API src

Found 466 results.

Related terms

METOP GOME-2 - Ozone (O3) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B, and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational ozone total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. The new improved DOAS-style (Differential Optical Absorption Spectroscopy) algorithm called GDOAS, was selected as the basis for GDP version 4.0 in the framework of an ESA ITT. GDP 4.x performs a DOAS fit for ozone slant column and effective temperature followed by an iterative AMF / VCD computation using a single wavelength. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/

Tripelelement-Stabilisotopensignaturen zur Untersuchung des atmosphärischen Chlormethanbudgets

Die stratosphärische Ozonschicht absorbiert die UV-C und UV-B Sonnenstrahlung und schützt damit Pflanzen, Tiere und Menschen vor Strahlenschäden. Durch anthropogen emittierte Fluorchlorkohlenwasserstoffe (FCKWs) wird die Ozonschicht abgebaut. Da FCKWs seit dem Montrealer Protokoll stark zurückgegangen sind, werden halogenierte Verbindungen wie Chlormethan (CH3Cl), die aus natürlichen Quellen freigesetzt werden, für den Abbau der Ozonschicht in der Stratosphäre zunehmend relevant. CH3Cl ist das am häufigsten vorkommende chlorhaltige Spurengas in der Erdatmosphäre, das für etwa 17% der durch Chlor katalysierten Ozonzerstörung in der Stratosphäre verantwortlich ist. Daher wird CH3Cl vornehmlich die zukünftigen Gehalte an stratosphärischem Chlor bestimmen. Die aktuellen Schätzungen des globalen CH3Cl-Budgets und die Verteilung der Quellen und Senken sind sehr unsicher. Ein besseres Verständnis des atmosphärischen CH3Cl-Budgets ist daher das Hauptziel dieses Projektes.Die Analyse stabiler Isotopenverhältnisse von Wasserstoff (H), Kohlenstoff (C) und Chlor (Cl) hat sich zu einem wichtigen Werkzeug zur Untersuchung des atmosphärischen CH3Cl-Budgets entwickelt. Das zugrundeliegende Konzept besteht darin, dass das atmosphärische Isotopenverhältnis einer Verbindung wie CH3Cl gleich der Summe der Isotopenflüsse aus allen Quellen angesehen werden kann, korrigiert um den gewichteten durchschnittlichen kinetischen Isotopeneffekt aller Abbauprozesse. Dadurch ist es möglich, die Bedeutung wichtiger Quellen und Senken mit bekannten Isotopensignaturen zu entschlüsseln. Eine Grundvoraussetzung für detaillierte Hochrechnungen des globalen Budgets ist die Bestimmung der durchschnittlichen Isotopenverhältnisse von H, C und Cl des troposphärischen CH3Cl. Aufgrund der relativ geringen Konzentration von atmosphärischem CH3Cl von ~550 ppbv stellt dies eine große messtechnische Herausforderung dar. Daher liegt der Schwerpunkt dieses Antrags auf der erfolgreichen Entwicklung von Dreifachelement-Isotopenmethoden zur genauen Messung von atmosphärischem CH3Cl.Im ersten Schritt wird ein Probenahmesystem für große Luftmengen konstruiert und für die Messungen der stabilen Isotopenverhältnisse von CH3Cl optimiert. Das Probenahmegerät wird zunächst im Labor getestet und dann zum Sammeln von Luftproben an drei verschiedenen Orten eingesetzt: an der Universität Heidelberg, am Hohenpeißenberg und im Schneefernerhaus. Die Probenahmen werden über einen Zeitraum von einem Jahr durchgeführt, um möglichst auch saisonale Schwankungen zu erfassen. Die Isotopenverhältnisse der Proben werden mit modernsten massenspektrometrischen Methoden im Labor gemessen. Die Ergebnisse aller Standorte und Zeitpunkte werden in der Gesamtheit evaluiert, um die durchschnittlichen stabilen H-, C und Cl-Isotopenwerte einschließlich ihrer saisonalen Schwankungen darzustellen. Abschließend werden die Daten hinsichtlich ihrer Anwendbarkeit für komplexe numerische Modelle kritisch diskutiert.

Sentinel-5P TROPOMI – Ozone (O3), Level 3 – Global

Ozone vertical column density in Dobson Units as derived from Sentinel-5P/TROPOMI observations. The stratospheric ozone layer protects the biosphere from harmful solar ultraviolet radiation. Ozone in troposphere can pose risks to the health of humans, animals, and vegetation. The TROPOMI instrument aboard the SENTINEL-5P space craft is a nadir-viewing, imaging spectrometer covering wavelength bands between the ultraviolet and the shortwave infra-red. TROPOMI's purpose is to measure atmospheric properties and constituents. It is contributing to monitoring air quality and providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the Top Of Atmosphere (TOA) solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum, allowing operational retrieval of the following trace gas constituents: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4). Daily observations are binned onto a regular latitude-longitude grid. Within the INPULS project, innovative algorithms and processors for the generation of Level 3 and Level 4 products, improved data discovery and access technologies as well as server-side analytics for the users are developed.

Heiße Tage mit steigenden Ozonkonzentrationen

<p>Nach Wochen eher wechselhaften Sommerwetters sind mit der Hitzewelle auch die Ozonkonzentrationen angestiegen.</p><p>Das ist nicht ungewöhnlich, denn in ruhigem Sommerwetter mit intensiver Sonneneinstrahlung und hohen Lufttemperaturen steigt die Ozonproduktion. Ozon wird bei intensiver Sonneneinstrahlung durch komplexe photochemische Prozesse aus Vorläuferschadstoffen - überwiegend Stickstoffoxiden und flüchtigen organischen Verbindungen gebildet. Hält das Sommerwetter für mehrere Tage an, steigt die Ozonkonzentration Tag für Tag an und kann es auch zur Überschreitung der Informationsschwelle von 180 µg/m³, lokal gegebenenfalls auch der Warnschwelle von 240 µg/m³ kommen. Bei Ozonwerten über der Informationsschwelle besteht für besonders empfindliche Bevölkerungsgruppen ein Risiko für die menschliche Gesundheit. Bei Ozonwerten über dem Alarmschwellenwert von 240 µg/m³ besteht bei der gesamten Bevölkerung ein Risiko für die menschliche Gesundheit und es wird über die Medien gewarnt. In den letzten Tagen kam es vor allem in Nordrhein-Westfalen, Niedersachsen, Hessen und Rheinland-Pfalz zur Überschreitung der Informationsschwelle. Heute kann es nochmals zu einzelnen Überschreitungen dieser Schwelle kommen. Mit einem Luftmassenwechsel, der heute bereits von Nordwesten her beginnt, werden auch die Ozonkonzentrationen am Wochenende wieder sinken.</p><p>Grundsätzlich sind die <a href="https://www.umweltbundesamt.de/themen/luft/luftschadstoffe-im-ueberblick/ozon">Ozonwerte</a> bei sommerlichem Wetter⁠ in den Nachmittagsstunden am höchsten. Wer empfindlich auf Ozon reagiert, sollte Sport und andere körperlich anstrengende Tätigkeiten möglichst in den Abend, besser noch in die frühen Morgenstunden legen. Dann ist die Belastung deutlich geringer. Die Wohnung sollte am besten morgens gelüftet werden und dann die Fenster bis zum Abend geschlossen bleiben. Leider bringt es nichts, den Sport vom Stadtpark in den Wald zu verlegen, denn die Ozonwerte sind außerhalb der Innenstädte oft deutlich höher. Die höchsten Ozonwerte werden regelmäßig am Stadtrand und in den angrenzenden ländlichen Gebieten gemessen. Denn die Vorläuferstoffe des Ozons (Stickoxide aus dem Verkehr und flüchtige organische Verbindungen aus Lösemitteln von Farben, Lacken, Klebstoffen oder Reinigungsmitteln) werden durch Wind aus der Stadt transportiert, wo sie zu Ozon reagieren. Dagegen wird Ozon in Innenstädten durch die Reaktion von Stickstoffmonoxid (NO) aus Autoabgasen mit Ozon abgebaut. Deshalb ist die Ozonbelastung in Innenstädten, wo viele Autos fahren, deutlich niedriger.</p><p>Aktuelle Werte und Prognosen für die nächsten zwei Tage gibt es <a href="https://www.umweltbundesamt.de/daten/luftbelastung/aktuelle-luftdaten#/start?_k=qb2zq1">hier</a> und in der <a href="https://www.umweltbundesamt.de/themen/luft/luftqualitaet/app-luftqualitaet">UBA-App "Luftqualität"</a>. Mit unsere App können Sie sich jederzeit über die zu erwartende Ozonbelastung informieren und bei erhöhten Werten automatisch warnen lassen. Je nach Höhe der Belastung gibt die App Gesundheitstipps für Aktivitäten im Freien. Die App ist kostenlos und werbefrei und für die Betriebssysteme iOS und Android erhältlich.</p>

Indikator: Luftqualität in Ballungsräumen

<p>Die wichtigsten Fakten</p><p><ul><li>Die Grundbelastung in deutschen Ballungsräumen überschreitet ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=WHO#alphabar">WHO</a>⁠-Empfehlungen aus dem Jahr 2021 für Feinstaub (⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a>⁠) und Stickstoffdioxid (NO₂) deutlich.</li><li>In der Nähe von Schadstoffquellen können die Belastungen sogar wesentlich höher sein.</li><li>Bei NO₂ und PM2,5 hat sich die Situation seit dem Jahr 2000 erheblich verbessert, die WHO-Empfehlungen von 2021 werden aber noch deutlich überschritten.</li><li>Die Belastung durch Ozon und PM2,5 ist stark von der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Witterung#alphabar">Witterung</a>⁠ abhängig. Die Werte schwanken deshalb stark.</li></ul></p><p>Welche Bedeutung hat der Indikator?</p><p>Stickstoffdioxid (NO2), Feinstaub (⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a>⁠) und Ozon (O3) sind besonders relevant für die menschliche Gesundheit. Alle drei Schadstoffe belasten die Atemorgane. Auch Ökosysteme werden durch Ozon geschädigt.</p><p>Im Jahr 2021 veröffentlichte die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=WHO#alphabar">WHO</a>⁠ aktualisierte Empfehlungen zur Luftqualitätsbewertung auf Basis neuester wissenschaftlicher Erkenntnisse zu den gesundheitlichen Wirkungen von Luftschadstoffen (<a href="https://apps.who.int/iris/handle/10665/345329">WHO 2021</a>), die zur Bewertung des Indikators herangezogen werden.</p><p>Prekär ist die Luftqualität vor allem in Ballungsräumen, in denen ein Drittel der deutschen Bevölkerung lebt: Industrie, Verkehr und Wohngebiete liegen hier nah beieinander. Einbezogen werden die Messstationen, die die Belastung im „städtischen Hintergrund“ messen, also die Grundbelastung der Stadt. An verkehrsreichen Standorten in Städten kann die Belastung jedoch deutlich höher sein. Der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a>⁠ stellt den mittleren Abstand aller Messstationen im städtischen Hintergrund von den Richtwerten der WHO dar.</p><p>Wie ist die Entwicklung zu bewerten?</p><p>Seit dem Jahr 2000 ist die Belastung durch Stickstoffdioxid und Feinstaub deutlich zurückgegangen, liegt aber auch aktuell noch weit über dem Ziel, bei Stickstoffdioxid 28 % über dem Ziel und bei ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a>⁠ ca. 61 %. Die Ozonbelastung ist stark schwankend. Dies liegt vor allem am Einfluss der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Witterung#alphabar">Witterung</a>⁠: In heißen Sommern wie 2003 oder 2015 steigt die Ozon-Konzentration stark an. Deshalb kann für die letzten Jahre keine Aussage über den Trend der Entwicklung gemacht werden.</p><p>Die EU schrieb ihre Luftqualitäts-Ziele 2008 in der <a href="http://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX:32008L0050">Luftqualitäts-Richtlinie</a> fest (EU-RL 2008/50/EG), im Oktober 2022 legte die Kommission einen Vorschlag zur Revision dieser Richtlinie vor (<a href="https://environment.ec.europa.eu/publications/revision-eu-ambient-air-quality-legislation_en">KOM 2022</a>), der die neuen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=WHO#alphabar">WHO</a>⁠-Empfehlungen 2021 berücksichtigen soll. Doch auch einige der weniger ambitionierten Ziele der derzeitigen EU-Richtlinie verfehlt Deutschland noch <a href="https://www.umweltbundesamt.de/publikationen/luftqualitaet-2024">(UBA 2025)</a>. Bis die Luft in den Ballungsräumen wirklich ausreichend „sauber“ ist, ist also noch ein weiter Weg zu gehen.</p><p>Wie wird der Indikator berechnet?</p><p>Der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a>⁠ basiert auf Messdaten der Luftqualitätsmessnetze der Bundesländer. Betrachtet werden alle Messstellen eines Ballungsraums zur Messung der Belastung im städtischen oder vorstädtischen Hintergrund. Für diese Messstellen wird die Über- oder Unterschreitung der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=WHO#alphabar">WHO</a>⁠-Empfehlungen 2021 für die drei Schadstoffe NO₂, ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a>⁠ und O₃ berechnet. Für jeden Ballungsraum wird der mittlere Abstand der Werte aller Messstationen zur WHO-Empfehlung 2021 errechnet. Die mittleren Abstände werden dann über alle Ballungsräume gemittelt und mit dem Wert der WHO-Empfehlung 2021 normiert.</p><p><strong>Ausführliche Informationen zum Thema finden Sie im Daten-Artikel <a href="https://www.umweltbundesamt.de/daten/luft/luftbelastung-in-ballungsraeumen">„Luftbelastung in Ballungsräumen“</a>.</strong></p>

Tagesberichte zur Luftgütesituation an den Messstationen des Luftmessnetzes in Mecklenburg-Vorpommern

Die Berichte werden in digitaler Form (ASCII-Dateien) erstellt. Die Messergebnisse werden entsprechend des Auswertungsintervalls als Tabellen für die Schadstoffe: Feinstaub (PM10 und PM2,5) Schwefeldioxid Ozon Stickstoffmonoxid Stickstoffdioxid Kohlenstoffmonoxid sowie den meteorologischen Parametern Windrichtung Windgeschwindigkeit Niederschlag und Temperatur bereitgestellt. Die Auswertung erfolgt für die 14 Messstationen des Landes: Rostock-Am Strande Rostock-Holbeinplatz Neubrandenburg Stralsund-Knieperdamm Schwerin-Obotritenring Wolgast-Oberwallstraße Gülzow Löcknitz Rostock-Stuthof Göhlen Leizen Garz Güstrow und Rostock-Warnemünde.

Wochenberichte zur Luftgütesituation an den Messstationen des Luftmessnetzes in Mecklenburg-Vorpommern

Die Berichte werden in digitaler Form (ASCII-Dateien, Microsoft-Office) erstellt. Die Messergebnisse werden entsprechend des Auswertungsintervalls als Tabellen für die Schadstoffe: Feinstaub (PM10) Schwefeldioxid Ozon Stickstoffmonoxid Stickstoffdioxid Kohlenstoffmonoxid und bereitgestellt. Die Auswertung erfolgt für die 14 Messstationen des Landes: Rostock-Am Strande Rostock-Holbeinplatz Neubrandenburg Stralsund-Knieperdamm Schwerin-Obotritenring Wollgast-Oberwallstraße Gülzow Löcknitz Rostock-Stuthof Göhlen Leizen Garz Güstrow und Rostock-Warnemünde.

Quartals-/Monatsberichte zur Luftgütesituation an den Messstationen des Luftmessnetzes Mecklenburg-Vorpommern

Die Berichte werden sowohl in digitaler Form (ASCII-Dateien) als auch in verbaler Form erstellt. Die Messergebnisse werden entsprechend des Auswertungsintervalls als Tabellen für die Schadstoffe: Feinstaub (PM10 und PM2,5) Schwefeldioxid Ozon Stickstoffmonoxid Stickstoffdioxid Benzol und Kohlenstoffmonoxid bereitgestellt. Die Auswertung erfolgt für die 14 Messstationen des Landes: Rostock-Am Strande Rostock-Holbeinplatz Neubrandenburg Stralsund-Knieperdamm Schwerin-Obotritenring Wolgast-Oberwallstraße Gülzow Löcknitz Rostock-Stuthof Göhlen Leizen Garz Güstrow Rostock-Warnemünde. Die Monatsberichte enthalten zusätzlich zu den genannten Tabellen eine verbale Erläuterung der Schadstoffimmission innerhalb des betrachteten Zeitraums. Besonderheiten innerhalb der ermittelten Immissionssituation werden einer entsprechend intensiveren Betrachtung unterzogen.

Jahresberichte zur Luftgüte in Mecklenburg-Vorpommern (Kurzform)

Die Zusammenfassung der validierten Jahresdaten erfolgt in Jahresberichten zur Luftgüte und gibt Auskunft über den Zustand der Luftqualität in Mecklenburg-Vorpommern. Der Luftgütebericht enthält die jährlichen Messdatenauswertungen aller Messstationen in tabellarischer Form und eine kurze Analyse der Daten. Bis zum Jahr 2009 erschien zusätzlich zum jährlichen Kurzbericht zur Luftgüte ein ausführlicher Zwei-Jahresbericht zur zum Zustand der Luftqualität in Mecklenburg-Vorpommern.

Messung des bodennahen Ozons

Die laufende Messung des bodennahen Ozons ist in einer Grossstadt von grosser Bedeutung fuer Umweltfragen. Die Konzentration des bodennahen Ozons ist ein empfindlicher Modikator fuer stagnierende Luft. Ozonwerte, die wesentlich ueber dem Durchschnitt liegen, weisen auf eine Smoglage hin.

1 2 3 4 545 46 47