API src

Found 236 results.

Related terms

Development of a modelling system for prediction and regulation of livestock waste pollution in the humid tropics

Introduction: In Malaysia, excessive nutrients from livestock waste management systems are currently released to the environment. Particularly, large amounts of manure from intensive pig production areas are being excreted daily and are not being fully utilised. Alternatively, the excess manure can be applied as an organic fertiliser source in neighbouring cropping systems on the small landholdings of the pig farms to improve soil fertility so that its nutrients will be available for crop uptake instead of being discharged into water streams. Thus, there is a need for better tools to analyse the present situation, to evaluate and monitor alternative livestock production systems and manure management scenarios, and to support farmers in the proper management of manure and fertiliser application. Such tools are essential to quantify, and assess nutrient fluxes, manure quality and content, manure storage and application rate to the land as well as its environmental effects. Several computer models of animal waste management systems to assist producers and authorities are now available. However, it is felt that more development is needed to adopt such models to the humid tropics and conditions of Malaysia and other developing countries in the region. Objectives: The aim is to develop a novel model to evaluate nutrient emission scenarios and the impact of livestock waste at the landscape or regional level in humid tropics. The study will link and improve existing models to evaluate emission of N to the atmosphere, and leaching of nutrients to groundwater and surface water. The simulation outputs of the models will be integrated with a GIS spatial analysis to model the distribution of nutrient emission, leaching and appropriate manure application on neighbouring crop lands and as an information and decision support tool for the relevant users.

Einzelpflanzenspezifische Düngung zum ressourceneffizienten und bedarfsoptimierten Anbau von Raps und Mais in Gleichstandsaat, Teilprojekt E

Einzelpflanzenspezifische Düngung zum ressourceneffizienten und bedarfsoptimierten Anbau von Raps und Mais in Gleichstandsaat, Teilprojekt C

Einsatz von phototrophen Biofilmen im Agrarsektor zur Verbesserung des Pflanzenwachstums

Im Jahr 2018 wurden in Deutschland rund 866 Millionen Tonnen Treibhausgase produziert, wobei weltweit 10-12 % der anthropogenen Treibhausemissionen der Landwirtschaft zuzuordnen sind. Während der Austausch an CO2 durch die gleichzeitige CO2 Fixierung in organische Masse fast ausgeglichen ist, beträgt der Anteil der Landwirtschaft bei Methan 50 % und Lachgas sogar 60 % aller Emissionen. Dies ist vor allem auf den Einsatz mineralischer und organischer Düngemittel zurückzuführen. Ohne ein aktives Gegensteuern wird eine Steigerung der Lachgasemissionen um 30-65 % bis 2030 in der Agrarwirtschaft erwartet. Um das gesetzte klimapolitische Ziel einer weitgehenden Treibhausgas-Neutralität bis 2050 zu erreichen, stellt ein klimaschonender Anbau von nachwachsenden Rohstoffen in der Landwirtschaft eine wichtige Strategie dar. Ein zentraler Teilaspekt dieser Strategie könnte die Ansiedlung der gegenüber biotischen und abiotischen Bedingungen toleranten terrestrischen Cyanobakterien sein, die in der Lage sind Luftstickstoff zu fixieren und in - für andere Organismen verwertbaren - Stickstoff umzuwandeln und an die Umgebung abzugeben. Zusätzlich dazu wachsen terrestrische Cyanobakterien eingebettet in einer Matrix aus extrazellulären polymeren Substanzen was zu einer wünschenswerten Bodenstabilisierung und damit zum Schutz vor Bodenerosion sowie zur Förderung der Wasserspeicherung im Boden beitragen könnte. Hierzu sollen stickstofffixierende Cyanobakterien, die aus der kühlgemäßigten Klimazone isoliert wurden, eingesetzt werden. Geeignete Stämme müssen die Stickstofffixierung räumlich durch die Ausbildung von Heterozysten vom Photosyntheseapparat getrennt haben und den bioverfügbaren Stickstoff an die Umgebung abgeben. Co-Kultivierungen von Cyanobakterien mit Arabidopsis thaliana (Acker-Schmalwand) sowie Triticum aestivum (Weizen) sollen zeigen, ob eine künstlich induzierte Symbiose möglich ist. Neben der Agrarpflanze Weizen wurde A. thaliana ausgewählt, da es sich hierbei um eine schnellwachsende und gut charakterisierte Modellpflanze handelt und sie zur selben Familie wie die Nutzpflanzen Kohl, Brokkoli und Meerrettich zählt. Zur Ausbringung der Biofilme in die Agrarwirtschaft sollen diese auf einem biologisch abbaubaren Trägermaterial immobilisiert werden. Hierfür soll ein Aerosolreaktor konzipiert und charakterisiert sowie ein Animpf- und Ernteverfahren etabliert werden. Zusätzlich dazu soll der Wasserrückhalt der Biofilme durch Variation der Prozessparameter optimiert werden. Abschließend soll die Co-Kultivierung von immobilisierten Cyanobakterien auf dem Trägermaterial und Pflanzen in Pflanzsubstraten in Abhängigkeit der Temperatur untersucht werden. Hier soll die Frage beantwortet werden, ob ein periodisches Ausbringen der Cyanobakterien notwendig ist, oder ob eine dauerhafte Implementierung von Biofilmen im Boden möglich ist.

Standortdifferenzierte Bewertung und Anrechnung der Nutzung von Nitrifikationsinhibitoren als Klimaschutzmaßnahme im Pflanzenbau, Standortdifferenzierte Bewertung und Anrechnung der Nutzung von Nitrifikationsinhibitoren als Klimaschutzmaßnahme im Pflanzenbau

Die Landwirtschaft ist für etwa 80% der gesamten N2O-Emissionen in Deutschland und für 45% der Treibhausgasemissionen (THG) aus dem Agrarsektor verantwortlich. Die größte N2O-Quelle in der Landwirtschaft ist der Einsatz von Stickstoffdüngern (Mineraldünger und organischer Dünger, einschließlich Biogasgärresten), der ca. 60% der gesamten N2O-Emissionen aus der Landwirtschaft verursacht. Dabei sind sowohl direkte N2O-Emissionen aus den gedüngten Böden als auch indirekte N2O-Emissionen durch die Freisetzung reaktiver Stickstoffverbindungen (z.B. Auswaschung von Nitrat, Emission von Ammoniak) von Bedeutung. Die Verringerung dieser Emissionen und die Verbesserung der Effizienz der Stickstoffnutzung sind unerlässliche Maßnahmen, um die in internationalen Vereinbarungen festgelegten Emissionsminderungsziele für den Agrarsektor zu erreichen. Nitrifikationshemmer werden als robuste und skalierbare Maßnahme zur Reduzierung der Treibhausgasemissionen im Pflanzenbau vorgeschlagen. Ob dies jedoch eine effiziente, praktikable und umweltverträgliche Maßnahme zur Reduzierung der düngemittelbedingten N2O-Emissionen unter mitteleuropäischen Bedingungen ist, wird in Wissenschaft, Politik und Praxis kontrovers diskutiert. Einerseits besteht das Potenzial, durch die Hemmung der Nitratbildung sowohl die direkten als auch die indirekten N2O-Emissionen deutlich zu reduzieren und damit die Effizienz der Stickstoffdüngung zu verbessern. Andererseits fehlen wissenschaftlich belastbare und standortdifferenzierte Ergebnisse, die NI-Effekte unter mehreren Gesichtspunkten verlässlich bewerten: i) die standortdifferenzierten jährlichen N2O-Emissionen und Nitratauswaschungen, ii) die ökologische Langzeitwirkung der Hemmstoffe und ihr Einfluss auf andere umwelt- und klimawirksame Emissionen (z.B. Ammoniakemissionen) und iii) die Gesamtbewertung als Klimaschutzmaßnahme unter Berücksichtigung von Klimaschutzeffekten, ökologischen Risiken sowie ökonomischen und pflanzenbaulichen Effekten.

Auswaschung von Stickstoff- und Phosphorspezies aus landwirtschaftlich genutzten Boeden bezogen auf die Anbauintensitaet und unter besonderer Beruecksichtigung des bevorzugten und Makroporentransports

Neben mineralischen Stickstoff- und Phosphorverbindungen werden zeitweilig auch bedeutsame Mengen an organisch und kolloidal gebundenen Stickstoff- und Phosphorverbindungen in Dränage-, Grund- und Oberflächenwässer transportiert. Verantwortlich hierfür sind Makroporentransportprozesse. Die Auswaschung organischer Verbindungen durch Makroporentransport kann bisher unter Feldbedingungen mit konventionellen Probenahmetechniken nicht direkt gemessen werden. Ziel des im Rahmen einer Kooperation mit der Dan Kook University (Republic of Korea) beantragten Projektes ist die Ermittlung der gesamten N- und P-Auswaschung (Matrix- und Makroporentransport; mineralisch, organisch und kolloidal gebunden) aus landwirtschaftlich genutzten Böden bei unterschiedlichen Nutzungssystemen (Ackerland, Gründland), unterschiedlicher Nutzungsintensität (ohne Düngung, mit langjähriger organischer Düngung und hohen P- und -Gehalten in der Krume, langjährige Mineraldüngung) und Bodenbearbeitung (ohne, konventionelle und konservierende Bodenbearbeitung) als ein Kriterium zur Bewertung der Nachhaltigkeit unterschiedlicher Produktionsverfahren. Es werden neue Probenehmer verwendet, die sowohl die quantitative Messung des Matrix- und des Makroporentransportes unter Feldbedingungen erlauben.

Anbausysteme und Pflanzenernährung

Der Aufgabenbereich "Anbausysteme und Pflanzenernährung" beinhaltet sowohl die Weiterentwicklung integrierter Anbauverfahren insbesondere nachhaltiger Fruchtfolgesysteme unter Beachtung des Klimawandels als auch Empfehlungen zur umweltgerechten und effizienten Nährstoffversorgung, d.h.: - angewandte Forschung in den Bereichen des Integrierten Pflanzenbaus, der Umweltgerechten Landwirtschaft und des Nährstoffmanagements, - Versuchsdurchführung von Feld- und Überleitungsversuchen, - Gefäß- und Mikroparzellenversuchen, - Betreuung der agrarmeteorologischen Messstation, - Ökonomisch relevante Fruchtfolgen, Bewirtschaftungsintensitäten, organische Düngung und Beregnung, einschließlich teilschlagspezifischer Bewirtschaftung.

Umstellung einer Apfelanlage auf biologische Wirtschaftsweise

Umstellung einer 1987/88 gepflanzten 0,7 ha Apfelanlage mit 'ldared', 'Jonagold-Mutanten', 'Golden Delicious', 'Glosten', 'Fiesta' auf M9 von integrierter Produktion auf biologische Wirtschaftsweise mit Untersuchung der Auswirkungen auf Schädlings- und Krankheitsbefall, Möglichkeiten der Bodenpflege. Da der Anbau schorfempfindlicher Apfelsorten nur durch einen unvertretbar hohen Einsatz von Schwefel zur Bekämpfung dieser Pilzkrankheit möglich ist, wurde ab Frühjahr 2001 begonnen die bisherigen Sorten durch schorfresistente Sorten zu ersetzen. Im April 2001 wurden ca. 0,7 ha mit der Sorte 'Topaz' bepflanzt. Die Anlage steht in 2004 für das Projekt Bodenpflege im ökologischen Anbau zur Verfügung. Im Frühjahr 2003 wurde eine Fläche von ca. 0,45 ha mit den Sorten 'Santana', 'Rubinola', 'Ariwa'und 'Topaz' auf der Unterlage M 9 bepflanzt. Für Exaktversuche zur Pilzregulierung im ökologischen Apfelanbau wurden zusätzlich 420 Bäume der Sorte 'Golden Delicious' Klon B gesetzt. Nach der Ernte 2003 wurden auch die letzten Altanlagen in der biologischen Produktion gerodet. Die Fläche von ca. 0,27 ha wird in 2004 brach liegen und in der Pflanzsaison 2004/2005 zur Hälfte mit neuen, schorfrobusten Apfelsorten bepflanzt werden. Da im Betrieb keine organischen Düngemittel anfallen, muss entsprechender Dünger zugekauft werden. Die Wirkung der zu testenden Blattdünger wird mit Hilfe von Blatt- und Fruchtanalysen kontrolliert. Die Proben müssen hierzu zur Untersuchung an ein Labor gesendet werden.

Nachhaltige Biomasseproduktion im Meer: Machbarkeitsstudie zur offshore-Kultur von Makroalgen für eine landseitige Verwertung

Zielsetzung und Anlass: Die Eutrophierung stellt eine der größten ökologischen Bedrohungen der Ostsee dar, was sich aktuell in einer riesigen Todeszone (Sauerstoffmangel) am Meeresboden der tiefen Becken wiederspiegelt. Deshalb soll in dieser Machbarkeitsstudie eine nachhaltige marine Biomasse-Produktion des Blasentangs (Fucus vesiculosus) in Freilandversuchen in der Ostsee durchgeführt werden, um mit Hilfe dieser Makroalge eine Abreicherung von überschüssigen Nährstoffen herbeizuführen. In mehreren Schritten werden wir untersuchen inwiefern eine Hochskalierung vom Labor- zum offshore-Maßstab möglich und wie groß das Potenzial von großflächigen offshore-Freilandkulturen von Makroalgen ist. Weiterhin untersuchen wir ob die Biomasse umweltschonend produziert und als Wertstoff (Kosmetik), organischer Dünger, und/oder Biogas-Rohstoff (Energieträger) genutzt werden kann. Das Gesamtziel des Vorhabens in diesem Konsortium ist somit die Beurteilung der Chancen und Möglichkeiten von großflächigen Makroalgen-Freilandkulturen hinsichtlich: I. Schaffung eines regional möglichst geschlossenen Nährstoffkreislaufs zur Reduzierung der Nährstoffanreicherung in der südwestlichen Ostsee, II. Produktion von nachhaltigen Rohstoffen ohne dünge-, pflanzenschutz- und wasser-intensiven Landverbrauch, sowie III. Prüfung zusätzlicher Ertragsmöglichkeiten für Fischer und Einsparmöglichkeiten für Landwirte. Das vielfältige Potenzial der Ökosystemdienstleistungen von Blasentang-Freilandkulturen wird somit erstmalig experimentell in der Ostsee untersucht, und trägt zu den UN Nachhaltigkeitszielen bei. Das Projekt wird in enger Zusammenarbeit zwischen Wissenschaft und regionalen Stakeholdern (Fischer, Windparkbetreiber, Landwirte, Anlagenbetreiber für Biogas) durchgeführt. Arbeitsschritte und Methoden: Während der Projektdauer von drei Jahren bearbeiten wir vier Schwerpunkte: I. Kultivierung, II. Biomassecharakterisierung, III. Ernte und IV. Nutzung des Blasentangs. I. die bereits etablierte Nachzucht von Blasentang auf für die Freilandkultur geeignete Substrate wird optimiert. Danach wird die gut funktionierende Algenkultivierung vom Labor- und Mesokosmen-Maßstab zu mittleren Feldkulturen in der Eckernförder Bucht ( Prototyp einer Offshore-Kultur) heraufskaliert. Während all der Stufen der Hochskalierung werden die Effekte auf die Umwelt (abiotisch: Nährstoffgehalte, Sauerstoffkonzentration, pH; biotisch: Biodiversität organismisch und per eDNA) detailliert untersucht. Weiterhin soll die Zusammenarbeit mit Fischern und Windanlagenbetreibern als auch Genehmigungsbehörden (BSH, LLUR etc.) als Stakeholdern in Anspruch genommen werden, zu denen bereits intensive Kontakte bestehen. II. Die erzeugte Blasentasng-Biomasse wird ökophysiologisch und biochemisch charakterisiert, um bspw. Überlebensgrenzen, optimale Erntezeitpunkte und vielversprechende Wertstoffe zu identifizieren. III. Die Erntemethodik und Erstbehandlung an Land muss sorgfältig untersucht werden. Hier ist zum einen die Expertise von Fischern gefragt, die zumindest partiell von Fischfang auf die Wartung der Algenkulturen und die Algenernte umsteigen wollen. Der Schwerpunkt liegt auf der Nutzung der Biomasse an Land. Eine energieaufwändige Trocknung soll als Vorbehandlung vermieden werden. IV. Aus den biochemischen Analysen unter II. lassen sich bereits interessante Wertstoffe (Naturstoffe) z.B. für die kosmetische Industrie ableiten. Ansonsten ist die einfachste und bereits bewährte Nutzungsmöglichkeit das Einarbeiten der Algenbiomasse nach vorheriger Extraktion von Wertstoffen als Ersatz für mineralische Kunstdünger. Vor einer großflächigen und langfristigen Nutzung der Algenbiomasse als natürlicher Mineraldüngerersatz muss deren Belastung mit Schadstoffen, z.B. Schwermetallen, geprüft werden. (Text gekürzt)

Verteilung und Stabilität des Kohlenstoffs beim Abbau von 14C-markiertem Weizenstroh in den verschiedenen Kompartimenten eines Bodens mit unterschiedlicher landwirtschaftlicher Bewirtschaftung

Es ist die Hypothese aufgestellt worden, dass neben nicht abgebauten Pflanzenresten die organische Substanz des Bodens grob aus zwei Kompartimenten besteht. Bestimmt durch den Ton- und Feinschluffanteil entwickelte sich ein inerter C-Pool während der Genese von Böden. Dieser an die mineralischen Feinanteile gebundene Kohlenstoff nimmt nur über einen langen Zeitraum am Kohlenstoffumsatz von Böden teil. In Abhängigkeit von der landwirtschaftlichen Praxis entwickelt sich während des durch die metabolische Aktivität von Bodentieren und Mikroorganismen verursachten Abbaus von Pflanzenresten und organischen Düngern ein zweiter, labiler C-Pool. Dieser ist im wesentlich verantwortlich für die Nährstoffflüsse in Böden. Das Ziel des geplanten Forschungsprojektes ist es, in Laborexperimenten die Verteilung von frisch zugeführten 14C aus markiertem Weizenstroh zwischen inertem und labilem C-Pool über den Zeitraum eines Jahres zu verfolgen. Zusätzlich wird die Mineralisierung des Pflanzenmaterials zu 14CO2, die Bildung wasserlöslicher 14C-Metabolite und die anabolische Verwertung des markierten Kohlenstoffs durch die mikrobielle Biomasse des Bodens verfolgt. Nach einer physikalischen Fraktionierung der mineralisch-organischen Bodensubstanz in einzelne Größenfraktionen soll deren Gehalt an 14C/12C organischer Substanz über die Zeit bestimmt werden. In einem Inkubationsexperiment werden die isolierten Größenfraktionen mit der autochthonen Bodenflora beimpft werden, und die dabei durch die Aktivität der Mikroorganismen freigesetzten 14CO2 Mengen sind ein Indikator für die Stabilität der organischen Substanz in den einzelnen Fraktionen. Für diese Untersuchungen werden Proben eines landwirtschaftlichen Bodens ausgesucht, der für viele Jahrzehnte verschiedener Düngungspraxis (null, mineralisch, organisch) unterlag. Durch dieses Forschungsprojekt werden Informationen über die kausalen Zusammenhänge von Bodenprozessen bei der Bildung und Speicherung der organischen Substanz im Boden erwartet.

1 2 3 4 522 23 24