Im Rahmen des gemeinsames Bund/Länder-Messprogramm für die Nord- und Ostsee + weitere Überwachungsprogramme wurde der Parameter "Phenanthren (2-Methyl) im Sediment" im Sediment bestimmt.
Im Rahmen des gemeinsames Bund/Länder-Messprogramm für die Nord- und Ostsee + weitere Überwachungsprogramme wurde der Parameter "Phenanthren (2-Methyl) im Sediment" im Sediment bestimmt.
Emissionswerte PM10 und PM2,5
Darstellung der NOx, PM10 und PM2, 5-Emissionen der Verursachergruppen Industrie, Hausbrand und Kfz-Verkehr, Stand 2015
Darstellung aller Stationen und Messwerte der BLUME-, RUBIS- und Passivsammler-Messnetze seit 1975 sowie ausgewählter langjährig betriebener Berliner Klimastationen
Die wichtigsten Fakten Die Grundbelastung in deutschen Ballungsräumen überschreitet WHO -Empfehlungen aus dem Jahr 2021 für Feinstaub ( PM2,5 ) und Stickstoffdioxid (NO₂) deutlich. In der Nähe von Schadstoffquellen können die Belastungen sogar wesentlich höher sein. Bei NO₂ und PM2,5 hat sich die Situation seit dem Jahr 2000 erheblich verbessert, die WHO-Empfehlungen von 2021 werden aber noch deutlich überschritten. Die Belastung durch Ozon und PM2,5 ist stark von der Witterung abhängig. Die Werte schwanken deshalb stark. Welche Bedeutung hat der Indikator? Stickstoffdioxid (NO 2 ), Feinstaub ( PM2,5 ) und Ozon (O 3 ) sind besonders relevant für die menschliche Gesundheit. Alle drei Schadstoffe belasten die Atemorgane. Auch Ökosysteme werden durch Ozon geschädigt. Im Jahr 2021 veröffentlichte die WHO aktualisierte Empfehlungen zur Luftqualitätsbewertung auf Basis neuester wissenschaftlicher Erkenntnisse zu den gesundheitlichen Wirkungen von Luftschadstoffen ( WHO 2021 ), die zur Bewertung des Indikators herangezogen werden. Prekär ist die Luftqualität vor allem in Ballungsräumen, in denen ein Drittel der deutschen Bevölkerung lebt: Industrie, Verkehr und Wohngebiete liegen hier nah beieinander. Einbezogen werden die Messstationen, die die Belastung im „städtischen Hintergrund“ messen, also die Grundbelastung der Stadt. An verkehrsreichen Standorten in Städten kann die Belastung jedoch deutlich höher sein. Der Indikator stellt den mittleren Abstand aller Messstationen im städtischen Hintergrund von den Richtwerten der WHO dar. Wie ist die Entwicklung zu bewerten? Seit dem Jahr 2000 ist die Belastung durch Stickstoffdioxid und Feinstaub deutlich zurückgegangen, liegt aber auch aktuell noch weit über dem Ziel, bei Stickstoffdioxid 31 % über dem Ziel und bei PM2,5 ca. 60 %. Die Ozonbelastung ist stark schwankend. Dies liegt vor allem am Einfluss der Witterung : In heißen Sommern wie 2003 oder 2015 steigt die Ozon-Konzentration stark an. Deshalb kann für die letzten Jahre keine Aussage über den Trend der Entwicklung gemacht werden. Die EU schrieb ihre Luftqualitäts-Ziele 2008 in der Luftqualitäts-Richtlinie fest (EU-RL 2008/50/EG), im Oktober 2022 legte die Kommission einen Vorschlag zur Revision dieser Richtlinie vor ( KOM 2022 ), der die neuen WHO -Empfehlungen 2021 berücksichtigen soll. Doch auch einige der weniger ambitionierten Ziele der derzeitigen EU-Richtlinie verfehlt Deutschland noch (UBA 2024) . Bis die Luft in den Ballungsräumen wirklich ausreichend „sauber“ ist, ist also noch ein weiter Weg zu gehen. Wie wird der Indikator berechnet? Der Indikator basiert auf Messdaten der Luftqualitätsmessnetze der Bundesländer. Betrachtet werden alle Messstellen eines Ballungsraums zur Messung der Belastung im städtischen oder vorstädtischen Hintergrund. Für diese Messstellen wird die Über- oder Unterschreitung der WHO -Empfehlungen 2021 für die drei Schadstoffe NO₂, PM2,5 und O₃ berechnet. Für jeden Ballungsraum wird der mittlere Abstand der Werte aller Messstationen zur WHO-Empfehlung 2021 errechnet. Die mittleren Abstände werden dann über alle Ballungsräume gemittelt und mit dem Wert der WHO-Empfehlung 2021 normiert. Ausführliche Informationen zum Thema finden Sie im Daten-Artikel „Luftbelastung in Ballungsräumen“ .
Kleinfeuerungsanlagen für feste Brennstoffe sind eine wesentliche Quelle von Luftbelastungen. Bei winterlichen Inversionswetterlagen sowie in Tal- und Kessellagen kommt es zusätzlich zur bestehenden Hintergrundbelastung zur Belastung der Atemluft mit Feinstaub und anderen Luftschadstoffen. Vor allem unsachgemäße Bedienung und unsachgemäße Brennstoffbeschaffenheit führen zu hohen Emissionen. Feinstaub-Emissionen aus Kleinfeuerungsanlagen Kleinfeuerungsanlagen erzeugen durch das Verbrennen von Erdgas, Heizöl, Holz oder Kohle Heizwärme oder erwärmen das Brauchwasser. Überwiegend handelt es sich um Heizkessel, die ganze Wohnungen oder Häuser beheizen, etwa Festbrennstoff-, Öl- oder Gasheizungen. Bei Feuerungsanlagen, die einzelne Zimmer beheizen, wie Kamin- oder Kachelöfen, handelt es sich um Einzelraumfeuerungsanlagen, die meist mit Holz oder Kohle befeuert werden. Im Folgenden werden unter Kleinfeuerungsanlagen alle Anlagen mit einer Feuerungswärmeleistung unter 1.000 kW verstanden, die in der Ersten Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verordnung über kleine und mittlere Feuerungsanlagen - 1. BImSchV) geregelt sind. Die im Folgenden dargelegten Emissionsdaten stammen aus dem nationalen Emissionsinventar für Luftschadstoffe, Submission 2024, und spiegeln den Stand für das Jahr 2022 wider. Die Staubemissionen werden hierbei in den Größenklassen PM10 (Partikel mit einem aerodynamischen Durchmesser ≤ 10 µm) und PM2,5 (Partikel mit einem aerodynamischen Durchmesser ≤ 2,5 µm) angegeben. Feinstaub (PM2,5) ist aus gesundheitlicher Sicht relevanter und sollte im Hinblick auf die Empfehlungen der Weltgesundheitsorganisation prioritär reduziert werden. Die Feinstaub-Emissionen (PM10) aus allen Kleinfeuerungsanlagen (Öl, Gas, Kohle und Holz) liegen bei 20,6 Tausend Tonnen (Tsd. t) (siehe Abb. „Feinstaub-Emissionen (PM10) aus Kleinfeuerungsanlagen“). Hiervon machen die Emissionen aus Holzfeuerungen (Holzkessel und Einzelraumfeuerungsanlagen) mit 19 Tsd. t den größten Anteil der Feinstaub-Emissionen aus (Nationales Emissionsinventar für Luftschadstoffe, Submission 2024). Bei der Feinstaubfraktion (PM2,5) liegen die Emissionen aus allen Kleinfeuerungsanlagen (Öl, Gas, Kohle und Holz) bei 19,5 Tausend Tonnen (Tsd. t) (siehe Abb. „Feinstaub-Emissionen (PM2,5) aus Kleinfeuerungsanlagen“). Auch hier machen Holzfeuerungen (Holzkessel und Einzelraumfeuerungsanlagen) mit 18 Tsd. t den größten Anteil der Feinstaub-Emissionen aus und liegen damit über den Gesamt-Emissionen des Straßenverkehrs (in Höhe von 16,01 Tsd. T) (Nationales Emissionsinventar für Luftschadstoffe, Submission 2024). Die Verbrennung von Holz in privaten Haushalten sowie in gewerblich genutzten Gebäuden ist somit eine wesentliche Quelle der Feinstaubemissionen in Deutschland. Die Emissionen von Kleinfeuerungsanlagen sind stark von der Witterung während der Heizperiode abhängig: Bei niedrigen Außentemperaturen in der Heizperiode ergeben sich höhere Emissionen aufgrund des höheren Brennstoffeinsatzes. Außerdem ist die Verwendung ordnungsgemäßer Brennstoffe sowie eine sachgerechte Bedienung und regelmäßige Wartung der Anlagen notwendig, um die Emissionen so gering wie möglich zu halten. Weitere Informationen zur Organisation und Methodik der Luftschadstoff- Emissionsberichterstattung erhalten Sie hier . Feinstaub-Emissionen (PM10) aus Kleinfeuerungsanlagen Quelle: Umweltbundesamt Diagramm als PDF Diagramm als Excel mit Daten Feinstaub-Emissionen (PM2,5) aus Kleinfeuerungsanlagen Quelle: Umweltbundesamt Diagramm als PDF Diagramm als Excel mit Daten Emissionen unterschiedlicher Feuerungssysteme Bei Holzfeuerungen in privaten Haushalten ist zwischen Einzelraumfeuerungsanlagen wie Kamin- oder Kachelöfen, die einzelne Räume beheizen, und Zentralheizungskesseln, die Wohnungen oder Häuser mit Wärme versorgen, zu unterscheiden. Einzelraumfeuerungsanlagen verbrennen meist entweder Scheitholz oder Kohle die von Hand in die Feuerungsanlage eingebracht werden oder Holzpellets, die mechanisch der Feuerungsanlage zugeführt werden. Bei Festbrennstoffkesseln gibt es neben Pellet-, Scheitholz- und Kohlekesseln auch noch automatisch betriebene Hackschnitzelkessel. Dabei werden die Holzhackschnitzel mechanisch dem Brennraum zugeführt. Ein Problem für die Luftreinhaltung stellen die – zumeist älteren – Einzelraumfeuerungen dar. Diese verursachen bei gleichem (Primär-) Energieeinsatz um ein Vielfaches höhere Feinstaub-Emissionen als moderne Festbrennstoffkessel. Wie hoch diese Emissionen tatsächlich sind, hängt nicht nur von Art und Alter der Anlage ab. Auch die Art der Brennstoffzufuhr (automatisch oder manuell), der Wartungszustand der Anlage, die Bedienung sowie die Auswahl und Qualität des genutzten Holzes haben einen großen Einfluss auf die Emissionen. Gas- und Ölfeuerungen stoßen bei gleichem Energiebedarf sehr viel weniger Feinstaub aus als Festbrennstoffkessel: So liegen die PM10 - bzw. PM2,5 -Emissionen aller Gasheizungen, die in der 1. BImSchV geregelt sind, bei 40 t und die PM10-Emissionen aller Ölfeuerungen bei 400 t (Emissionsberichterstattung 2024). Anforderungen an Holzfeuerungsanlagen Für die Begrenzung der Emissionen aus Kleinfeuerungsanlagen gilt in Deutschland die 1. Bundesimmissionsschutzverordnung ( 1. BImSchV). Sie gibt vor, welche Emissionsgrenzwerte Feuerungsanlagen der Haushalte und Kleinverbraucher einhalten müssen und welche Brennstoffe in solchen Anlagen zulässig sind. Diese Vorschrift wurde im Jahr 2010 novelliert. Für Feuerungsanlagen, die ab 2015 errichtet wurden, gelten Emissionsgrenzwerte, die nur mit moderner Technik eingehalten werden können. Auch für kleinere Heizkessel ab vier Kilowatt (kW) gelten Emissionsgrenzwerte und Überwachungspflichten abhängig vom Errichtungsjahr. Alte Öfen und Kessel mit hohen Emissionen müssen die Betreiber*innen nach entsprechenden Übergangsfristen nachrüsten oder stilllegen. Angesichts des hohen Ausstoßes an Feinstaub sollte bei Holzfeuerungen nur modernste Anlagentechnik mit möglichst niedrigen Emissionen zum Einsatz kommen. Relativ niedrige Emissionsgrenzwerte gelten für Holzpelletheizungen. Besonders emissionsarme Holzfeuerungen erfüllen die Anforderungen des Umweltzeichens „Blauer Engel“ oder erhalten im Rahmen der „Bundesförderung energieeffiziente Gebäude - Einzelmaßnahmen“ ( BEG EM ) einen Bonus (sog. Emissionsminderungs-Zuschlag). Eine weitere Minderung der Emissionen kann durch eine Kombination aus Nutzung einer erneuerbaren Energiequelle (Sonne, Erd- oder Luftwärme) zur Abdeckung der Grundlast und der Holzfeuerung zur Abdeckung von Zeiten hohen Energiebedarfs erreicht werden. Auf das Verbrennen von Holz ausschließlich aus Behaglichkeitsgründen sollte nach Möglichkeit verzichtet werden. Anteil an den Stickstoffoxid-Emissionen Die Emissionen von Stickstoffoxiden aus Kleinfeuerungsanlagen machten 2022 mit rund 72 Tausend Tonnen etwa 8 % der Gesamtemissionen in Deutschland aus ( Nationales Emissionsinventar für Luftschadstoffe, Submission 2024 ). Hier bestehen zwischen Anlagen mit unterschiedlichen Brennstoffen geringere Unterschiede als bei den Feinstaubemissionen. Kohlendioxid-Emissionen aus Kleinfeuerungsanlagen Die Kohlendioxid-Emissionen fossiler Energieträger (Heizöl, Erdgas, Kohle) aus Kleinfeuerungsanlagen lagen im Jahr 2022 mit 104,4 Millionen Tonnen etwas niedriger als im Vorjahr (Nationales Treibhausgasinventar, Submission 2024) . Weitere Informationen zur Organisation und Methodik der Treibhausgas -Emissionsberichterstattung erhalten Sie hier . Anteil an den Emissionen gasförmiger organischer Luftschadstoffe (ohne Methan) Die Emissionen von gasförmigen organischen Luftschadstoffen ohne Methan (sog. NMVOC ) aus Kleinfeuerungsanlagen machten 2022 mit rund 42 Tausend Tonnen etwa 4 % der Gesamtemissionen in Deutschland aus ( Nationales Emissionsinventar für Luftschadstoffe, Submission 2024 ). Weitere Informationen zur Organisation und Methodik der Emissionsberichterstattung für Treibhausgase und Luftschadstoffe erhalten Sie hier ( Treibhausgase bzw. Luftschadstoffe ).
Luftverschmutzung ist ein bedeutender Risikofaktor für die Gesundheit. Im vorliegenden Gutachten wurde untersucht, ob eine Differenzierung der Feinstaubexposition der Bevölkerung in Deutschland nach sozioökonomischem Status möglich ist. Zur Abschätzung der Feinstaubexposition wurde eine flächendeckende Darstellung der PM2.5 Hintergrundbelastung in räumlicher Auflösung von 2 x 2 km2 genutzt, ergänzt um höher aufgelöste Datensätze für die Städte Hamburg (Gesamtbelastung, 100 x 100 m2) und Berlin (Hintergrundbelastung, 500 x 500 m2) für zusätzliche lokale Analysen. Als flächendeckende Indikatoren für den sozioökonomischen Status (SES) der Wohnbevölkerung wurden das jährliche Haushaltsnettoeinkommen (1 x 1 km2) sowie Miet- und Kaufspiegel in âą /m2 (Baublockebene) verwendet. Nach verschiedenen Schritten der Datenaufbereitung (Baublockflächenkorrektur, Bevölkerungsgewichtung, räumliche Aggregation, SES-Standardisierung auf Gemeindeebene) wurden die jeweiligen Variablen für die drei Untersuchungsräume verschnitten und anhand von räumlichen Regressionsmodellen sowie varianzanalytischen Verfahren (ANOVA) auf statistische Zusammenhänge untersucht. In einigen Fällen wa-ren signifikante Zusammenhänge zwischen Feinstaub- und SES-Variablen festzustellen, allerdings waren diese eher schwach ausgeprägt und nicht konsistent in den verschiedenen Untersuchungsräumen. Letztlich ließen die Daten somit keine belastbaren Aussagen zur Differenzierung der Feinstaubexposition zu, denn die flächendeckend verfügbaren Variablen für den SES der Bevölkerung waren nur eingeschränkt aussagekräftig. Die Variable Haushaltseinkommen wurde zwar als inhaltlich gut geeigneter SES-Indikator bewertet, war räumlich aber zu grob aufgelöst um kleinräumige Unterschiede abzubilden. Miet- und Kaufspiegel wiederum boten zwar eine geeignete räumliche Auflösung, geben den sozioökonomischen Status der Bevölkerung jedoch inhaltlich nur eingeschränkt wieder. Für eine bundesweite Differenzierung der Exposition gegenüber Feinstaub nach SES bräuchten zukünftige Studien vor allem flächendeckende Datensätze in präziserer räumlicher Auflösung. Quelle: Forschungsbericht
Das Vorhaben wurde im Rahmen des internationalen Forschungsprojekts ACCEPTED (Assessment of changing conditions, environmental policies, time-activities, exposure and disease) durchgeführt, an dem sich insgesamt 11 Partner aus Belgien, Deutschland, Frankreich und Schweden beteiligten. Das Projekt wurde von fünf Organisationen (ADEME und ANSES in Frankreich, BEL-SPO in Belgien, Swedish EPA in Schweden und UBA in Deutschland) im Rahmen des ERA-ENVHEALTH Netzwerks finanziert. ACCEPTED ist ein internationales Forschungsprojekt mit dem Ziel, zukünftige Expositionsszenari-en in Städten und ihren Einfluss auf die menschliche Gesundheit besser zu verstehen. In diesem Projekt wurde untersucht, wie sich zukünftige Änderungen der Lebens- und Umweltbedingungen auf die Luftqualität in Innenräumen und der Außenluft auswirken werden. Berücksichtigt wurden u.a. Änderungen in Stadtplanung und Verkehrspolitik, demographischer Wandel, Klimawandel und Umweltpolitik. In einem zweiten Schritt wurden die Auswirkungen der Luftqualitätsänderun-gen auf die menschliche Gesundheit abgeschätzt. Das Projekt verfolgte einen interdisziplinären Ansatz unter Anwendung von modernsten Klimamodellen sowie Messungen, die Trends und mög-liche Änderungen der Exposition beschreiben, und auf epidemiologische Expositions-Wirkungsfunktionen anwenden. Innerhalb von ACCEPTED arbeitete die Universität Augsburg zusammen mit anderen Partnern hauptsächlich an der Entwicklung von Emissionsszenarien als Bestandteil von Luftqualitätsmo-dellierung für Augsburg sowie an der Wirkungsanalyse von Umweltzonen in die deutschen Städten: Augsburg, München und Berlin. Darüber hinaus wurden ein umfangreicher Datensatz zur individuellen (personenspezifischen) Exposition (personal exposure) analysiert und zur Validie-rung eines Modells für die Abschätzung der personenspezifischen Luftschadstoffkonzentrationen bereitgestellt. Quelle: Forschungsbericht
Das Projekt "Regulation of LRR-Receptor kinases in plant innate immunity" wird/wurde gefördert durch: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung. Es wird/wurde ausgeführt durch: Universität Basel, Botanisches Institut, Abteilung Pflanzenökologie.In nature most plants are resistant to most pathogens. A key aspect of this phenomenon is host recognition of characteristic microbial molecules, known as PAMPs (Pathogen/ Microbial Associated Molecular Patterns), by specific receptors. Flagellin, the main building unit of the mobility organ of bacteria, is perceived by the receptor kinase FLS2 (FLagellin Sensing 2) at the surface of plant cells. Binding of flagellin to the domain of FLS2 exposed to the extracellular compartment induces a set of physiological responses inside the cells, which we can easily measure in our lab and which ultimately contribute to limitation of bacterial invasion and plant resistance. How does FLS2 function to transmit the signal from outside of the cell to its inside? Recently, we could demonstrate that upon stimulation with flagellin, FLS2 associates very quickly at the plasma membrane with a second receptor known as BAK1 (BRI1-Associated Kinase 1). Mutant plants lacking the BAK1 protein respond less to flagellin as well as to other PAMPs, indicating its role in positive regulation of PAMP detection. A big surprise is that BAK1 is already known as the co-receptor of the membrane BRI1. BRI1 is another receptor kinase which recognizes the phytohormone brassinosteroids involved in regulation of plant growth and development. The novel function of BAK1 in innate immunity is being further addressed in our lab with the current project using a combination of biochemistry, molecular biology and genetics. In particular we want to study detailed mechanisms of BAK1 and FLS2 for transducing the flagellin signal. Our studies have an essential role in understanding plant innate immunity in a broad sense, and we hope this will help to elucidate molecular mechanisms regulating plants receptor kinases not only in defense but also in development.
Origin | Count |
---|---|
Bund | 14 |
Land | 5 |
Type | Count |
---|---|
Förderprogramm | 2 |
Text | 2 |
unbekannt | 10 |
License | Count |
---|---|
geschlossen | 4 |
offen | 10 |
Language | Count |
---|---|
Deutsch | 12 |
Englisch | 2 |
Resource type | Count |
---|---|
Datei | 6 |
Dokument | 5 |
Keine | 4 |
Webdienst | 3 |
Webseite | 5 |
Topic | Count |
---|---|
Boden | 14 |
Lebewesen & Lebensräume | 9 |
Luft | 9 |
Mensch & Umwelt | 14 |
Wasser | 14 |
Weitere | 14 |