API src

Found 230 results.

Similar terms

s/pehd/PE-HD/gi

Study of the Environmental Impacts of Packagings Made of Biodegradable Plastics

The market relevance and presence of packagings made of biodegradable plastics has increased over the past few years. They are primarily used as alternatives for conventional plastics such as polyethylene (PE), polypropylene (PP), polystyrene (PS), and polystyrene terephthalate (PET). Veröffentlicht in Texte | 18/2013.

Sources of microplastics relevant to marine protection in Germany

The Federal Environment Agency was commissioned a study to produce a first approximation of the amounts of microplastics used in cosmetic products on the market in Germany and the European Union, conduct research into further areas of application for microplastics and determine their amounts of use, and identify other sources of microplastics and estimate their quantity. The nova-Institute gathered the relevant data by comprehensively analysing available literature and conducting telephone interviews. A distinction was drawn between primary and secondary microplastics. Primary microplastics are directly manufactured as microscopic particles that are used in cosmetics and other applications. Secondary microplastics are fragments of macroscopic plastic materials which arise, for instance, through the fragmentation of plastic bottles or abrasion of tyres and textiles. Initial estimates indicate that every year approximately 500 tonnes of primary microplastics composed of polyethylene are used in cosmetic products in Germany. The authors put the quantities used in detergents, disinfectants and blasting agents in Germany at less than 100 tonnes per year each, whereas for microparticles in synthetic waxes they estimate around 100,000 tonnes per year. More accurate figures regarding amounts of use in the various other applications are not available at present, meaning that the total amount of primary microplastics used in Germany cannot be determined. Veröffentlicht in Texte | 64/2015.

Chem-Org\PEG+DPM (hochrein)

Herstellung von hochreinem Polyethylen Glykol (PEG), (DPM (Dipropylen glykol monomethyl ether) subsumiert), PEG-Herstellung durch Polyaddition von Ethylenoxid in meist geringe Mengen Wasser enthaltenden Systemen mit Ethylenoxid als Startmolekül (nach #1); Ausbeute 95% (#2, S. 162), Nutzungsgrad 95%. Eigene Schätzung des Öko-Instituts zum Energiebedarf: nur für Pumpen (10kWh/t output). Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 95% Produkt: Grundstoffe-Chemie

Chem-Org\LDPE-DE-2000

LDPE-Polymerisation: In dieser Prozeßeinheit wird die Polymerisation von Ethylen zu LDPE (Low Density PolyEthylen) betrachtet. LDPE wird in einem Hochdruckverfahren hergestellt, wobei entweder ein Röhrenreaktor oder ein Autoklav als Reaktor eingesetzt wird. In einem ersten Schritt wird der Rohstoff Ethylen verdichtet. Anschließend findet in einem Röhrenreaktor oder einem Autoklaven unter hohem Druck und Temperatur mit Hilfe eines Radikalstarters (Peroxid) und Katalysators (Chrom- oder Titan-Basis) die Polymerisation von Ethylen statt. Danach wird das Reaktionsgemisch aufgetrennt. Nicht umgesetztes Ethylen wird nach erneuter Verdichtung wieder dem Reaktor zugeführt. Das Polymerisat (LDPE) wird in einem weiteren Trennungsschritt von noch verbliebenem Ethylen und entstandenen Ölen befreit. Es folgen die Extrusion, Granulierung, Trocknung, Lagerung oder Verpackung des Produkts. Prozess-Situierung: Bei den Polyethylen(PE)-Kunststoffen kann man drei verschiedene Polymere unterscheiden: HDPE (high density polyethylen), LLDPE (linear low density polyethylen) und LDPE (low density polyethylen). Die weltweiten Produktionskapazitäten der verschiedenen PE-Kunststoffe in 1000 t können für das Jahr 1990 der nachfolgenden Tabelle 1 entnommen werden (Ullmann 1992). Nach (APME 1994) wurden in Westeuropa 1994 3,614 Mio. t HDPE, 1,267 Mio. t LLDPE und 4,856 Mio. t LDPE (Gesamtsumme an PE: 9,737 Mio. t) produziert. Tabelle 1 PE-Produktionskapazitäten in 1000 t für das Jahr 1990. Region LDPE LLDPE HDPE gesamt PE Nordamerika 3957 3746 3425 11128 Westeuropa 5363 1278 2693 9334 Osteuropa 2034 5 1168 3207 Japan 1388 467 1025 2880 Sonstige 2856 1258 3119 7233 Summe 15598 6754 11430 33782 Für die Bilanzierung der LDPE-Herstellung wurden die Literaturquellen (Brown 1985), (Tellus 1992), (BUWAL 1991), (PWMI 1993), (OEKO 1992c) und (Ullmann 1992) untersucht. Die Daten der Studien (Brown 1985) (Energiewerte) und (Tellus 1992) (Emissionswerte) beziehen sich auf die Herstellung von LDPE in den USA und repräsentieren den Stand der Technik Anfang der 80er Jahre. Die BUWAL-Studie (Massenbilanz, Abwasserwerte) betrachtet die Produktion in Westeuropa Ende der 80er Jahre. Allokation: keine Genese der Daten: - Massenbilanz: Nach #1 werden für die LDPE-Herstellung pro Tonne Produkt 1016,14 kg Ethylen eingesetzt. Für die Polymerisationsreaktion werden weiterhin Hilfsstoffe und Zusätze (3,78 kg) benötigt (#1). Diese Stoffe sind in der BUWAL-Studie nicht weiter spezifiziert. Es wird angenommen, daß es sich dabei um Katalysatoren und Radikalstarter (Peroxide) handelt. Als Nebenausbeute (nicht näher spezifiziert) werden bei BUWAL 4,18 kg (mit einem Heizwert von 0,167 GJ/t LDPE) aufgeführt. Dabei handelt es sich vermutlich um Ethylen und Öle, die im letzten Trennungprozeß vom Produkt abgetrennt und als Energieträger verbrannt werden können. Als feste Abfälle fallen bei der Polymerisation 0,24 kg an. Energiebedarf: Nach #2 werden für die Herstellung von LDPE 2355,2 btu/lb (5,5 GJ/t) Energie benötigt. Davon entfallen 1280,9 btu/lb (3,0 GJ/t) auf elektrische Energie (wovon wiederum 998,9 btu/lb (2,3 GJ/t) an Kompressionsarbeit auf die Verdichtung von Ethylen entfallen) und 1074,3 btu/lb (2,5 GJ/t) auf den Energiegehalt des benötigten Dampfes. Im Vergleich dazu werden bei (Tellus 1992) wesentlich höhere Angaben gemacht. Die Prozeßenergie zur Herstellung von LDPE (7650 btu/lb bzw. 17,8 GJ/t) setzt sich dort aus der elektrischen Energie (6600 btu/lb bzw. 15,4 GJ/t) und dem Energiegehalt des benötigten Dampfes (1050 btu/lb bzw. 2,4 GJ/t) zusammen. Bei (PWMI 1993) wird der Polymerisationsprozeß von Ethylen zu LDPE nicht separat bilanziert. Aus der Differenz der Daten („Total fuels“) aus der LDPE-Herstellung (gesamte Prozeßkette) und der Ethylen-Herstellung kann jedoch ein Energiebedarf für die Polymerisation in einer Größenordnung von 12 GJ abgeschätzt werden. Da in #2 die Energiewerte am besten nachvollzogen werden können, werden diese Angaben für GEMIS verwendet. Prozessbedingte Luftemissionen: Bei der LDPE-Herstellung können prinzipiell flüchtige organische Verbindungen (VOC) als Luftemissionen entweichen. In #3 werden die prozessbedingten VOC-Emissionen bei der LDPE-Herstellung abgeschätzt. Daraus ergibt sich ein Wert von ca. 1,5 - 10 kg VOC/t LDPE. Der größere Wert gibt die Emissionen von alten Anlagen wieder, während der kleinere Wert für Neuanlagen steht. Als Kenziffer für GEMIS wurde der Mittelwert von 5,8 kg VOC/t LDPE eingesetzt. Abwasser: Aus #1 kann entnommen werden, daß für die gesamte Prozeßkette der Herstellung von LDPE der BSB5- und der CSB-Wert gleich null sind. Somit ergeben sich auch für den hier betrachteten Teilschritt der Polymerisation Werte von jeweils 0. Für die Abwasserkennziffern BSB5 und CSB stehen bei (Tellus 1992) nur Angaben zu Rohabwasserwerten zur Verfügung. Als Werte nach Abwasserreinigungsmaßnahmen werden dort eine Vielzahl von Stoffen aufgeführt, von denen hier Chrom, 0,0302 lbs/ton LDPE (umgerechnet 0,015 kg/t), Benzol 0,0149 lbs/ton (umgerechnet 0,0075 kg/t) und Phenol, 0,00176 lbs/ton (umgerechnet 0,00088 kg/t) wiedergegeben wird. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 98,4% Produkt: Kunststoffe

Chem-Org\LDPE-DE-2030

LDPE-Polymerisation: In dieser Prozeßeinheit wird die Polymerisation von Ethylen zu LDPE (Low Density PolyEthylen) betrachtet. LDPE wird in einem Hochdruckverfahren hergestellt, wobei entweder ein Röhrenreaktor oder ein Autoklav als Reaktor eingesetzt wird. In einem ersten Schritt wird der Rohstoff Ethylen verdichtet. Anschließend findet in einem Röhrenreaktor oder einem Autoklaven unter hohem Druck und Temperatur mit Hilfe eines Radikalstarters (Peroxid) und Katalysators (Chrom- oder Titan-Basis) die Polymerisation von Ethylen statt. Danach wird das Reaktionsgemisch aufgetrennt. Nicht umgesetztes Ethylen wird nach erneuter Verdichtung wieder dem Reaktor zugeführt. Das Polymerisat (LDPE) wird in einem weiteren Trennungsschritt von noch verbliebenem Ethylen und entstandenen Ölen befreit. Es folgen die Extrusion, Granulierung, Trocknung, Lagerung oder Verpackung des Produkts. Prozess-Situierung: Bei den Polyethylen(PE)-Kunststoffen kann man drei verschiedene Polymere unterscheiden: HDPE (high density polyethylen), LLDPE (linear low density polyethylen) und LDPE (low density polyethylen). Die weltweiten Produktionskapazitäten der verschiedenen PE-Kunststoffe in 1000 t können für das Jahr 1990 der nachfolgenden Tabelle 1 entnommen werden (Ullmann 1992). Nach (APME 1994) wurden in Westeuropa 1994 3,614 Mio. t HDPE, 1,267 Mio. t LLDPE und 4,856 Mio. t LDPE (Gesamtsumme an PE: 9,737 Mio. t) produziert. Tabelle 1 PE-Produktionskapazitäten in 1000 t für das Jahr 1990. Region LDPE LLDPE HDPE gesamt PE Nordamerika 3957 3746 3425 11128 Westeuropa 5363 1278 2693 9334 Osteuropa 2034 5 1168 3207 Japan 1388 467 1025 2880 Sonstige 2856 1258 3119 7233 Summe 15598 6754 11430 33782 Für die Bilanzierung der LDPE-Herstellung wurden die Literaturquellen (Brown 1985), (Tellus 1992), (BUWAL 1991), (PWMI 1993), (OEKO 1992c) und (Ullmann 1992) untersucht. Die Daten der Studien (Brown 1985) (Energiewerte) und (Tellus 1992) (Emissionswerte) beziehen sich auf die Herstellung von LDPE in den USA und repräsentieren den Stand der Technik Anfang der 80er Jahre. Die BUWAL-Studie (Massenbilanz, Abwasserwerte) betrachtet die Produktion in Westeuropa Ende der 80er Jahre. Allokation: keine Genese der Daten: - Massenbilanz: Nach #1 werden für die LDPE-Herstellung pro Tonne Produkt 1016,14 kg Ethylen eingesetzt. Für die Polymerisationsreaktion werden weiterhin Hilfsstoffe und Zusätze (3,78 kg) benötigt (#1). Diese Stoffe sind in der BUWAL-Studie nicht weiter spezifiziert. Es wird angenommen, daß es sich dabei um Katalysatoren und Radikalstarter (Peroxide) handelt. Als Nebenausbeute (nicht näher spezifiziert) werden bei BUWAL 4,18 kg (mit einem Heizwert von 0,167 GJ/t LDPE) aufgeführt. Dabei handelt es sich vermutlich um Ethylen und Öle, die im letzten Trennungprozeß vom Produkt abgetrennt und als Energieträger verbrannt werden können. Als feste Abfälle fallen bei der Polymerisation 0,24 kg an. Energiebedarf: Nach #2 werden für die Herstellung von LDPE 2355,2 btu/lb (5,5 GJ/t) Energie benötigt. Davon entfallen 1280,9 btu/lb (3,0 GJ/t) auf elektrische Energie (wovon wiederum 998,9 btu/lb (2,3 GJ/t) an Kompressionsarbeit auf die Verdichtung von Ethylen entfallen) und 1074,3 btu/lb (2,5 GJ/t) auf den Energiegehalt des benötigten Dampfes. Im Vergleich dazu werden bei (Tellus 1992) wesentlich höhere Angaben gemacht. Die Prozeßenergie zur Herstellung von LDPE (7650 btu/lb bzw. 17,8 GJ/t) setzt sich dort aus der elektrischen Energie (6600 btu/lb bzw. 15,4 GJ/t) und dem Energiegehalt des benötigten Dampfes (1050 btu/lb bzw. 2,4 GJ/t) zusammen. Bei (PWMI 1993) wird der Polymerisationsprozeß von Ethylen zu LDPE nicht separat bilanziert. Aus der Differenz der Daten („Total fuels“) aus der LDPE-Herstellung (gesamte Prozeßkette) und der Ethylen-Herstellung kann jedoch ein Energiebedarf für die Polymerisation in einer Größenordnung von 12 GJ abgeschätzt werden. Da in #2 die Energiewerte am besten nachvollzogen werden können, werden diese Angaben für GEMIS verwendet. Prozessbedingte Luftemissionen: Bei der LDPE-Herstellung können prinzipiell flüchtige organische Verbindungen (VOC) als Luftemissionen entweichen. In #3 werden die prozessbedingten VOC-Emissionen bei der LDPE-Herstellung abgeschätzt. Daraus ergibt sich ein Wert von ca. 1,5 - 10 kg VOC/t LDPE. Der größere Wert gibt die Emissionen von alten Anlagen wieder, während der kleinere Wert für Neuanlagen steht. Als Kenziffer für GEMIS wurde der Mittelwert von 5,8 kg VOC/t LDPE eingesetzt. Abwasser: Aus #1 kann entnommen werden, daß für die gesamte Prozeßkette der Herstellung von LDPE der BSB5- und der CSB-Wert gleich null sind. Somit ergeben sich auch für den hier betrachteten Teilschritt der Polymerisation Werte von jeweils 0. Für die Abwasserkennziffern BSB5 und CSB stehen bei (Tellus 1992) nur Angaben zu Rohabwasserwerten zur Verfügung. Als Werte nach Abwasserreinigungsmaßnahmen werden dort eine Vielzahl von Stoffen aufgeführt, von denen hier Chrom, 0,0302 lbs/ton LDPE (umgerechnet 0,015 kg/t), Benzol 0,0149 lbs/ton (umgerechnet 0,0075 kg/t) und Phenol, 0,00176 lbs/ton (umgerechnet 0,00088 kg/t) wiedergegeben wird. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 98,4% Produkt: Kunststoffe

Sources of microplastics relevant to marine protection in Germany

The Federal Environment Agency was commissioned a study to produce a first approximation of the amounts of microplastics used in cosmetic products on the market in Germany and the European Union, conduct research into further areas of application for microplastics and determine their amounts of use, and identify other sources of microplastics and estimate their quantity. The nova-Institute gathered the relevant data by comprehensively analysing available literature and conducting telephone interviews. A distinction was drawn between primary and secondary microplastics. Primary microplastics are directly manufactured as microscopic particles that are used in cosmetics and other applications. Secondary microplastics are fragments of macroscopic plastic materials which arise, for instance, through the fragmentation of plastic bottles or abrasion of tyres and textiles. Initial estimates indicate that every year approximately 500 tonnes of primary microplastics composed of polyethylene are used in cosmetic products in Germany. The authors put the quantities used in detergents, disinfectants and blasting agents in Germany at less than 100 tonnes per year each, whereas for microparticles in synthetic waxes they estimate around 100,000 tonnes per year. More accurate figures regarding amounts of use in the various other applications are not available at present, meaning that the total amount of primary microplastics used in Germany cannot be determined.<BR>Quelle: https://www.umweltbundesamt.de/

Promoting the high-quality recycling of plastics from demolition waste and enhancing the use of recycled materials in construction products in accordance with the European Plastics Strategy

Dieser Bericht beleuchtet die Kreislaufführung von Kunststoffen in ihrem zweitgrößten Anwendungsbereich, den Bauprodukten. Er untersucht Produktion, Rücknahme und Recycling von Bauprodukten aus Kunststoff, sowie den Einsatz von Kunststoffrezyklaten in Bauprodukten. Zusätzlich werden Kunststoffverpackungen von Bauprodukten behandelt. Die aktuelle Produktion von Baukunststoffen wird nach Mengen, Sorten und Produkten differenziert dargestellt, ebenso wie das sich entwickelnde anthropogene Kunststofflager. Die mengenmäßig relevanten Kunststoffsorten sind Polyvinylchlroid (PVC), Polyethylen (PE), expandiertes Polystyrol (EPS) und Polyurethan (PUR). Sie sind vor allem in Rohren, Profilen und Dämmungen verbaut. Die verschiedenen Rücknahmesysteme für Baukunststoffe werden vergleichend dargestellt und ihr Beitrag zum Recycling bewertet. Einzelne dieser Rücknahmesysteme ermöglichen ein hochwertiges Recycling. Die Recyclingtechnologien für Bauprodukte werden vorgestellt und die Thematik von Additiven als Hürden für ein hochwertiges Recycling behandelt. Die Chancen und Hindernisse des Rezyklateinsatzes in Bauprodukten werden aus der Schnittmenge der verfügbaren Technologien, des Rezyklatangebotes und der Anforderungen an Bauprodukte aus Kunststoff abgeleitet. In Abhängigkeit einiger Faktoren, wie z. B. Rezyklatquellen, Degradation oder Produktanforderungen, muss im Einzelfall abgewogen werden, ob bzw. wie viel Recyclingmaterial eingesetzt werden kann. Grundsätzlich besteht aber Potenzial für die Steigerung des Rezyklateinsatzes. Der Einsatz von Kunststoffen als Verpackungsmaterial für Bauprodukte wird dargestellt und die Möglichkeit des Rezyklateinsatzes in diesen Verpackungen beleuchtet. Der Bericht schließt mit Empfehlungen an unterschiedliche Akteure, wie der Rezyklateinsatz in Bauprodukten und deren Verpackungen gefördert werden kann. Wichtige Punkte sind hierbei die Einführung einer Rezyklatquote für Folien als Bauproduktverpackungen und die Beschreibung von Recyclingmöglichkeiten und Rezyklatgehalt in der technischen Dokumentation von Bauprodukten. Quelle: Forschungsbericht

Förderung einer hochwertigen Verwertung von Kunststoffen aus Abbruchabfällen sowie der Stärkung des Rezyklateinsatzes in Bauprodukten im Sinne der europäischen Kunststoffstrategie

Dieser Bericht beleuchtet die Kreislaufführung von Kunststoffen in ihrem zweitgrößten Anwendungsbereich, den Bauprodukten. Er untersucht Produktion, Rücknahme und Recycling von Bauprodukten aus Kunststoff, sowie den Einsatz von Kunststoffrezyklaten in Bauprodukten. Zusätzlich werden Kunststoffverpackungen von Bauprodukten behandelt. Die aktuelle Produktion von Baukunststoffen wird nach Mengen, Sorten und Produkten differenziert dargestellt, ebenso wie das sich entwickelnde anthropogene Kunststofflager. Die mengenmäßig relevanten Kunststoffsorten sind Polyvinylchlroid (PVC), Polyethylen (PE), expandiertes Polystyrol (EPS) und Polyurethan (PUR). Sie sind vor allem in Rohren, Profilen und Dämmungen verbaut. Die verschiedenen Rücknahmesysteme für Baukunststoffe werden vergleichend dargestellt und ihr Beitrag zum Recycling bewertet. Einzelne dieser Rücknahmesysteme ermöglichen ein hochwertiges Recycling. Die Recyclingtechnologien für Bauprodukte werden vorgestellt und die Thematik von Additiven als Hürden für ein hochwertiges Recycling behandelt. Die Chancen und Hindernisse des Rezyklateinsatzes in Bauprodukten werden aus der Schnittmenge der verfügbaren Technologien, des Rezyklatangebotes und der Anforderungen an Bauprodukte aus Kunststoff abgeleitet. In Abhängigkeit einiger Faktoren, wie z. B. Rezyklatquellen, Degradation oder Produktanforderungen, muss im Einzelfall abgewogen werden, ob bzw. wie viel Recyclingmaterial eingesetzt werden kann. Grundsätzlich besteht aber Potenzial für die Steigerung des Rezyklateinsatzes. Der Einsatz von Kunststoffen als Verpackungsmaterial für Bauprodukte wird dargestellt und die Möglichkeit des Rezyklateinsatzes in diesen Verpackungen beleuchtet. Der Bericht schließt mit Empfehlungen an unterschiedliche Akteure, wie der Rezyklateinsatz in Bauprodukten und deren Verpackungen gefördert werden kann. Wichtige Punkte sind hierbei die Einführung einer Rezyklatquote für Folien als Bauproduktverpackungen und die Beschreibung von Recyclingmöglichkeiten und Rezyklatgehalt in der technischen Dokumentation von Bauprodukten. Quelle: Forschungsbericht

Herstellung von Polyethylen, hoher Dichte, Granulat

Coverage of production capacity in Europe: 68%

Herstellung von Polyethylen, niedriger Dichte, Granulat

Coverage of production capacity in Europe: 72%

1 2 3 4 521 22 23