According to Dohrmann et al. (2012), the analytical error as determined for high-CEC bentonites is generally smaller than ±3.9 cmol(+)kg-1. The total carbon (TC), total organic carbon (TOC), and total sulfur (TS) were determined using a LECO CS-230 system (Laboratory Equipment Corporation). Samples were heated up to 2000 °C under an oxygen atmosphere and an infrared detector subsequently measured the amount of produced CO2 and SO2. TOC was measured the same way after removing inorganic carbonates using 10 % HCl solution at 80 °C. Rock-Eval Pyrolyses were performed on a Rock-Eval-6 analyser (Vinci Technologies) using up to 180 mg initial sample material and a standard program (Espitalié et al., 1977; Lafargue et al., 1998), starting isothermal with 300°C for 3 min, succeeded by a heating rate of 25°C/min up to 650°C. Standard deviations for hydrogen indices (HI) and Tmax values are ± 5 % and ± 2°C, respectively. The findings of this study underscore the importance of integrating lithofacies studies with mineralogical investigations to effectively assess the variability and comparability of clay-rich host rocks suitable for radioactive waste disposal.

Mineralogy and cation exchange capacity obtained from Metzingen core

XRD patterns of whole rock material were recorded using a PANalytical X'Pert PRO MPD θ - θ diffractometer (Co-Kα radiation generated at 40 kV and 40 mA). The samples were investigated from 3° to 80° 2 θ with a step size of 0.03° 2 θ and a measuring time of 3 sec per step. Quantitative Rietveld refinements of the experimental XRD data were conducted using the software Profex/BGMN (Döbelin & Kleeberg, 2015; Bergmann et al., 1998). Determination of cation exchange capacity (CEC) was carried out using always two different samples masses (typically 400 and 600 mg) according to the method of Meier and Kahr (1999), based on a Cu(II)triethylentetramine complex ("Cu-trien method") and measurement using VIS spectroscopy. According to Dohrmann et al. (2012), the analytical error as determined for high-CEC bentonites is generally smaller than ±3.9 cmol(+)kg-1.

Organic parameters obtained from Metzingen core

The total carbon (TC), total organic carbon (TOC), and total sulfur (TS) were determined using a LECO CS-230 system (Laboratory Equipment Corporation). Samples were heated up to 2000 °C under an oxygen atmosphere and an infrared detector subsequently measured the amount of produced CO2 and SO2. TOC was measured the same way after removing inorganic carbonates using 10 % HCl solution at 80 °C. Rock-Eval Pyrolyses were performed on a Rock-Eval-6 analyser (Vinci Technologies) using up to 180 mg initial sample material and a standard program (Espitalié et al., 1977; Lafargue et al., 1998), starting isothermal with 300°C for 3 min, succeeded by a heating rate of 25°C/min up to 650°C. Standard deviations for hydrogen indices (HI) and Tmax values are ± 5 % and ± 2°C, respectively.

1