API src

Found 473 results.

Related terms

Indikator: Luftqualität in Ballungsräumen

<p>Die wichtigsten Fakten</p><p><ul><li>Die Grundbelastung in deutschen Ballungsräumen überschreitet ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=WHO#alphabar">WHO</a>⁠-Empfehlungen aus dem Jahr 2021 für Feinstaub (⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a>⁠) und Stickstoffdioxid (NO₂) deutlich.</li><li>In der Nähe von Schadstoffquellen können die Belastungen sogar wesentlich höher sein.</li><li>Bei NO₂ und PM2,5 hat sich die Situation seit dem Jahr 2000 erheblich verbessert, die WHO-Empfehlungen von 2021 werden aber noch deutlich überschritten.</li><li>Die Belastung durch Ozon und PM2,5 ist stark von der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Witterung#alphabar">Witterung</a>⁠ abhängig. Die Werte schwanken deshalb stark.</li></ul></p><p>Welche Bedeutung hat der Indikator?</p><p>Stickstoffdioxid (NO2), Feinstaub (⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a>⁠) und Ozon (O3) sind besonders relevant für die menschliche Gesundheit. Alle drei Schadstoffe belasten die Atemorgane. Auch Ökosysteme werden durch Ozon geschädigt.</p><p>Im Jahr 2021 veröffentlichte die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=WHO#alphabar">WHO</a>⁠ aktualisierte Empfehlungen zur Luftqualitätsbewertung auf Basis neuester wissenschaftlicher Erkenntnisse zu den gesundheitlichen Wirkungen von Luftschadstoffen (<a href="https://apps.who.int/iris/handle/10665/345329">WHO 2021</a>), die zur Bewertung des Indikators herangezogen werden.</p><p>Prekär ist die Luftqualität vor allem in Ballungsräumen, in denen ein Drittel der deutschen Bevölkerung lebt: Industrie, Verkehr und Wohngebiete liegen hier nah beieinander. Einbezogen werden die Messstationen, die die Belastung im „städtischen Hintergrund“ messen, also die Grundbelastung der Stadt. An verkehrsreichen Standorten in Städten kann die Belastung jedoch deutlich höher sein. Der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a>⁠ stellt den mittleren Abstand aller Messstationen im städtischen Hintergrund von den Richtwerten der WHO dar.</p><p>Wie ist die Entwicklung zu bewerten?</p><p>Seit dem Jahr 2000 ist die Belastung durch Stickstoffdioxid und Feinstaub deutlich zurückgegangen, liegt aber auch aktuell noch weit über dem Ziel, bei Stickstoffdioxid 28 % über dem Ziel und bei ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a>⁠ ca. 61 %. Die Ozonbelastung ist stark schwankend. Dies liegt vor allem am Einfluss der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Witterung#alphabar">Witterung</a>⁠: In heißen Sommern wie 2003 oder 2015 steigt die Ozon-Konzentration stark an. Deshalb kann für die letzten Jahre keine Aussage über den Trend der Entwicklung gemacht werden.</p><p>Die EU schrieb ihre Luftqualitäts-Ziele 2008 in der <a href="http://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX:32008L0050">Luftqualitäts-Richtlinie</a> fest (EU-RL 2008/50/EG), im Oktober 2022 legte die Kommission einen Vorschlag zur Revision dieser Richtlinie vor (<a href="https://environment.ec.europa.eu/publications/revision-eu-ambient-air-quality-legislation_en">KOM 2022</a>), der die neuen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=WHO#alphabar">WHO</a>⁠-Empfehlungen 2021 berücksichtigen soll. Doch auch einige der weniger ambitionierten Ziele der derzeitigen EU-Richtlinie verfehlt Deutschland noch <a href="https://www.umweltbundesamt.de/publikationen/luftqualitaet-2024">(UBA 2025)</a>. Bis die Luft in den Ballungsräumen wirklich ausreichend „sauber“ ist, ist also noch ein weiter Weg zu gehen.</p><p>Wie wird der Indikator berechnet?</p><p>Der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a>⁠ basiert auf Messdaten der Luftqualitätsmessnetze der Bundesländer. Betrachtet werden alle Messstellen eines Ballungsraums zur Messung der Belastung im städtischen oder vorstädtischen Hintergrund. Für diese Messstellen wird die Über- oder Unterschreitung der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=WHO#alphabar">WHO</a>⁠-Empfehlungen 2021 für die drei Schadstoffe NO₂, ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a>⁠ und O₃ berechnet. Für jeden Ballungsraum wird der mittlere Abstand der Werte aller Messstationen zur WHO-Empfehlung 2021 errechnet. Die mittleren Abstände werden dann über alle Ballungsräume gemittelt und mit dem Wert der WHO-Empfehlung 2021 normiert.</p><p><strong>Ausführliche Informationen zum Thema finden Sie im Daten-Artikel <a href="https://www.umweltbundesamt.de/daten/luft/luftbelastung-in-ballungsraeumen">„Luftbelastung in Ballungsräumen“</a>.</strong></p>

Tripelelement-Stabilisotopensignaturen zur Untersuchung des atmosphärischen Chlormethanbudgets

Die stratosphärische Ozonschicht absorbiert die UV-C und UV-B Sonnenstrahlung und schützt damit Pflanzen, Tiere und Menschen vor Strahlenschäden. Durch anthropogen emittierte Fluorchlorkohlenwasserstoffe (FCKWs) wird die Ozonschicht abgebaut. Da FCKWs seit dem Montrealer Protokoll stark zurückgegangen sind, werden halogenierte Verbindungen wie Chlormethan (CH3Cl), die aus natürlichen Quellen freigesetzt werden, für den Abbau der Ozonschicht in der Stratosphäre zunehmend relevant. CH3Cl ist das am häufigsten vorkommende chlorhaltige Spurengas in der Erdatmosphäre, das für etwa 17% der durch Chlor katalysierten Ozonzerstörung in der Stratosphäre verantwortlich ist. Daher wird CH3Cl vornehmlich die zukünftigen Gehalte an stratosphärischem Chlor bestimmen. Die aktuellen Schätzungen des globalen CH3Cl-Budgets und die Verteilung der Quellen und Senken sind sehr unsicher. Ein besseres Verständnis des atmosphärischen CH3Cl-Budgets ist daher das Hauptziel dieses Projektes.Die Analyse stabiler Isotopenverhältnisse von Wasserstoff (H), Kohlenstoff (C) und Chlor (Cl) hat sich zu einem wichtigen Werkzeug zur Untersuchung des atmosphärischen CH3Cl-Budgets entwickelt. Das zugrundeliegende Konzept besteht darin, dass das atmosphärische Isotopenverhältnis einer Verbindung wie CH3Cl gleich der Summe der Isotopenflüsse aus allen Quellen angesehen werden kann, korrigiert um den gewichteten durchschnittlichen kinetischen Isotopeneffekt aller Abbauprozesse. Dadurch ist es möglich, die Bedeutung wichtiger Quellen und Senken mit bekannten Isotopensignaturen zu entschlüsseln. Eine Grundvoraussetzung für detaillierte Hochrechnungen des globalen Budgets ist die Bestimmung der durchschnittlichen Isotopenverhältnisse von H, C und Cl des troposphärischen CH3Cl. Aufgrund der relativ geringen Konzentration von atmosphärischem CH3Cl von ~550 ppbv stellt dies eine große messtechnische Herausforderung dar. Daher liegt der Schwerpunkt dieses Antrags auf der erfolgreichen Entwicklung von Dreifachelement-Isotopenmethoden zur genauen Messung von atmosphärischem CH3Cl.Im ersten Schritt wird ein Probenahmesystem für große Luftmengen konstruiert und für die Messungen der stabilen Isotopenverhältnisse von CH3Cl optimiert. Das Probenahmegerät wird zunächst im Labor getestet und dann zum Sammeln von Luftproben an drei verschiedenen Orten eingesetzt: an der Universität Heidelberg, am Hohenpeißenberg und im Schneefernerhaus. Die Probenahmen werden über einen Zeitraum von einem Jahr durchgeführt, um möglichst auch saisonale Schwankungen zu erfassen. Die Isotopenverhältnisse der Proben werden mit modernsten massenspektrometrischen Methoden im Labor gemessen. Die Ergebnisse aller Standorte und Zeitpunkte werden in der Gesamtheit evaluiert, um die durchschnittlichen stabilen H-, C und Cl-Isotopenwerte einschließlich ihrer saisonalen Schwankungen darzustellen. Abschließend werden die Daten hinsichtlich ihrer Anwendbarkeit für komplexe numerische Modelle kritisch diskutiert.

Integriertes ökologisches Monitoring der Auswirkungen von Klimaveränderungen in Hessen

Die Konzentrationen vieler natürlicherweise in der bodennahen Atmosphäre vorhandener Luftinhaltsstoffe sind aufgrund vielfältiger menschlicher Aktivitäten wie Einsatz fossiler Energieträger, industrielle Produktion und Intensivierung der Landwirtschaft in den letzten Jahrzehnten beträchtlich angestiegen. Der globale Anstieg klimawirksamer Spurengase wie Kohlenstoffdioxid (CO2), Methan (CH4), Distickstoffoxid (N2O), FCKW und Ozon (O3) soll nach Modellrechnungen bei anhaltenden bzw. weiter steigenden Emissionen im Verlauf des nächsten Jahrhunderts zu Veränderungen des globalen und regionalen Klimas führen. Weiterhin ist auch ein Anstieg der bodennahen UV-B-Strahlung nicht auszuschließen, sofern sich der Abbau der stratosphärischen Ozonschicht weiter fortsetzt. Gleichzeitig können Organismen und Ökosysteme unmittelbar durch die steigenden CO2- und O3-Konzentrationen beeinflusst werden. Ziel dieses Projektes ist es deshalb, die Auswirkungen des sich ändernden chemischen (insbesondere steigende CO2- und O3-Konzentrationen) und physikalischen (steigende globale Lufttemperaturen) Klimas auf Flora, Fauna und Boden eines extensiv genutzten Grünland-Ökosystems beispielhaft zu erfassen. Aufgrund der relativ geringen Häufigkeit und Intensität der Bewirtschaftungsmaßnahmen und der langen Lebensdauer bietet sich das Dauergrünland unter Wiesennutzung als besonders geeignetes System zur Abschätzung der langfristigen Auswirkungen von Klimaveränderungen im Ökosystem an. Das Vorhaben lässt sich in folgende Schwerpunkte gliedern: - Kontinuierliche Bestimmung der Konzentrationen von Luftinhaltsstoffen in der Umgebungsluft (insbesondere Ozon, CO2 und Stickstoffoxide) - Kontinuierliche Bestimmung des Austausches klimarelevanter Spurengase in der Grenzschicht Biosphäre/Atmosphäre (insbesondere CO2, H2O, Ozon, N2O, Methan) - Zeitreihenuntersuchungen auf Dauerbeobachtungsflächen - Experimentelle Manipulation der Konzentration von Luftinhaltsstoffen ( CO2, Ozon) in der Umgebungsluft zur Abschätzung ihrer langfristigen Auswirkungen auf Flora, Fauna und Boden des Ökosystems.

Witterungsverhältnisse

Witterungsverhälnisse in Dortmund pro Jahr von 1990 - 2023. Stand 31.12.Die Ozonwerte wurden an der Station Dortmund-Eving, Burgweg, alle anderen in Unna-Königsborn gemessen. Quelle bis 1999 Wetterstation Hauptfriedhof Dortmund, ab 2000 Landesumweltamt NRW.

Einfluss des Ozonabbaus auf die UV -Belastung

Einfluss des Ozonabbaus auf die UV -Belastung Die UV - Strahlung der Sonne, die so genannte "solare UV - Strahlung ", mit Wellenlängen von 100 Nanometer ( nm ) bis 400 nm wird wellenlängenabhängig durch das Ozon in der Stratosphäre mehr oder weniger absorbiert. Durch eine Verringerung der Ozonkonzentration in der Atmosphäre erhöht sich der Anteil an UV -B- Strahlung , der die Erdoberfläche erreicht. Erhöht sich der UV -B-Anteil, steigt auch die Gesamt- UV -Strahlungsbelastung für die Bevölkerung. Dies bedeutet ein erhöhtes Risiko für UV -bedingte Erkrankungen. Der menschgemachte Ozonabbau ist nicht nur Ursache für das Ozonloch über der Antarktis. Er führte weltweit zu einer mehr oder minder ausgeprägten Erhöhung des UV -B-Anteils - in den mittleren Breitengraden der nördlichen Hemisphäre und damit auch über Deutschland um ca. 7 % im Winter/Frühling und um ca. 4 % im Sommer/Herbst. Quelle: @nt/stock.adobe.com Das Ozon in der Atmosphäre verhindert, dass die gesamte UV - Strahlung , die von der Sonne abgegeben wird, die so genannte "solare UV - Strahlung ", die Erde erreicht. Diese Filterfunktion des Ozons ist stark wellenlängenabhängig: Je kleiner die Wellenlänge der UV - Strahlung , desto weniger erreicht davon die Erde. So passiert die langwellige UV -A- Strahlung mit Wellenlängen von 315 nm bis 400 nm ungehindert die Ozonschicht, während nur noch 10 % der UV -B- Strahlung (Wellenlängen 280 nm bis 315 nm ) zur Erde gelangen. UV -C- Strahlung (280 nm bis 100 nm ) erreicht die Erde gar nicht. Ändert sich der Ozongehalt in der Atmosphäre, bewirkt dies eine Veränderung des Anteils an UV -B- Strahlung , der die Erde erreicht: Eine kleinere Ozonkonzentration bedeutet eine Erhöhung des UV -B-Anteils. Eine höhere Ozonkonzentration verringert den UV -B-Anteil. Erhöht sich der UV -B-Anteil, steigt auch die Gesamt- UV -Strahlungsbelastung für die Bevölkerung. Dies bedeutet ein erhöhtes Risiko für UV -bedingte Erkrankungen, insbesondere für UV -bedingte Krebserkrankungen an Auge und Haut. Schwankungen des Ozongehalts Etwa 90 % der gesamten Ozonmenge in der Atmosphäre entfallen auf die Stratosphäre , etwa 10 % auf die darunterliegende Troposphäre . Der atmosphärische Gesamtozongehalt unterliegt in unseren Breitengraden jahreszeitlichen, natürlichen Schwankungen mit einem Maximum im Frühjahr und einem Minimum im Herbst. Zusätzlich können so genannte Niedrig-Ozon-Ereignisse verschiedenen Ursprungs auftreten. Zum einen kann in sehr kalten Wintern über der Arktis ein starker Ozonabbau erfolgen. Die ozonarmen Luftmassen daraus können mit Auflösen des Polarwirbels in gemäßigte Breiten transportiert werden. Das kann dann im März/ Anfang April für einige wenige Tage zu ungewöhnlich hohen UV -Intensitäten in Deutschland führen. Der UV-Index kann sich dann vorübergehend um bis zu drei UV-Index -Werte erhöhen. Zum anderen kann auch ein Zustrom ozonarmer Luft aus subtropischen Breiten erfolgen, wodurch ebenfalls für einige Tage in Deutschland UV -Intensitäten auftreten können, die über dem normalerweise erwartbaren Niveau liegen. Das Bundesamt für Strahlenschutz beobachtet dies genau und warnt über den UV - Newsletter des BfS und die Social-Media-Kanäle des BfS zeitnah. Der menschgemachte Ozonabbau Der menschgemachte Ozonabbau ist nicht nur Ursache für das Ozonloch über der Antarktis, sondern führte weltweit zu einer mehr oder minder ausgeprägten Erhöhung des UV -B-Anteils. In den mittleren Breitengraden der Nordhalbkugel – und damit auch für Deutschland – reduzierte sich die stratosphärische Ozonschicht um etwa 3 % . Dies führte zu einem Anstieg der sonnenbrandwirksamen UV -Bestrahlungsstärke um ca. 7 % im Winter/Frühling und um ca. 4 % im Sommer/Herbst. Inzwischen scheint sich aufgrund der Einhaltung des Montrealer Protokolls die Ozonschicht der Erde zu erholen. Es wird erwartet, dass die Ozonschichtdicke über den mittleren Breitengraden der Nordhalbkugel in den nächsten Jahrzehnten wieder die Werte der 1980er-Jahre erreichen wird. Aber es gibt auch Hinweise, dass Wechselwirkungen zwischen den Treibhausgasen (Stichwort globale Erwärmung, Klimawandel) und den ozonbildenden Prozessen in der Atmosphäre diese Erholung verzögern könnten. Stand: 13.05.2025

Ozon-Belastung

<p>Die Höhe der Ozon-Spitzenkonzentrationen und die Häufigkeit sehr hoher Ozonwerte haben seit Mitte der 1990er-Jahre deutlich abgenommen. Der Zielwert zum Schutz der menschlichen Gesundheit wird jedoch weiterhin überschritten. Im Unterschied zu der Entwicklung der Spitzenwerte nahmen die Ozon-Jahresmittelwerte in städtischen Wohngebieten im gleichen Zeitraum zu.</p><p>Überschreitung von Schwellenwerten</p><p>Um gesundheitliche Risiken für die Bevölkerung bei kurzfristiger ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Exposition#alphabar">Exposition</a>⁠ gegenüber erhöhten Ozonkonzentrationen auszuschließen, legt die <a href="https://www.bmuv.de/gesetz/39-verordnung-zur-durchfuehrung-des-bundes-immissionsschutzgesetzes/">39. BImSchV</a> Informations- und Alarmschwellenwerte fest (siehe Tab. „Zielwerte, langfristige Ziele und Alarmschwellen für den Schadstoff Ozon“). Der Informationsschwellenwert von 180 Mikrogramm pro Kubikmeter (µg/m³), gemittelt über eine Stunde, dient dem Schutz der Gesundheit besonders empfindlicher Bevölkerungsgruppen. Bei der Überschreitung des Alarmschwellenwertes von 240 µg/m³, gemittelt über eine Stunde, besteht ein Gesundheitsrisiko für die Gesamtbevölkerung.</p><p>Seit 1995 hat die Zahl der Stunden mit Ozonwerten über 180 beziehungsweise 240 µg/m³ deutlich abgenommen (siehe Abb. „Überschreitungsstunden der Informationsschwelle (180 µg/m³) für bodennahes Ozon, Mittelwert über ausgewählte Stationen“ und Abb. „Überschreitungsstunden der Alarmschwelle (240 µg/m³) für bodennahes Ozon, Mittelwert über ausgewählte Stationen)“). Diese Abnahme ist von zwischenjährlichen Schwankungen überlagert, die auf die jährlich schwankenden meteorologischen sommerlichen Witterungsbedingungen zurückzuführen sind. Besonders deutlich ist dies im Jahr 2003 erkennbar. Im Sommer 2003 wurde eine außergewöhnlich langanhaltende Wettersituation beobachtet, welche die Ozonbildung begünstigte. Der Ozonsommer 2003 ist daher hinsichtlich der Spitzenwerte ein Sonderfall.</p><p>Verglichen mit dem Jahr 1990 sind die Emissionen der Ozonvorläuferstoffe (Stickstoffoxide und flüchtige organische Verbindungen ohne Methan) in Deutschland bis 2023 um 70 % beziehungsweise 75 % zurückgegangen (siehe <a href="https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/stickstoffoxid-emissionen">„Stickstoffoxid-Emissionen“</a> und <a href="https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/emission-fluechtiger-organischer-verbindungen-ohne">„Emission flüchtiger organischer Verbindungen ohne Methan“</a>). Der geringere Ausstoß von Ozonvorläufersubstanzen führte bereits in den 1990er Jahren zu einer Abnahme der Ozonspitzenwerte.</p><p>Zielwerte und langfristige Ziele für Ozon</p><p>Seit 2010 gibt es zum Schutz der menschlichen Gesundheit für Ozon einen europaweit einheitlichen Zielwert: 120 Mikrogramm pro Kubikmeter (µg/m³) als 8-Stunden-Mittel sollen nicht öfter als 25-mal pro Kalenderjahr, gemittelt über drei Jahre, überschritten werden. Um die meteorologische Variabilität der einzelnen Jahre bei einer langfristigen Betrachtung zu berücksichtigen, wird über einen Zeitraum von drei Jahren gemittelt. Die meisten Überschreitungen werden an ländlichen Hintergrundstationen registriert, also entfernt von den Quellen der Vorläuferstoffe (siehe Abb. „Prozentualer Anteil der Messstationen mit Überschreitung des Zielwertes für Ozon“). Das liegt daran, dass Stickstoffmonoxid (NO), das in Autoabgasen enthalten ist, mit Ozon reagiert. Dabei wird Ozon abgebaut, so dass die Ozonbelastung in Innenstädten deutlich niedriger ist. Andererseits werden die Ozonvorläuferstoffe mit dem Wind aus den Städten heraus transportiert und tragen entfernt von deren eigentlichen Quellen zur Ozonbildung bei.</p><p>Langfristig soll der 8-Stunden-Mittelwert von 120 µg/m³ während eines Kalenderjahres nicht mehr überschritten werden. Dieses Ziel wird in Deutschland allerdings an kaum einer Station eingehalten. Die höchste Zahl an Überschreitungstagen wird üblicherweise an ländlichen Hintergrundstationen registriert (siehe Abb. „Zahl der Tage mit Überschreitung des Ozon-Zielwertes (120 µg/m³) zum Schutz der menschlichen Gesundheit, Mittelwert über ausgewählte Stationen“).</p><p>Entwicklung der Jahresmittelwerte</p><p>Jahresmittelwerte der Ozonkonzentrationen spielen bei der Bewertung der Belastung eine nachgeordnete Rolle. Dennoch können sie zur Beurteilung der Immissionssituation verwendet werden. Die Jahresmittelwerte haben eine größere Bedeutung für die langfristige Entwicklung der Ozonbelastung, sofern historische Werte herangezogen werden.</p><p>Die Jahresmittelwerte der Ozonkonzentration von 1995 bis 2024 zeigen an städtischen Stationen insgesamt einen zunehmenden Trend. Einerseits nahmen die Ozonspitzenwerte durch die Minderungsmaßnahmen für die NOx- und ⁠<a href="https://www.umweltbundesamt.de/service/glossar/n?tag=NMVOC#alphabar">NMVOC</a>⁠-Emissionen in Deutschland deutlich ab, andererseits führte dies wegen der Verringerung des Titrationseffekts (Ozonabbau durch Stickstoffmonoxid) zu einem Anstieg der mittelhohen Ozonkonzentrationen, was schließlich bei den Jahresmittelwerten sichtbar wird (siehe Abb. „Trend der Ozon-Jahresmittelwerte“). Zudem wird von einer zunehmenden Bedeutung des interkontinentalen (hemisphärischen) Transports für die Ozonbelastung in Deutschland und Europa aufgrund der industriellen Emissionen in Asien und Nordamerika ausgegangen.</p><p>Bodennahes Ozon</p><p>Ozon (O3) wird nicht direkt freigesetzt, sondern bildet sich in den unteren Luftschichten der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a>⁠ bis in etwa zehn Kilometer Höhe bei intensiver Sonneneinstrahlung durch komplexe photochemische Reaktionen von Sauerstoff und Luftverunreinigungen. Vor allem flüchtige organische Verbindungen (⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=VOC#alphabar">VOC</a>⁠ = volatile organic compounds) einschließlich Methan sowie Stickstoffoxide (NOx) sind an diesen Reaktionen beteiligt.</p><p>Herkunft</p><p>Die Emissionen von flüchtigen organischen Verbindungen und Stickstoffoxiden, den sogenannten Ozon-Vorläuferstoffen, werden überwiegend durch den Menschen verursacht. Hinzu kommt eine natürliche sogenannte Ozon-Hintergrundbelastung, die von hemisphärischem Transport und natürlichen Bildungsprozessen herrührt. Eine wichtige Quelle für die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Emission#alphabar">Emission</a>⁠ der Ozon-Vorläuferstoffe stellt der Kraftfahrzeugverkehr dar. Darüber hinaus werden besonders aus dem Kraftwerksbereich Stickstoffoxide und aus der Anwendung von Lacken und Lösungsmitteln flüchtige organische Verbindungen emittiert (siehe <a href="https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/stickstoffoxid-emissionen">„Stickstoffoxid-Emissionen“</a> und <a href="https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/emission-fluechtiger-organischer-verbindungen-ohne">„Emission flüchtiger organischer Verbindungen ohne Methan“</a>). Die Emissionen sind teilweise auch natürlichen Ursprungs, zum Beispiel Ausdünstungen flüchtiger organischer Stoffe aus Laub- und Nadelbäumen.</p><p>Gesundheitliche Wirkungen </p><p>Viele Menschen leiden an Tagen hoher Ozonkonzentration an Reizungen der Augen (Tränenreiz) und Schleimhäute (Husten) sowie − verursacht durch Begleitstoffe des Ozons − an Kopfschmerzen. Diese Reizungen sind von der körperlichen Aktivität weitgehend unabhängig. Ihr Ausmaß wird primär durch die Aufenthaltsdauer in der ozonbelasteten Luft bestimmt.</p><p>Die Empfindlichkeit der Menschen gegenüber Ozon ist sehr unterschiedlich ausgeprägt. Eine Risikogruppe lässt sich nicht genau eingrenzen. Man geht davon aus, dass etwa 10 bis 15 Prozent der Bevölkerung (quer durch alle Bevölkerungsgruppen) besonders empfindlich auf Ozon reagieren.</p><p>Vor allem die Atemwege sind von der Ozonwirkung betroffen. Neben Reizungen der Schleimhäute in den oberen Atemwegen kann Ozon bei tiefer oder häufiger Einatmung (etwa bei körperlicher Aktivität) verstärkt bis in die tiefen Lungenabschnitte gelangen und dort durch seine hohe Reaktionsbereitschaft Gewebe schädigen und entzündliche Prozesse auslösen. Vor allem nach reger körperlicher Aktivität im Freien wurde bei Schulkindern und Erwachsenen eine verminderte Lungenfunktion nachgewiesen. Diese funktionellen Veränderungen und Beeinträchtigungen normalisierten sich im Allgemeinen spätestens 48 Stunden nach Expositionsende. Im Gegensatz zur Veränderung der Lungenfunktionswerte bildeten sich entzündliche Reaktionen des Lungengewebes nur teilweise zurück.</p><p>Die Reizwirkungen sind im Sinne einer Vorschädigung des Lungengewebes zu verstehen, durch die sowohl eine Sensibilisierung durch chemische oder biologische Allergene ermöglicht als auch die Auslösung von allergischen Symptomen begünstigt werden kann.</p><p>Messdaten</p><p>Die Ozonkonzentration wird an rund 260 Messstationen in Deutschland überwacht. An den Messstellen, die das Umweltbundesamt im ländlichen Hintergrund betreibt, wurde im Zeitraum 1980 bis zum Ende der 1990er-Jahre ein Anstieg der Jahresmittelwerte der Ozonkonzentration registriert, der sich in den folgenden Jahren nicht fortsetzte.</p>

Umweltindikatoren NRW

Die Umweltindikatoren des LANUK sind Mess- und Kennzahlen, mit denen sowohl die aktuelle Umweltsituation als auch Entwicklungstrends übersichtlich dargestellt und bewertet werden können. Durch Umweltindikatoren werden komplexe Aspekte, wie z. B. die Luftqualität, die Gewässergüte , der Energie- und Rohstoffverbrauch oder die Inanspruchnahme von Freiflächen messbar. Eine Beschreibung des Umweltzustandes durch Umweltindikatoren erhebt nicht den Anspruch, ein vollständiges Bild zu zeichnen. Vielmehr sollen relevante Teilaspekte hervorgehoben werden, deren Zustand und Entwicklung von besonderem Interesse ist. Entsprechend dem Erhebungsturnus wird auf Basis der jeweils verfügbaren Daten der Indikatorensatz im Internet einmal im Jahr aktualisiert. Im Datensatz sind Zeitreihendaten zu den folgenden NRWUmweltindikatoren enthalten: -Treibhausgasemissionen -Erneuerbare Energien bei Primärenergie- und Bruttostromverbrauch -Kraft-Wärme-Kopplung bei Nettostromerzeugung -Primär- und Endenergieverbrauch -Energieproduktivität -Rohstoffverbrauch und Rohstoffproduktivität -Stickstoffoxidemissionen -Stickstoffdioxidkonzentration im städtischen Hintergrund -Ozonkonzentration im städtischen Hintergrund -Feinstaubkonzentration im städtischen Hintergrund -Lärmbelastung -Haushaltsabfälle und Verwertung -Flächenverbrauch -Schwermetalleintrag an ländlichen Stationen -Ökologischer Zustand der oberirdischen Fließgewässer -Nitratkonzentration im Grundwasser -Gefährdete Arten -Naturschutzflächen -Laub-/Nadelbaumanteil -Waldzustand -Stickstoff- und Säureeintrag -Ökologische Landwirtschaft -Landwirtschaftsflächen mit hohem Naturwert -Stickstoff-Flächenbilanz (Stickstoff-Überschuss der landwirtschaftlich genutzten Fläche)

Messung des bodennahen Ozons

Die laufende Messung des bodennahen Ozons ist in einer Grossstadt von grosser Bedeutung fuer Umweltfragen. Die Konzentration des bodennahen Ozons ist ein empfindlicher Modikator fuer stagnierende Luft. Ozonwerte, die wesentlich ueber dem Durchschnitt liegen, weisen auf eine Smoglage hin.

Untersuchungen von Luftschadstoffen im Hinblick auf eine Klaerung der Ursachen der neuartigen Waldschaeden unter kontrollierten Bedingungen

Untersucht werden in erster Linie Wirkungen von Ozon allein oder in Kombination mit saurem Nebel unter kontrollierten Bedingungen. Als Arbeitshypothese liegt das Wirkungsschema der LIS zur Entstehung der neuartigen Waldschaeden zugrunde (siehe LIS-Bericht Nr. 28). Zur experimentellen Untersuchung der O3-Wirkung werden Waldbaeume in Plexiglaskammern mit gefilterter Luft unter Zusatz von Ozon begast und die verschiedenen physiologischen Parameter verfolgt. Dabei konnte festgestellt werden, dass unter O3-Einfluss a) die Photosyntheserate reduziert wird, b) die Atmungsrate ansteigt, c) der Chlorophyllgehalt abnimmt. Es laesst sich eine vorlaeufige Rangfolge der Sensitivitaet wie folgt aufstellen 1) Buchen 2) Ahorn 3) Fichte 4) Tanne. Zur Wirkung der kombinierten Behandlung von Fichten mit Ozon und saurem Nebel werden vor allem die aus den Baeumen ausgewaschenen Naehrstoffe analysiert. In Abhaengigkeit von der Ozonkonzentration werden Ca++, Mg++, K+, Mn+, NO3- und SO4-- verstaerkt ausgewaschen, Cl- dagegen nicht. Mit sinkendem pH-Wert in der Nebelloesung nimmt die Menge ausgewaschener Ionen ebenfalls zu.

Dynamik des Feinwurzelsystems von Buche und Fichte bei unterschiedlicher Ozonbelastung

Wachstum und Mortalität des Feinwurzelsystems hängen von vielen abiotischen Faktoren wie Nährstoff-, Wasser- und Sauerstoffversorgung ab. Neben diesen Faktoren kann die Ozonbelastung der oberirdischen Pflanzenteile zur Verringerung des Wurzelwachstums führen. Im Zusammenhang mit der zentralen Hypothese des SFB 607, dass 'Steigerung der Stresstoleranz zu Einschränkungen im Wachstum und Konkurrenzverhalten führt', sollen folgende Fragen beantwortet werden: 1. Wie eng ist der Zusammenhang zwischen Dynamik des Feinwurzelsystems und den abiotischen Faktoren im Wurzelraum? 2. Welchen Einfluss hat darüber hinaus doppelt ambiente Ozonkonzentration im Kronenraum auf die Dynamik des Feinwurzelsystems? 3. Wie verändert sich die Feinwurzeldynamik der Jungbäume unter interspezifischer Konkurrenz und bei zusätzlichem Phytophthora-Befall? Die Dynamik des Feinwurzelsystems wird mit Hilfe von Minirhizotronen mit gekoppelter TDR-, Sauerstoff- und Temperatursensoren und Minisaugkerzen erfasst. Die Auswertung der Feinwurzelaufnahmen erfolgt lagegenau anhand der entzerrten digitalen Bilder mit einem geographischen Informationssystem. Die so analysierten Daten gewinnen aufgrund ihres Raumbezuges eine höhere Aussagekraft gegenüber bisherigen Rhizotronuntersuchungen. Neben der Beantwortung der obigen Fragen liefert das Vorhaben auch eine wichtige Datengrundlage für mehrere Teilprojekte des SFB 607 'Wachstum und Parasitenabwehr'.

1 2 3 4 546 47 48