Das Projekt "Reallabor: Supply-Chain orientierte Energiewende trifft Dekarbonisierung der Industrie, Teilvorhaben: Machbarkeit der Verwendung des bei der Elektrolyse erzeugten Sauerstoffs im Verbrennungsprozess eines Zementwerks mit nachfolgender CO2-Abscheidung im großindustriellen Maßstab" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Holcim (Deutschland) GmbH.
Das Projekt "Sonderforschungsbereich Transregio 129 (SFB TRR): Oxyflame - Entwicklung von Methoden und Modellen zur Beschreibung der Reaktion fester Brennstoffe in einer Oxyfuel-Atmosphäre, Sonderforschungsbereich Transregio 129 (SFB TRR): Oxyflame - Entwicklung von Methoden und Modellen zur Beschreibung der Reaktion fester Brennstoffe in einer Oxyfuel-Atmosphäre" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: RWTH Aachen University, Lehrstuhl für Wärme- und Stoffübertragung.Zur nachhaltigen Sicherung der Energie- und Stromversorgung wird zukünftig neben Kernenergie und regenerativer Energiebereitstellung weiterhin der Rückgriff auf fossile Brennstoffe, wie Kohle, Öl und Erdgas, unverzichtbar bleiben. Bei konventionellen Kraftwerkstechnologien werden jedoch Treibhausgase freigesetzt, während gleichzeitig deren Reduzierung weltweit hohe Priorität hat. Zur Lösung dieses Zielkonflikts werden 'Carbon Capture and Storage' (CCS)-Methoden diskutiert, wobei die Oxyfuel-Verbrennung eine der vielversprechendsten Technologien zur CO2-Abscheidung darstellt. Bei diesem Verfahren wird der Brennstoff anstelle von Luft mit einem Gemisch aus Sauerstoff und rezirkuliertem Rauchgas verbrannt, um so ein hoch CO2-haltiges Abgas zu erzeugen, das nach weiteren sekundären Reinigungsschritten abgetrennt werden kann. Der Ersatz des Stickstoffanteils der Luft durch CO2 und H2O führt zu einem völlig neuen Verbrennungsverhalten, das auch zu Instabilitäten sowie zum örtlichen Verlöschen der Flamme führen kann. Die korrekte Beschreibung dieses Verbrennungsverhaltens erfordert entsprechende physikalisch und chemisch motivierte Modelle für diese spezielle Gasatmosphäre. Deshalb sollen bis zum Projektende des Sonderforschungsbereichs/Transregio die folgenden Erkenntnisse, Daten und Modelle zur Verfügung stehen: (1) Belastbare Modelle durch grundlegendes Verständnis der beteiligten Prozesse und deren Abhängigkeit von den jeweiligen Einflussparametern, von der Mikroskala bis hin zur skalenübergreifenden Interaktion, (2) Basisdaten zur Vorhersage der Wärmeübertragung von der Flamme an die Wände und Einbauten in Kraftwerkskesseln mit Oxyfuel-Atmosphäre, (3) Verlässliche Berechnungsgrundlagen für die Entwicklung und Auslegung von Brennern und Feuerräumen für Oxyfuel-Kraftwerke mit Feststoffverbrennung. Im Sonderforschungsbereich/Transregio arbeiten Wissenschaftlerinnen und Wissenschaftler der RWTH Aachen, Ruhr-Universität Bochum und TU Darmstadt zusammen.
Das Projekt "Ressortforschungsplan 2024, Innovative Techniken: Verbesserung der Ressourcen- und Energieeffizienz bei der thermischen Abfallbehandlung" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) , Umweltbundesamt (UBA). Es wird/wurde ausgeführt durch: ete.a Ingenieurgesellschaft für Energie und Umweltengineering & Beratung mbH / Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT / Rheinisch-Westfälische Technische Hochschule Aachen University, Fachgruppe für Rohstoffe und Entsorgungstechnik, Lehr- und Forschungsgebiet Technologie der Energierohstoffe (TEER).Mit diesem Vorhaben sollen die Anwendungspotenziale ressourcenschonender und energieeffizienter Technologien wie des Oxyfuel-Verfahrens und der Abgaskondensation bei Abfallverbrennungsanlagen und deren Beiträge zur Energie- und Rohstoffeinsparung sowie zur Minderung klassischer und klimarelevanter Emissionen ermittelt werden.
Das Projekt "Sonderforschungsbereich Transregio 129 (SFB TRR): Oxyflame - Entwicklung von Methoden und Modellen zur Beschreibung der Reaktion fester Brennstoffe in einer Oxyfuel-Atmosphäre, Teilprojekt A03: Experimentelle Bestimmung von Reaktionskinetiken zur Freisetzung von Chlor- und Schwefelverbindungen und zur Umwandlung der Spezies in der Gasphase" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Darmstadt, Fachgebiet Energiesysteme und Energietechnik.In Teilprojekt A3 werden Modelle zur Beschreibung der Chlor- und Schwefelchemie bei der Oxyfuel-Verbrennung entwickelt, mit denen die Bildung Cl- und S-haltiger Minoritätenspezies vorhergesagt werden kann, um so die Rückwirkung von Cl- und S-haltigen Spezies auf die Verbrennung zu berücksichtigen. Experimentellen Untersuchungen hierzu erfolgen in einem Flugstromreaktor sowie mittels thermogravimetrischer Analyse. Eine extraktive Messtechnik mit Massenspektrometer für hochreaktive S- und Cl-Spezies wird entwickelt und erprobt.
Das Projekt "Sonderforschungsbereich Transregio 129 (SFB TRR): Oxyflame - Entwicklung von Methoden und Modellen zur Beschreibung der Reaktion fester Brennstoffe in einer Oxyfuel-Atmosphäre, Teilprojekt A01: Experimentelle Untersuchung der Kinetik von Pyrolyse und Koksabbrand in einem Well-Stirred-Reactor unter Flammen- und Ausbrandbedingungen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: RWTH Aachen University, Lehrstuhl für Wärme- und Stoffübertragung.In einem Well-Stirred-Reaktor wird die Kinetik in Oxyfuel-Atmosphäre, d.h. die Freisetzung von Masse und Energie aus einem Brennstoffpartikel, experimentell und theoretisch untersucht. Aufbauend auf Referenzbedingungen (Luftatmosphäre, reiner Kohlenstoff als Brennstoff) werden in Experimenten Pyrolyse und Koksabbrand getrennt untersucht und die Konzentrationen der gasförmigen Reaktionsprodukte mittels eines FTIR-Spektrometers gemessen. Basierend hierauf sollen existierende Kinetikmodelle für die Pyrolyse und den Koksabbrand auf ihre Eignung in Oxyfuel-Atmosphäre geprüft und bei Bedarf neu formuliert werden. Die Ergebnisse werden mit Teilprojekt A2 abgeglichen.
Das Projekt "Sonderforschungsbereich Transregio 129 (SFB TRR): Oxyflame - Entwicklung von Methoden und Modellen zur Beschreibung der Reaktion fester Brennstoffe in einer Oxyfuel-Atmosphäre, Teilprojekt C04: Modellierung der Strahlungseigenschaften von Partikeln in Kohlestaubflammen bei der Oxyfuel-Verbrennung" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: RWTH Aachen University, Lehrstuhl für Wärme- und Stoffübertragung.Ausgehend von der physikalischen Beschreibung als Mie/Lorentz-Streuung soll für die bei der Verbrennung auftretenden Partikel eine Modellierung erarbeitet werden, die eine einerseits genaue und andererseits effiziente Wiedergabe der Streuungseigenschaften ermöglicht. Dabei soll die verwendete numerische Methode zur Berechnung des Wärmestrahlungstransports berücksichtigt und die Modellierung daran angepasst werden. Für die zweite Förderperiode soll ein experimenteller Aufbau zur Überprüfung der Strahlungsmodellierung von Partikelwolken konzipiert werden. Weiterhin soll die Veränderung der Strahlungseigenschaften der Partikel während der Verbrennung modelliert werden.
Das Projekt "Sonderforschungsbereich Transregio 129 (SFB TRR): Oxyflame - Entwicklung von Methoden und Modellen zur Beschreibung der Reaktion fester Brennstoffe in einer Oxyfuel-Atmosphäre, Teilprojekt C02: Instationäre Modellierung und Simulation von Oxyfuel-Feuerräumen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Darmstadt, Fachgebiet Energie- und Kraftwerkstechnik (EKT).Modelle und Methoden, die aus den Teilprojekten des SFB/Transregio entwickelt werden, sollen in einem Gesamtmodell zusammengeführt werden, das in diesem Teilprojekt ausgelegt wird. Basierend auf einer fein aufgelösten Referenz-LES wird die Eignung der instationären Simulationsmodelle für die Vorhersage von Oxyfuel-Feuerräumen zunächst untersucht und bewertet. Ein Verbrennungsmodell, das auf dem feld-basiert transportierten 'filtered density function'-Verfahren beruht und für Oxyfuel-Bedingungen angepasst wird, soll bereitgestellt werden. Alle Modelle werden in den CFD Code FASTEST3D integriert und mit Hilfe der experimentellen Daten aus dem SFB/Transregio validiert.
Das Projekt "Sonderforschungsbereich Transregio 129 (SFB TRR): Oxyflame - Entwicklung von Methoden und Modellen zur Beschreibung der Reaktion fester Brennstoffe in einer Oxyfuel-Atmosphäre, Teilprojekt A05: Kinetische Untersuchungen zum Einfluss der katalytischen Eigenschaften mineralischer Bestandteile von Kohleasche auf die Oxyfuel-Verbrennung" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Ruhr-Universität Bochum, Fakultät für Chemie, Lehrstuhl für Technische Chemie.In Teilprojekt A5 soll geklärt werden, ob die mineralischen Bestandteile, wie Na, K, Mg, Ca, Al oder Fe, der Kohle katalytisch aktiv sind und somit Einfluss auf den Oxyfuel-Verbrennungsprozess nehmen. Neben dem Verbrennungsprozess in O2 werden die beschleunigte Einstellung des Boudouard-Gleichgewichts und die Kohlevergasung mit H2O berücksichtigt, die durch Volumenvergrößerung erheblichen Einfluss auf das Strömungsfeld in Flammen nehmen können. Es sollen reale Kohlen aber insbesondere auch synthetische Modellkohlenstoffe untersucht werden, was eine schrittweise Steigerung der Komplexität der untersuchten Systeme erlaubt.
Das Projekt "Sonderforschungsbereich Transregio 129 (SFB TRR): Oxyflame - Entwicklung von Methoden und Modellen zur Beschreibung der Reaktion fester Brennstoffe in einer Oxyfuel-Atmosphäre, B01: Theoretische und experimentelle Untersuchung der Entgasung und Oxidation von Kohlepartikeln in einem Gegenstrombrenner unter Oxyfuel-Bedingungen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Rheinisch-Westfälische Technische Hochschule Aachen University, Institut für Technische Verbrennung.Laminare Oxyfuel-Flammen werden in einer Gegenstromanordnung untersucht. Als Brennstoffe werden unter anderem gasförmige Entgasungssurrogate und Kohlestaub verwendet. Hier wird besonders die Gasphasenchemie betrachtet, aber auch deren Beeinflussung durch die Entgasung und den Koksabbrand. Das Teilprojekt trägt dazu bei, die Interaktion von Strömung und Verbrennung von gasförmigen und festen Brennstoffen unter Oxyfuel-Bedingungen grundlegend zu verstehen und Modelle hierfür zu entwickeln. Der hier zu entwickelnde reaktionskinetische Gasphasen-Mechanismus dient als Grundlage für großskalige numerische Simulationen.
Das Projekt "Sonderforschungsbereich Transregio 129 (SFB TRR): Oxyflame - Entwicklung von Methoden und Modellen zur Beschreibung der Reaktion fester Brennstoffe in einer Oxyfuel-Atmosphäre, Teilprojekt A06: Bestimmung exzesssorptiver Kinetiken, Gleichgewichtsbeladungen und Adsorptionswärmen der Oxyfuel-Gaskomponenten an den eingesetzten Festbrennstoffen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Bergakademie Freiberg, Institut für Wärmetechnik und Thermodynamik, Professur für Technische Thermodynamik.Ziel dieses TP ist, den in anderen TP gekoppelt auftretenden und teilweise geschwindigkeitsbestimmenden Vorgang der Sorption, der z. B. beim Verbrennungsvorgang nicht spezifisch aufgelöst werden kann, selektiv und vollständig zu erfassen. Dazu werden sowohl für die verwendeten Feedgase als auch die entstehenden Pyrolysegaskomponenten die jeweiligen Soprtionskinetiken, Gleichgewichtsbeladungen und Adsorptionswärmen in Abhängigkeit von Druck und Temperatur bestimmt. Mittels IAST-Gemischsorptionsmodellen kann zusätzlich die selektive Sorption von Gasgemischen am Brennstoffkorn im Oxyfuel-Prozess vorhergesagt werden.
Origin | Count |
---|---|
Bund | 120 |
Land | 2 |
Type | Count |
---|---|
Förderprogramm | 118 |
Text | 2 |
Umweltprüfung | 1 |
unbekannt | 1 |
License | Count |
---|---|
geschlossen | 3 |
offen | 118 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 112 |
Englisch | 35 |
Resource type | Count |
---|---|
Archiv | 1 |
Datei | 1 |
Dokument | 2 |
Keine | 64 |
Webseite | 56 |
Topic | Count |
---|---|
Boden | 94 |
Lebewesen & Lebensräume | 83 |
Luft | 96 |
Mensch & Umwelt | 121 |
Wasser | 75 |
Weitere | 122 |