API src

Found 1964 results.

Related terms

WIR! - rECOmine - Waelue

Das Projekt "WIR! - rECOmine - Waelue" wird/wurde ausgeführt durch: Helmholtz-Zentrum Dresden-Roßendorf e.V., Helmholtz-Institut Freiberg für Ressourcentechnologie.

Abiotischer Abbau und Diffusion chlorierter Lösemittel in Fe2+-haltigen ungestörten Kalksteinen und Tonsteinen

Das Projekt "Abiotischer Abbau und Diffusion chlorierter Lösemittel in Fe2+-haltigen ungestörten Kalksteinen und Tonsteinen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Tübingen, Zentrum für Angewandte Geowissenschaften, Arbeitsgruppe Hydrogeochemie.Langsame Diffusionsprozesse von Schadstoffen in geringdurchlässigen wasser-gesättigten Gesteinen sind ein wesentlicher Grund für den beschränkten Erfolg vieler Untergrundsanierungen. Zu den immer noch wichtigsten Schadstoffen im Grundwasser zählen die chlorierten Lösemittel, die trotz jahrzehntelanger Sanierungsanstrengungen inzwischen lange Fahnen im urbanen Raum ausbilden. Eine langsame Diffusion bedingt aber auch lange Aufenthaltszeiten in der Gesteinsmatrix und damit können langsame abiotische Abbaumechanismen zum Tragen kommen, die auf Fe2+-haltige Mineralien wie z.B. Eisensulfide, Magnetit oder Phyllosilikate zurückgehen, und bei der Einschätzung des natürlichen Abbaupotentials berücksichtigt werden sollten. Ziel dieses Vorhabens ist es daher, die Transformation von Tri- und Perchlorethen während der Diffusion in Gesteinsproben geklüfteter Aquifere und Aquitarde zu quantifizieren. Weil die Reaktionsraten der Ausgangssubstanzen sehr wahrscheinlich zu klein sind, um im Labor gemessen werden zu können, liegt der Fokus auf der Bestimmung von Transformations- und Abbauprodukten (bspw. teil-chlorierte Ethene, Azetylen, Ethan). Die Experimente zur reaktiven Diffusion müssen mit intakten Gesteinsproben durchgeführt werden, da beim Zerkleinern reaktive Mineralober-flächen (z.B. bei Quarz und Pyrit) entstehen könnten, die zur Dehalogenierung der Ausgangssubstanzen führen könnten. Im Unterschied zu früheren Studien sollen hier die für die Reaktivität verantwortlichen spezifischen Minerale in der Gesteins-matrix identifiziert werden. Die Ergebnisse sind nicht nur für das Langzeitverhalten von chlorierten Lösemitteln im Grundwasser, sondern generell auch für die Endlagerung von radioaktiven Abfällen oder die chemische Verwitterung (Oxidation) von reduzierten Gesteinen relevant.

RUBIN - PhoTech - VP3 biogene & industrielle Luft

Das Projekt "RUBIN - PhoTech - VP3 biogene & industrielle Luft" wird/wurde ausgeführt durch: IVOC-X GmbH.

Die globale Verteilung von 14 CO als Indikator fuer OH-Radikale

Das Projekt "Die globale Verteilung von 14 CO als Indikator fuer OH-Radikale" wird/wurde ausgeführt durch: Kernforschungsanlage Jülich GmbH, Institut für Chemie.Natuerliches 14 CO wird in der Atmosphaere hauptsaechlich durch kosmische Strahlung gebildet. Es wird dann fast ausschliesslich durch Reaktion mit OH-Radikalen zu 14 CO2 oxidiert. Die Produktionsrate ist sehr gut bekannt; Messungen der 14 CO-Verteilung lassen daher direkte Schluesse auf die entsprechende OH Verteilung zu. Zur Messung wird zunaechst das Kohlenmonoxid aus ca. 100 Kubikmeter Luft chemisch abgetrennt. Anschliessend wird der 14 C Gehalt in einer speziellen 'low level'-Zaehlapparatur mit geringem Volumen bestimmt. Bisher wurden Messungen in der Nordhemisphaere am Boden durchgefuehrt (Vols et al., 1979, 1980, 1981). Ergaenzende Messungen in der hoeheren Atmosphaere sowie der Suedhemisphaere zur besseren Absicherung der ermittelten OH-Verteilung sind in Vorbereitung.

Immobilisation of arsenic in paddy soil by iron(II)-oxidizing bacteria

Das Projekt "Immobilisation of arsenic in paddy soil by iron(II)-oxidizing bacteria" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Tübingen, Institut für Geowissenschaften, Zentrum für Angewandte Geowissenschaften.Arsenic-contaminated ground- and drinking water is a global environmental problem with about 1-2Prozent of the world's population being affected. The upper drinking water limit for arsenic (10 Micro g/l) recommended by the WHO is often exceeded, even in industrial nations in Europe and the USA. Chronic intake of arsenic causes severe health problems like skin diseases (e.g. blackfoot disease) and cancer. In addition to drinking water, seafood and rice are the main reservoirs for arsenic uptake. Arsenic is oftentimes of geogenic origin and in the environment it is mainly bound to iron(III) minerals. Iron(III)-reducing bacteria are able to dissolve these iron minerals and therefore release the arsenic to the environment. In turn, iron(II)-oxidizing bacteria have the potential to co-precipitate or sorb arsenic during iron(II)- oxidation at neutral pH followed by iron(III) mineral precipitation. This process may reduce arsenic concentrations in the environment drastically, lowering the potential risk for humans dramatically.The main goal of this study therefore is to quantify, identify and isolate anaerobic and aerobic Fe(II)-oxidizing microorganisms in arsenic-containing paddy soil. The co-precipitation and thus removal of arsenic by iron mineral producing bacteria will be determined in batch and microcosm experiments. Finally the influence of rhizosphere redox status on microbial Fe oxidation and arsenic uptake into rice plants will be evaluated in microcosm experiments. The long-term goal of this research is to better understand arsenic-co-precipitation and thus arsenic-immobilization by iron(II)-oxidizing bacteria in rice paddy soil. Potentially these results can lead to an improvement of living conditions in affected countries, e.g. in China or Bangladesh.

Die atmosphärische Tagchemie von Schlüsselverbindungen beeinflußt von der atmosphärischen Nachtchemie (DARK KNIGHT).

Das Projekt "Die atmosphärische Tagchemie von Schlüsselverbindungen beeinflußt von der atmosphärischen Nachtchemie (DARK KNIGHT)." wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Leibniz-Institut für Troposphärenforschung e.V..Flüchtige organische Verbindungen (VOC) werden in großen Mengen (1300 TgC pro Jahr) von biogenen und anthropogenen Quellen in die Atmosphäre emittiert. Die Oxidation solcher Verbindungen führt zur Bildung von semivolatilen Produkten, welche in die Partikelphase übergehen können und somit zur Bildung von sekundärem organischem Aerosol (SOA) beitragen. Die globale SOA Produktion anthropogenen Ursprungs beläuft sich auf 0,05 bis 9,7 Tg pro Jahr. Hingegen wird die biogene SOA Produktion mit bis zu 910 Tg pro Jahr beziffert, was einem Umsatz von 70% der emittierten biogenen VOCs entspricht. Ein solcher Umsatz ist unvereinbar mit den vergleichsweise niedrigen SOA Ausbeuten aus Aerosolkammerexperimenten. Die Ursache für diese Diskrepanz liegt vermutlich an zusätzlichen SOA Bildungswegen wie der Weiterreaktion von VOC Oxidationsprodukten, welche von den Umgebungsbedingungen wie dem Oxidationsmittel, der relativen Feuchte und der Art der vorhandenen Partikel abhängt. Somit sind zwar Tag- und Nachtchemie grundverschieden, allerdings auch eng miteinander verbunden, denn die Produkte der Nachtchemie werden durch die darauffolgende Tagchemie weiterprozessiert und umgekehrt. Dadurch wird das Partitionierungsverhalten der Produkte und somit die SOA Bildung stark beeinflusst. Daher soll im Rahmen des Projektes Dark Knight der Einfluss der Tagchemie auf die Nachtchemie und umgekehrt untersucht werden. Das Wissen über die Verschaltung von Tag- und Nachtchemie kann erheblich zum Verständnis über die an der SOA Bildung beteiligte Prozesse beitragen.

Soil-gas transport-processes as key factors for methane oxidation in soils

Das Projekt "Soil-gas transport-processes as key factors for methane oxidation in soils" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Albert-Ludwigs-Universität Freiburg, Institut für Geo- und Umweltnaturwissenschaften, Professur für Bodenökologie.Methane (CH4) is a major greenhouse gas of which the atmospheric concentration has more than doubled since pre-industrial times. Soils can act as both, source and sink for atmospheric CH4, while upland forest soils generally act as CH4 consumers. Oxidation rates depend on factors influenced by the climate like soil temperature and soil moisture but also on soil properties like soil structure, texture and chemical properties. Many of these parameters directly influence soil aeration. CH4 oxidation in soils seems to be controlled by the supply with atmospheric CH4, and thus soil aeration is a key factor. We aim to investigate the importance of soil-gas transport-processes for CH4 oxidation in forest soils from the variability the intra-site level, down to small-scale (0.1 m), using new approaches of field measurements. Further we will investigate the temporal evolution of soil CH4 consumption and the influence of environmental factors during the season. Based on previous results, we hypothesize that turbulence-driven pressure-pumping modifies the transport of CH4 into the soil, and thus, also CH4 consumption. To improve the understanding of horizontal patterns of CH4 oxidation we want to integrate the vertical dimension on the different scales using an enhanced gradient flux method. To overcome the constraints of the classical gradient method we will apply gas-diffusivity measurements in-situ using tracer gases and Finite-Element-Modeling. Similar to the geophysical technique of Electrical Resistivity Tomography we want to develop a Gas Diffusivity Tomography. This will allow to derive the three-dimensional distribution of soil gas diffusivity and methane oxidation.

Biokraftstoffe - Eigenschaften und Erfahrungen bei der Anwendung, Biokraftstoffe - Eigenschaften und Erfahrungen bei der Anwendung - Fortschreibung

Das Projekt "Biokraftstoffe - Eigenschaften und Erfahrungen bei der Anwendung, Biokraftstoffe - Eigenschaften und Erfahrungen bei der Anwendung - Fortschreibung" wird/wurde ausgeführt durch: DGMK Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle e.V..Dieser DGMK-Forschungsbericht ist eine Fortschreibung des DGMK-Forschungsberichts 611 'Biokraftstoffe -Eigenschaften und Erfahrungen bei der Anwendung', der im Jahr 2002 erschienen ist. Seit dieser Zeit haben sich die Pläne der Europäischen Kommission, den Einsatz von Biokraftstoffen zu fördern, konkretisiert. Die Direktive 2003/30/EC gibt für den Zeitraum von 2005 bis 2010 Zielvorgaben, in welchem Umfang Biokraftstoffe in den Handel gebracht werden sollen. Bei Dieselkraftstoffen wird das im Wesentlichen durch Zugabe von bis zu 5 Prozent Fettsäuremethylestern und nicht durch einen Einsatz in reiner Form geschehen. Bei den Ottokraftstoffen kommen Ethanol und Ethyltertiärbutylether (ETBE) als Beimischungen in Frage. Sowohl bei Diesel- als auch bei Ottokraftstoff sind für den Fall einer Beimischung durch die gültigen Normen Maximalwerte für die sauerstoffhaltigen Verbindungen gegeben. Wegen seiner geringeren Oxidations- und Lagerstabilität besteht ein Interesse an Labortests, die für Biodiesel und Dieselkraftstoffe, die Biodiesel enthalten, eine Vorhersage darüber erlauben, ob der Kraftstoff über eine für den praktischen Betrieb ausreichend große Stabilität verfügt. Die ASTM D 4625-Methode, bei der die Probe bei 43 Grad Celsius gelagert wird und die allgemein als das geeigneste Testverfahren zur Bestimmung der Lagerstabilität von Mitteldestillaten angesehen wird, ist für Fettsäuremethylester und Mischungen mit ihnen weniger gut geeignet. Unter vielen untersuchten Prüfverfahren hat für die Bestimmung der Lagerstabilität die Rancimat-Methode die weiteste Anerkennung gefunden, obwohl auch Ergebnisse vorliegen, die es fraglich erscheinen lassen, ob generell ein Zusammenhang zwischen den Rancimat-Ergebnissen und der Lagerstabilität besteht. Vereinzelt gibt es Dieselkraftstoffe, die für eine Zumischung auch nur einer so geringen Menge wie 5 Prozent Biodiesel schlecht geeignet erscheinen. Für solche Dieselkraftstoffe scheint eine besonders kleine Rancimat-Induktionsperiode kennzeichnend zu sein. Nicht alle für Kohlenwasserstoffe bewährten Antioxidationsmittel sind in Mischungen mit Biodiesel gleich gut wirksam. Nach den bisherigen Erfahrungen kommt es beim Einsatz von Mischungen mit Biodiesel in Kraftfahrzeugen zu keinen Problemen, wenn der Biodieselgehalt 5 Prozent nicht übersteigt, auf Abwesenheit von Wasser geachtet und die Lagerzeit auf 6 Monate begrenzt wird. Der eingesetzte Biodiesel muss den Anforderungen der Norm EN 14214 genügen. Überflüssiger Kontakt mit Luft beispielsweise durch Rühren sollte bei der Lagerung von Biodiesel unbedingt vermieden werden. Auch wenn in dem durch die Norm erlaubten Rahmen Ethanol oder ETBE konventionellen Ottokraftstoffen beigemischt wird, sind im praktischen Betrieb keine Schwierigkeiten zu erwarten. Allerdings muss beim Zusatz von Ethanol auf die Abwesenheit von Wasser im System geachtet werden. Bei einer unkontrollierten Vermischung von ethanolhaltigen und ethanolfreien Kraftstoffen kann der Dampfdruckgrenzwert ...

WIR! - rECOmine - Waelue, TP1: Analyse und Schmelzreduktion von Wälzschlacke; Gesamtprozessbewertung

Das Projekt "WIR! - rECOmine - Waelue, TP1: Analyse und Schmelzreduktion von Wälzschlacke; Gesamtprozessbewertung" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum Dresden-Roßendorf e.V., Helmholtz-Institut Freiberg für Ressourcentechnologie.

Der Einfluss von Licht auf die mikrobielle Eisen(II)-Oxidation in Süßwassersedimenten

Das Projekt "Der Einfluss von Licht auf die mikrobielle Eisen(II)-Oxidation in Süßwassersedimenten" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Tübingen, Zentrum für Angewandte Geowissenschaften (ZAG), Arbeitsgruppe Geomikrobiologie.Der biogeochemische Eisenkreislauf stellt ein wichtiges Reaktionsnetzwerk dar, welches einen direkten Einfluss auf umweltrelevante Prozesse in Sedimenten hat. Eisen(II)-oxidierende und Eisen(III)-reduzierende Bakterien kontrollieren zu großen Teilen die (Im)Mobilisierung von Eisen in Sedimenten. Unser klassisches Verständnis vom sedimentären Eisenkreislauf beschreibt, dass die Hauptsubstratquelle (Eisen(II) für Eisen(II)-oxidierende Bakterien die mikrobiellen Eisen(III)-reduktion ist, welcher typischerweise in tieferen Zonen von Redox-stratifizierten Sedimenten ansässig ist. Bislang wurde der Prozess der Eisen(III)-Photoreduktion nicht als signifikante Eisen(II) Quelle in limnische Sedimente betrachtet. In dem beantragten Forschungsprojekt, stellen wir die Hypothese auf, dass die Photoreduktion von Eisen(III) in limnischen Sedimenten eine zusätzliche Eisen(II)-Quelle für Eisen(II)-oxidierende Bakterien in den obersten (teilweise) oxischen und Lichtdurchfluteten Sedimentschichten darstellt. Zu diesem Zweck werden wir hochaufgelöste Licht und geochemische Messungen (O2, gelöstes Fe(II), pH, H2O2) mit Mikrosensoren durchführen und die Eisenmineralogie als Funktion der Lichtqualität (Wellenlänge) und Lichtquantität (Intensität) in Süßwassersedimenten bestimmen. Darüber hinaus werden wir den Einfluss von natürlichen organischen Material auf die Eisen(III)-Photoreduction untersuchen. Zusätzlich werden wir die Rolle von reaktiven Sauerstoffspezies auf die Bioverfügbarkeit von produzierten Eisen(II) in oxischen Sedimenten bestimmen. Dieses Forschungsprojekt untersucht einen Prozess der bislang in Sedimenten vernachlässigt wurde und öffnet die Türen zu einem neuen Verständnis des biogeochemischen Eisenkreislaufs und den assoziierten Eisen(II) Stoffflüssen entlang sedimentärer Redoxgradienten.

1 2 3 4 5195 196 197