technologyComment of glass fibre production (RER, RoW): Recuperative or oxy-fuel fired furnaces.
Die CI4C GmbH & Co. KG – Cement Innovation for Climate – (CI4C) plant und beantragt eine immissionsschutzrechtliche Änderungsgenehmigung für die Errichtung und den Betrieb einer Pilotanlage zur Herstellung von Zementklinker mit einer Kapazität von 450 t/d nach dem Oxyfuel-Verfahren mit integrierter CO2-Abscheidung. Mit der Errichtung der Pilotanlage soll erstmals das Oxyfuel-Verfahren in der Zementherstellung zum Einsatz kommen, um die Voraussetzungen für eine vollständige und kosteneffiziente Abscheidung der CO2-Emissionen eines Zementwerks zu schaffen.
Die Baubranchen und insbesondere die Zementherstellung ist erheblich für die CO2-Emissionen und Deutschland und weltweit verantwortlich, Das Innovationsprojekt Carbon2Business von Holcim in Lägerdorf ist eines von zwei Projekten in Deutschland und 17 Projekten insgesamt, die die EU mit insgesamt 1,8 Milliarden Euro aus einem Innovationsfonds fördert. Holcim investiert ebenfalls einen dreistelligen Millionenbetrag in das Projekt. Vorgesehen ist der Bau einer neuen Ofenlinie, die als Prototyp im industriellen Maßstab für die Dekarbonisierung der Zementproduktion genutzt werden soll. Die Mittel der EU dienen dem Bau einer nachgeschalteten Kompressions- und Reinigungseinheit für das CO2, das anschließend zu einem Rohstoff für andere Industrien werden soll. Beim Oxyfuel-Verfahren wird statt der Umgebungsluft reiner Sauerstoff in den Verbrennungsprozess des Zementofens eingespeist. Der dafür benötigte Sauerstoff stammt aus Elektrolyse-Vorhaben, bei denen Industriepartner Wasser mit Strom aus erneuerbaren Energien zu Wasserstoff und Sauerstoff aufspalten wollen. Im Ergebnis entsteht beim Oxyfuel-Verfahren im Zementofen sehr reines CO2, das abgeschieden und anschließend durch Methanolsynthese zu Methanol verarbeitet oder als Grundstoff für die chemische Industrie aufbereitet wird. Für die Aufbereitung des abgeschiedenen Kohlendioxids arbeitet Holcim mit Spezialisten von Linde Engineering zusammen. Das Ziel ist es, das CO2 nahezu vollständig abzuscheiden und als Rohstoff in der Industrie nachhaltig weiterzuverwenden. Die Inbetriebnahme ist für 2029 geplant.
Das Projekt "Oxycoal AC - Phase 2b" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Lehrstuhl für Wärme- und Stoffübertragung durchgeführt.
Das Projekt "Stand der Technik von Kraftwerken mit Abscheidung von CO2" wird vom Umweltbundesamt gefördert und von TuTech Innovation GmbH durchgeführt. A) Problemstellung: Zur Begrenzung von CO2-Emissionen in die Atmosphäre sind neue Kraftwerkstypen zum Einsatz von fossilen (oder biogenen) Brennstoffen in der Entwicklung, bei denen das entstehende Kohlendioxid kontrolliert abgeschieden werden soll. Parallel arbeitet die Industrie an Verfahren, auch konventionelle Dampfkraftwerke oder GuD-Anlagen mit einer CO2-Abscheidung nachzurüsten. Die CO2-Abscheidung ist Voraussetzung für den Transport und die beabsichtigte dauerhafte Ablagerung des CO2 ('CCS': Carbon, Capture and Storage). Die neuen Kraftwerkstypen und Abscheideverfahren sollen bis 2020 kommerziell verfügbar sein. B) Handlungsbedarf (BMU oder UBA): CCS-Kraftwerke unterscheiden sich im Aufbau - hier vor allem auf der Feuerungsseite - und Abgasseite - erheblich von bisherigen Dampfkraftwerken oder GuD-Anlagen; der Stand der Technik zur Begrenzung von Umweltbelastungen aus diesen Anlagen (vor allem Emissionen in die Luft wie z.B. SO2, NOx, Staub, Hg, weitere Schwermetalle, aber auch Abwasser, Abfall, ggf. auch Lärm) ist derzeit kaum bekannt. Hinzu kommt, dass die 13. BImSchV (Großfeuerungs- und Gasturbinen-Verordnung) in ihrer gegenwärtigen Form auf CCS-Kraftwerke kaum anwendbar sein wird. Es ist daher erforderlich, in den kommenden ca. 4 Jahren im Rahmen von voraussichtlich 3 oder 4 aufeinander aufbauenden Vorhaben die fachlichen Grundlagen für die immissionsschutzrechtliche Genehmigung von CCS-Kraftwerken zu schaffen. C) Ziel des Vorhabens ist: Identifikation der relevanten Quellen von Umweltbelastungen von CCS-Kraftwerken, Ersterhebung des Standes der Technik der wesentlichen Komponenten von CCS-Kraftwerken, Entwicklung von Vorschlägen, wie die Überwachung künftiger Anforderungen zur Emissionsbegrenzung den besonderen Bedingungen in CCS-Kraftwerken gerecht werden kann. Die nachfolgenden Vorhaben sollen schwerpunktmäßig die künftigen CCS-Pilot- und Demonstrationsanlagen untersuchen (Konkretisierung des Standes der Technik) und schließlich Vorschläge für materielle Anforderungen an kommerzielle CCS-Kraftwerke und deren Überwachung entwickeln.
Das Projekt "Teilprojekt 1: Bau und Erprobung des Vorwärm-Moduls" wird vom Umweltbundesamt gefördert und von UAS Meßtechnik GmbH durchgeführt. Das übergeordnete Ziel dieses Projektes ist die Untersuchung und Integration einer kombinierten Oxy-Fuel-Vorwärmung an einer Bestandsanlage. Weiterhin soll die Regelungsstrecke neu konzipiert und für das integrierte Vorwärmsystem eingestellt werden, um lokale Hot-Spots, ungleichmäßige Wärmeverteilung aufs Glasbad, Beeinflussung der Glasqualität (z. B. durch Schaumbildung), Auswirkungen auf Schadstoffemissionen (z. B. NOx, SOx) und thermische Belastungen am Feuerfestmaterial zu minimieren. Dadurch soll der spezifische Energieverbrauch weiter gesenkt werden. Hierfür hat die Firma UAS ein System entwickelt und am GWI getestet, mit welchem der gasförmige Brennstoff vor Eintritt in den Verbrennungsraum auf Temperaturen bis 400°C vorgewärmt wird. Zusätzlich wird der als Oxidator verwendete Sauerstoff ebenfalls auf dieses Temperaturniveau vorgewärmt, was den Effekt auf die Energieeinsparung nochmals deutlich steigert.
Das Projekt "Forschungsinitiative 'Kraftwerke des 21. Jahrhunderts' (KW21) - Teilprojekt: Kondensation von Wasserdampf aus dem Abgas bei Oxyfuel-Prozessen" wird vom Umweltbundesamt gefördert und von Technische Universität München, TUM School of Engineering and Design, Fakultät für Maschinenwesen, Lehrstuhl für Energiesysteme durchgeführt. Neben der Effizienzsteigerung verbleibt zur Begrenzung bzw. Verminderung der CO2 Emissionen bei weiterhin dominierendem Einsatz von fossilen Energieträgern nur die Abtrennung des Klimagases. Bei der Abtrennung von CO2 sind verschiedene Vorgehensweisen denkbar, die unterschiedlichen Stellen des Umwandlungsprozesses der Primär- zu Nutzenergie eingreifen. Oxyfuel-Prozesse, d.h. die Verbrennung in mit reinem Sauerstoff und Abrechnung des CO2 durch Auskondensieren des Wasserdampfs aus dem Arbeits- und Rauchgas, versprechen Kraftwerksschaltungen mit hohem Wirkungsgrad und integrierter CO2-Abscheidung. In dem Vorhaben sollen die Grundlagen bereitgestellt werden zur Bewertung der Realisierbarkeit der Schlüsselkomponente Kondensator. Kondensatoren mit einem Intergasanteil zwischen 20 und 80 Prozent existieren bisher nicht. Der Wärmübergang im Kondensator wird durch das Intergas CO2 um bis zu drei Größenordnungen herabgesetzt und stellt somit die Voraussetzung dar zur Auslegung des Apparates. Darauf aufbauend sind Kondensatorkonzepte zu entwickeln unter Einbeziehung der Ausschleusung von CO2 aus dem Prozess.
Das Projekt "Vergleichende Untersuchung zur biologischen Umsetzung von Methyl-Tert. Butyl Ether, Butyl Ether, Ethyl-Tert. Butyl Ether, Tert.-Amyl Methyl Ether und Diisopropyl Ether in Ratten und Menschen" wird vom Umweltbundesamt gefördert und von Universität Würzburg, Institut für Pharmakologie und Toxikologie durchgeführt. This study intends to generate comparative data on the biotransformation of ethers added to gasoline in humans and in rats. The proposed experiments will compare the biotransformation of methyl-tert. butyl ether, ethyl-tert. butyl ether and tert.-amyl methyl ether in rats and humans after inhalation exposure. The structures of formed metabolites will be elucidated and their time and exposure concentration dependent excretion will be quantified. The metabolism of these ethers will also be studied in vitro in rat and human liver microsomes to identify the cytochrome P450 enzymes responsible for biotransformation focusing on possible interindividual differences in human biotrans-formation. The obtained data will permit a comparison of the relative excretion of metabolites in humans and rats and interindividual differences in human biotransformation of these ethers. The obtained results will thus serve as a basis for risk comparisons and should contribute to further characterisation of the human risk of exposure to these ethers. The in vivo biotransformation of the ethers will be studied in a dynamic exposure chamber and 6 individuals (three males and three females) will be exposed to 2 concentrations of each of the ethers (5 and 40 ppm for 4 hours). Blood and urine will be collected before the exposure and at predetermined intervals over 48 h after the end of the exposure. Five rats of each sex will be exposed to the ethers under identical conditions. Parent ethers and relevant metabolites will be quantified in the blood samples and relevant metabolites in the urine samples collected. Ether metabolites in urine will be identified by NMR studying the biotransformation of 13C- labelled ethers and quantified by GC/MS. In vitro, thel beiotransformation of the ethers will be studied in liver microsomes (a human liver bank characterized for cytochrome P450 activities with samples from 16 donors is available) and the cytochrome P450 enzyme responsible for the oxidation of the ethers (and potential metabolites) will be identified by the use of P450 enzyme specific inhibitors, inhibitory antibodies and correlation of the rates of ether metabolism with the rates of oxidation of P450 enzyme specific substrates. This laboratory has completed similar studies on CFC-replacements and on trichloroethene (sponsored by the German Occupational Health Council) and is presently using an identical approach comparing the biotransformation of perchloroethene (sponsored by the US EPA).
Das Projekt "Calcium cycle for efficient and low cost CO2 capture in fluidized bed systems (C3-CAPTURE)" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Fakultät für Energietechnik, Institut für Verfahrenstechnik und Dampfkesselwesen durchgeführt. Objectives: The project aims on developing a dry CO2 capture system for atmospheric and pressurized fluidized bed boilers. The atmospheric option will be developed towards a pilot plant application. For the pressurized option the project seeks for a proof of principle to determine if the advantages of a pressurized capture system can balance the problems known from existing PFBC systems. The quantifiable objectives are: - Low CO2 capture costs (less than 20 Euro/t for atmospheric, less than 12 Euro/t for pressurized sy stems) - Acceptable efficiency penalty for CO2 capture (less than about equal to 6 percent nel). - greater than 90 percent carbon capture for new power plants and greater than 60 percent for retrofitted existing plants - A purge gas stream containing greater than 95 percent CO2 - A solid purge usable for cement production - Sim ultaneous sulphur and CO2 removal with sulphur recovery option Approach: Limestone is a CO2 carrier. The CO2 can be released easily in a conventional calcination process, well known in the cement and lime industry. By integrating a closed carbonation/calc ination loop in the flue gas of a conventional CFB-boiler, the CO2 in the flue gas can be removed. The heat required for calcination is released during carbonation and can be utilised efficiently (high temperature) in the steam cycle of the boiler. Concent rated CO2 can be generated when using oxygen blown calcination. Because the fuel required for supplying heat for calcination is only a fraction of the total fuel requirements, the required oxygen is only about 1/3 of the oxygen required for oxyfuel process es. The work programme: 1.Definition of the technical and economic boundary conditions 2.Selection and improvement of sorbent materials 3.Lab scale and semi-technical scale process development (experimental work) 4.Technical and economic evaluation 5.Des ign of a 1 MWth Pilot plant.
Das Projekt "Teilvorhaben C0" wird vom Umweltbundesamt gefördert und von Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg durchgeführt. Das hier vorgestellte Konzept verfolgt einen neuen P2X-Pfad mit signifikanter Effizienz-Steigerung. Dabei erfolgt die Gewinnung von Wasserstoff durch eine Hochtemperatur-Elektrolyse mit keramischem Festelektrolyten, deren elektrischer Wirkungsgrad ca. 120 % beträgt. Dies entspricht einem elektrischen Energiebedarf von 2,5 kWh pro Nm3 H2 (bei heute eingesetzten Elektrolyseuren beträgt der elektrische Energiebedarf typischerweise 4,3 - 5,5 kWh pro Nm3 H2). Dies wird erreicht durch Einkopplung von HT-Wärme aus einer OxyFuel-Verbrennung in die HT-Elektrolyse (Verbrennung eines Brennstoffs, z.B. Biomasse, in O2-Atmosphäre zur Erzeugung eines N2-freien Rauchgases). Der hierfür notwendige Sauerstoff für die Verbrennung wird in der HT-Elektrolyse produziert. In einem weiteren Schritt wird das CO2 aus dem OxyFuel-Prozess mit dem elektrolytisch-erzeugten H2 in einen Kohlenstoff-haltigen Sekundärenergieträger oder Basis-Chemikalien konvertiert. Durch diese Verfahrenskonzeption wird bei reduziertem elektrischen Energiebedarf eine nahezu 100 %ige Umwandlung von biogenem Kohlenstoff in Kraftstoff-Kohlenstoff erreicht. Der Agrarflächenbedarf wird hierbei drastisch reduziert: um bis zu 80 % gegenüber der Erzeugung von Biodiesel oder Bioethanol. Die Steigerung des elektrischen Wirkungsgrades durch die OxyFuel/SOEL-Prozessverschaltung wurde am ZSW mittels Simulation nachgewiesen. Jetzt sollen in der ersten Projektphase die Machbarkeit der Biomasse-Oxyfuel-Verbrennung zur Erzeugung von CO2 und Bereitstellung von HT-Wärme im Labormaßstab gezeigt werden sowie eine simulationsgestützte Konzeptentwicklung zur Verschaltung von HT-Elektrolyse und Oxyfuel-Verbrennung erfolgen. AP1.15: Aufbau einer Laboranlage zur Biomasse-Oxyfuel-Verbrennung AP1.16: Experimentelle Validierung der Biomasse-Oxyfuel-Verbrennung AP1.17: Simulationsgestützte Konzeptentwicklung zur Integration von Oxyfuel-Verbrennung und HT-Elektrolyse
Origin | Count |
---|---|
Bund | 122 |
Land | 1 |
Type | Count |
---|---|
Förderprogramm | 120 |
Text | 2 |
Umweltprüfung | 1 |
License | Count |
---|---|
geschlossen | 2 |
offen | 120 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 123 |
Englisch | 31 |
Resource type | Count |
---|---|
Archiv | 1 |
Datei | 1 |
Dokument | 2 |
Keine | 66 |
Webseite | 55 |
Topic | Count |
---|---|
Boden | 96 |
Lebewesen & Lebensräume | 82 |
Luft | 96 |
Mensch & Umwelt | 122 |
Wasser | 78 |
Weitere | 123 |