API src

Found 3613 results.

Similar terms

s/pfba/PFOA/gi

Fließgewässermessstelle SH Klingenberg km 116,2 oh K-berg-Röllfeld, Main

Die Messstelle SH Klingenberg km 116,2 oh K-berg-Röllfeld (Messstellen-Nr: 22138) befindet sich im Gewässer Main in Bayern. Die Messstelle dient der Überwachung des chemischen Zustands, des Grundwasserstands im oberen Grundwasserstockwerk.

Fließgewässermessstelle Grögling Brücke, Altmühl

Die Messstelle Grögling Brücke (Messstellen-Nr: 4173) befindet sich im Gewässer Altmühl in Bayern. Die Messstelle dient der Überwachung des chemischen Zustands, des Grundwasserstands in tieferen Grundwasserstockwerken.

Fließgewässermessstelle Michelau, Brücke, Main

Die Messstelle Michelau, Brücke (Messstellen-Nr: 15197) befindet sich im Gewässer Main in Bayern. Die Messstelle dient der Überwachung des chemischen Zustands, des Grundwasserstands im oberen Grundwasserstockwerk.

Freisetzungspotential, Mobilität und Umwandlungsprozesse von Spurenelementen, PFAS und weiteren organischen Schadstoffen in Spülfeldern

Veranlassung Baggergut das aufgrund erhöhter Nährstoffkonzentrationen für eine Umlagerung in der Ostsee nicht geeignet ist, wird häufig auf Spülfeldern im Küstenbereich abgelagert, um anschließend verwertet zu werden. Gelegentlich kann das Überschreiten von Grenzwerten des Arsens (As) im Eluat dazu führen, dass das Ausleiten des Überstandwassers seitens der zuständigen Landesbehörden nicht genehmigt wird, wodurch das Abtrocknen des Sediments, und somit der wichtigste Prozess der As-Retention, verlangsamt wird. Die Aussagekraft der Eluattests zur Abschätzung der Metall(oid)-Freisetzung aus den Spülfeldsedimenten ist sehr begrenzt, da die an Organik reichen, anaeroben Sedimente der Ostsee nach dem Aufbringen auf ein Spülfeld zeitlichen Änderungen von z.B. Temperatur- und Redoxbedingungen unterliegen. Darüber hinaus ist damit zur rechnen, dass diese Situation klimawandelbedingt durch ein häufigeres Auftreten von Trockenheitsereignissen weiter erschwert wird, da es zu einer Verstärkung vertikaler pH- und Redox-Gradienten und einer beschleunigten Mobilisierung von Cadmium, Nickel oder Zink unter oxischen Bedingungen als Folgewirkung der Sulfid-Oxidation kommt. Es besteht ein hoher Bedarf die Möglichkeiten der Verwertung von Spülfeldsedimenten zu verbessern und die Kapazitäten der Spülfelder für zukünftig anfallendes Baggergut zu erhalten. Kenntnisse über die Zusammenhänge der Metall(oid)mobilität mit zeitlich dynamischen Sedimenteigenschaften können hierzu einen wichtigen Beitrag liefern. Darüber hinaus soll in diesem Projekt untersucht werden inwieweit Unterschiede je nach Alter und Herkunft der Spülfeldsedimente bei der Transformation von PFAS-Vorläufersubstanzen hin zu Perfluorcarbonsäuren bestehen. Dies ist für Spülfeldsedimente der Ostsee bisher nicht bekannt. Grundsätzlich ist davon auszugehen, dass relevante Grenzwerte nicht überschritten werden, da auch andere ubiquitäre Schadstoffe gewöhnlich in unterdurchschnittlichen Mengen auftreten. Vor dem Hintergrund ihrer guten Wasserlöslichkeit sind vertiefte Kenntnisse zur Bildung der Perfluorcarbonsäuren allerdings von hoher Bedeutung. Eine Optimierung der Verwertungsmöglichkeiten des Baggerguts der Ostsee-Spülfelder liefert auch für Wasserstraßen- und Schifffahrtsämter (WSA) der Binnenbereiche eine wichtige theoretische Arbeitsgrundlage. Dies betrifft einerseits die Handhabung des Baggerguts aus WSA-Talsperren, in denen ebenfalls schadstoffarmes, nährstoffreiches und stark organikhaltiges Baggergut anfällt, und welches somit im Beräumungsfall einer Problematik ähnlich den Ostsee-Spülfeldsedimenten unterliegt. Andererseits befinden sich im norddeutschen Raum zahlreiche WSA-Spülfelder deren Betrieb innerhalb der letzten Dekade eingestellt oder stark zurückgefahren wurde. Hier könnten die Projektergebnisse als Orientierung dienen, wenn eine Reaktivierung dieser Spülfelder gewünscht wird. Ziele - Erfassung des Einflusses verschiedener Bearbeitungstechniken auf die Mobilität anorganischer und organischer Schadstoffe in aufgespültem Baggergut - Erarbeitung detaillierter Kenntnisse zur Mobilität verschiedener Arsenspezies und weiterer Metall(oid)e, zu den dabei relevanten mikrobiologischen Prozessen sowie zu Möglichkeiten der Reduzierung der Arsenfreisetzung - Untersuchung des Freisetzungsverhaltens perfluorierter Verbindungen (PFAS) im Kontext des Reifungsprozesses von Baggergut sowie in Abhängigkeit des fluvialen Sedimenttransports - Ableitung und Anwendung geeigneter Remediationstechniken zur Behandlung von anoxischem Überstandwasser.

Chemikalien in der Umwelt

<p>Wir kommen täglich mit Chemikalien wie z.B. Lösungsmitteln, Farben und Lacken, Haushaltchemikalien, Weichmachern und Flammschutzmitteln aus Kunststoffen in Berührung. Die von Chemikalien ausgehenden Gefahren betreffen uns alle. Um die menschliche Gesundheit und die Umwelt vor chemischen Substanzen zu schützen, trat 2007 die europäische Chemikalienverordnung REACH in Kraft.</p><p>Die Europäische Union (EU) erfasst mit der Verordnung (EG) 1907/2006 über die Registrierung, Bewertung, Zulassung und Beschränkung von chemischen Stoffen - kurz<a href="https://echa.europa.eu/de/regulations/reach/understanding-reach">REACH-Verordnung</a>genannt - alle Chemikalien, die nicht in speziellen Gesetzen, wie z.B. der Biozid- oder Arzneimittelverordnung, geregelt werden. Unter REACH werden im Rahmen der Registrierung Daten zum Verbleib und zur Wirkung von Chemikalien auf Mensch und Umwelt gefordert. Besonders problematische Chemikalien können für bestimmte Verwendungen verboten oder zulassungspflichtig werden. Hersteller von Chemikalien sind für die sichere Handhabung ihrer Produkte verantwortlich und müssen garantieren, dass diese weder Gesundheit noch Umwelt übermäßig belasten. Chemikalien können bei der Gewinnung, Herstellung, Verarbeitung, in der Nutzungsphase von Produkten, beim Recycling und in der Entsorgungsphase in die Umwelt gelangen. Je nach Verwendungsbedingungen und chemisch-physikalischen Eigenschaften gelangen sie in Umweltmedien wie Luft, Grundwasser, Oberflächengewässer, Klärschlamm, Boden und somit auch in Organismen und ihre Nahrungsketten.</p><p>Unter REACH werden besonders besorgniserregende Stoffe identifiziert. Diese werden im Englischen „substances of very high concern“ (SVHC) genannt. Dazu gehören zum Beispiel Stoffe, die giftig und langlebig in der Umwelt sind und sich in Organismen anreichern (persistent, bioaccumulative and toxic – ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PBT#alphabar">PBT</a>⁠), oder Stoffe, die giftig, persistent und mobil in der Umwelt sind (PMT Stoffe). Ebenfalls gehören Stoffe dazu, die auf das Hormonsystem wirken, die sogenannten Endokrinen Disruptoren. Dadurch kann die Entwicklung und die Fortpflanzung von Lebewesen geschädigt werden. Das Geschlechterverhältnis ganzer Populationen kann sich verändern. So können Vermännlichungen und Verweiblichungen sowie der Verlust der Fortpflanzungsfähigkeit auftreten. Im Folgenden sind beispielhaft Umweltkonzentrationen von einzelnen Stoffen bzw. Stoffgruppen aufgeführt, die das Umweltbundesamt unter REACH als besonders besorgniserregende Stoffe identifiziert hat:</p><p>Prüfen der Umweltwirkung von Chemikalien</p><p>Das Umweltbundesamt (⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠) bewertet bei der gesetzlichen Stoffprüfung von Chemikalien, wie diese Stoffe auf die Umwelt wirken. Das UBA führt dabei in der Regel keine eigenen Untersuchungen durch. Es prüft die von Antragstellern eingereichten Daten, sowie die wissenschaftliche Literatur zu Umweltwirkungen und bewertet dann die Risiken für die Umwelt. Bestimmte Chemikalienwirkungen wie zum Beispiel Einflüsse auf die Ozonschicht und auf das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>⁠ werden in gesonderten gesetzlichen Regelungen behandelt.</p><p>Die jeweiligen gesetzlichen Stoffregelungen geben vor, welche Informationen und Testergebnisse Unternehmen, die eine Chemikalie oder ein Präparat auf den Markt bringen wollen, für eine Umweltprüfung vorlegen müssen (siehe Tab. „Überblick zu den Testanforderungen in den Stoffregelungen – ⁠<a href="https://www.umweltbundesamt.de/service/glossar/r?tag=REACH#alphabar">REACH</a>⁠-Chemikalien“). Im Rahmen des noch laufenden „REACH-Review“ Prozesses ist geplant, in Zukunft neue Tests und Endpunkte in den Standartdatensätzen, die bei der Markteinführung vorgelegt werden müssen, zu ergänzen. Damit sind dann z.B. Daten zu der endokrinen Wirkweise von Chemikalien von Anfang an verpflichtend und erlauben den Behörden eine effizientere Bewertung von Substanzen hinsichtlich dieses Gefahrenpotenzials.</p><p>Öffentlich zugängliche Daten zu Chemikalienwirkungen</p><p>Daten zu Wirkungen von Chemikalien sind über verschiedene Datenbanken zugänglich.</p><p>Chemikalien in der Europäischen Union</p><p>Wie viele verschiedene Chemikalien verwendet werden, ist nicht bekannt. Im Einstufungs- und Kennzeichnungsverzeichnis (Classification Labeling &amp; Packaging-Verordnung) der Europäischen Chemikalienagentur (ECHA) sind (Stand 07.08.2024) 259.538 Stoffe verzeichnet. Dazu kommen noch Stoffe für die keine Meldepflicht ins Verzeichnis besteht (insbesondere nicht nach ⁠<a href="https://www.umweltbundesamt.de/service/glossar/r?tag=REACH#alphabar">REACH</a>⁠ registrierungspflichtige Stoffe soweit diese nicht als gefährlich im Sinne der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/c?tag=CLP#alphabar">CLP</a>⁠-VO einzustufen sind).</p><p>Bis zum Jahr 2018 mussten Chemikalienhersteller und -importeure schrittweise fast all jene Chemikalien registrieren, von denen sie innerhalb der Europäischen Union (EU) mehr als eine Tonne jährlich herstellen oder in die EU einführen. Bis zum 31.07.2024 wurden 22.773 verschiedene Stoffe bei der ECHA in Helsinki registriert bzw. gelten als registriert. Deutsche Unternehmen haben davon 11.786 Stoffe (mit-)registriert (ECHA Registrierungsstatistik).</p>

TOP-Assay

Aufgrund der großen Anzahl von 4730 Verbindungen (OECD 2018) [1], die dem Spektrum der per- und polyfluorierten Verbindungen (PFAS) zugeordnet werden, ist die vollständige Erfassung dieser Substanzgruppe durch analytische Methoden schwierig. PFAS sind nach aktueller OECD Definition von 2021 fluorierte Stoffe, die mindestens ein vollständig fluoriertes Methyl- (-CF3) oder Methylen-Kohlenstoffatom(-CF2-) (ohne daran gebundenes H/Cl/Br/IAtom) enthalten. [2]. Nach heutigen Kenntnisstand müssen wir von bis zu 10.000 Verbindungen ausgehen. Die Bund/Länder-Arbeitsgemeinschaft (LAWA) hat 2017 für 13 PFAS-Verbindungen die Bewertungsgrundlage geschaffen [3]. Für die Bestimmung von Einzelstoffen existieren bereits seit einigen Jahren vom Deutschen Institut für Normung (DIN) Normen für unterschiedliche Matrizes [4] [5] [6]. Jedoch sind heute gerade mal weniger als 1 Prozent aller PFAS-Verbindungen über diese Einzelstoffanalytik zugängig. Der größte Anteil der polyfluorierten Verbindungen, die zu den Vorläuferverbindungen zählen, ist mit der reinen Einzelstoffanalytik nicht bestimmbar. Nach dem TOP-Assay-Verfahren von Houtz und Sedlak aus dem Jahr 2012 können durch eine alkalische Oxidation mit Peroxodisulfat bei Temperaturen von 85 ËÌC (+/- 3 ËÌC) diese Vorläuferverbindungen in bestimmbare Perfluorcarbonsäuren (PFCA) umgewandelt werden [7]. Durch eine Gehaltsbestimmung der PFCA vor und nach Oxidation kann der Gehalt an Vorläuferverbindungen (semi-)quantifiziert werden. Eine Potentialabschätzung der nachbildbaren PFCA aus Vorläuferverbindungen könnte für eine weitergehende Bewertung von Schadenfällen für den Wirkungspfad Boden - Grundwasser hilfreich sein. TOP (â ÌPFCA) = ((â Ì PFCA oxidiertes Aliquot M2 -â Ì PFCA unbehandeltes Aliquot M1) [Ìg/l]) [7] Im Rahmen des Projektes sollten die Grundlagen geschaffen werden, um das TOP-AssayVerfahren für die Bestimmung von PFAS in Bodeneluaten zu normen. Hierfür wurde eine Standardarbeitsanweisung geschrieben, eine Robustheitsstudie und eine Vergleichsuntersuchung mit elf Laboren durchgeführt. Der Normenentwurf wird unter den Kennzeichen DIN 3608:2022-03 beim DIN geführt [8]. Durch die Normung sind in unterschiedlichen Laboren vergleichbare Ergebnisse wahrscheinlicher. Quelle: Forschungsbericht

Entfernung halogenierter Schadstoffe aus Ab- und Prozesswasser durch heterogen katalysierten elektrochemischen Abbau

LUA-Bilanz Lebensmittelüberwachung 2024: Erneut wenige gesundheitsschädliche Proben

Von schnell wachsenden Salmonellen bis zu lange nachweisbaren „Ewigkeitschemikalien“: Die Bilanz des Landesuntersuchungsamtes (LUA) zur amtlichen Lebensmittelüberwachung im Jahr 2024 ist gekennzeichnet von Routine-Untersuchungen und neuen Herausforderungen. „Mit unseren Untersuchungen schützen wir die Verbraucherinnen und Verbraucher in Rheinland-Pfalz aktiv vor Gesundheitsgefahren und irreführenden Angaben“, sagte LUA-Präsident Dr. Markus Böhl zur Vorstellung der Bilanz. „Gemeinsam mit den Lebensmittelkontrolleurinnen und -kontrolleuren im ganzen Land leistet das LUA einen wichtigen Beitrag zur Lebensmittelsicherheit. Verbraucherschutz ist ein hohes Gut, alle Beteiligten in der Lebensmittelüberwachung arbeiten daran mit, dass wir darauf vertrauen können, dass das, was wir essen und trinken sicher ist. Die Überwachung von Lebensmitteln dient uns allen und unserer Gesundheit und ist ein wichtiger Beitrag zum vorsorgenden gesundheitlichen Verbraucherschutz“, so Ernährungsministerin Katrin Eder. Um die Sicherheit der in Rheinland-Pfalz angebotenen Lebensmittel zu überwachen, hat das LUA im vergangenen Jahr 19.403 Stichproben aus den unterschiedlichsten Warengruppen untersucht. „Die Beanstandungsquote lag mit 10,2 Prozent auf dem Niveau der Vorjahre“, berichtet Dr. Markus Böhl. Die überwiegende Mehrzahl der Beanstandungen betraf eine falsche oder irreführende Kennzeichnung. Als tatsächlich gesundheitsschädlich musste das LUA nur wenige Einzelproben beurteilen. Das zeigt, dass die Qualitätssicherungsmaßnahmen der Hersteller und Händler grundsätzlich greifen. Das LUA identifiziert gesundheitsgefährdende Produkte, die trotz der Qualitätssicherung der Hersteller auf den Markt gelangt sind. Es trägt mit seinen Kontrollen dazu bei, den hohen Standard der Lebensmittelsicherheit weiter zu verbessern. 2024 wurden insgesamt 13 gesundheitsschädliche Proben identifiziert, im Vorjahr waren es 26. „Diese Quote ist mit etwa 0,1 Prozent aller untersuchten Proben seit Jahren konstant niedrig“, hält LUA-Präsident Dr. Böhl fest. Die entsprechenden Artikel wurden aus dem Handel entfernt und die Verbraucherinnen und Verbraucher informiert, wenn es auch zu öffentlichen Rückrufen kam. So wiesen die Sachverständigen des LUA 2024 in neun Proben bakterielle Verunreinigungen mit krankmachenden Bakterien nach. Sprossen, Tahin (Sesampaste) und eine Blattsalatmischung waren mit Salmonellen belastet. Sogenannte shigatoxin-bildende E.coli Bakterien (STEC) wurden in zwei Wurstproben zum Rohverzehr gefunden, eine Suppenprobe war mit Bacillus cereus kontaminiert. Diesen Keimen ist gemeinsam, dass sie selbst oder die von ihnen gebildeten Toxine Erbrechen und/oder schwere Durchfallerkrankungen auslösen können. Drei Proben Thunfisch überschritten den Grenzwert von 200 Milligramm pro Kilogramm Histamin um ein Vielfaches. Größere Mengen an Histamin können insbesondere bei sensiblen Personen zu Vergiftungssymptomen wie Atemnot, Blutdruckabfall, Erbrechen, Durchfall und Hautrötungen führen. Durch Fehler während der Produktion können auch gesundheitsschädliche Fremdkörper in Lebensmittel gelangen. 2024 musste das LUA vier derartige Beurteilungen aussprechen. So wurden in geriebenem Käse mehrere dünne Metalldrähte, in einem Cheeseburger zahlreiche harte und spitze Fremdkörper und in einem Erdbeerfruchtaufstrich und einem Elisenlebkuchen jeweils ein scharfkantiger Fremdkörper gefunden. Entnommen werden die Proben grundsätzlich von den Lebensmittelkontrolleurinnen und Lebensmittelkontrolleuren der Kreise und kreisfreien Städte in Rheinland-Pfalz. Sie überwachen Herstellerbetriebe, Einzelhandel und Gastronomie und ziehen dort Proben, die sie ans LUA zur Untersuchung und Beurteilung schicken. Im vergangenen Jahr haben die Mitarbeiterinnen und Mitarbeiter der Kommunen landesweit insgesamt 32.065 Kontrollbesuche in 17.707 Betrieben durchgeführt. Ewigkeitschemikalien PFAS: Belastung unter Höchstgehalt Besonders im öffentlich Fokus standen in der jüngeren Vergangenheit per- und polyfluorierte Alkylverbindungen, kurz PFAS. Dahinter verbergen sich künstlich hergestellte Industriechemikalien, die sich kaum abbauen, weshalb sie auch Ewigkeitschemikalien genannt werden. PFAS finden aufgrund ihrer chemischen Eigenschaften Einsatz in Alltagsprodukten wie Anoraks, Pfannen oder Kosmetik und in industriellen Prozessen. Die Kehrseite ihrer Langlebigkeit: Sie sind inzwischen in Böden, Trinkwasser, Futtermitteln und Lebensmitteln nachweisbar. Auch Menschen können PFAS aufnehmen - vor allem über Lebensmittel. Nach Angaben der europäischen Lebensmittelsicherheitsbehörde EFSA sind vor allem Lebensmittel tierischer Herkunft belastet. Das Problem: Mit der Nahrung zugeführte PFAS werden vom Menschen rasch und fast vollständig aufgenommen und verbleiben (je nach Einzelsubstanz) über Monate bis Jahre im Körper. Seit 1. Januar 2023 gelten deshalb EU-weit Höchstgehalte für Perfluoralkylsubstanzen in bestimmten Lebensmitteln. LUA-Präsident Dr. Markus Böhl: „Wir haben auf diese Entwicklung reagiert und in unseren Laboren eine Methode zum Nachweis von PFAS in Lebensmitteln etabliert.“ 2024 hat das LUA 72 Lebensmittelproben aus dem rheinland-pfälzischen Handel auf PFAS untersucht. Es handelte sich dabei um Hühnereier (30 Proben), Pute (11 Proben), Rindfleisch (14 Proben), Schweinefleisch (8 Proben) und Forellen (9 Proben). Ergebnis: Die Gehalte für die Substanzen Perfluoroctansäure (PFOA), Perfluorhexansulfonsäure (PFHxS) und Perfluornonansäure (PFNA) lagen in allen Proben unter der jeweiligen Bestimmungsgrenze – die Gehalte waren also so gering, dass sie selbst mit hochsensiblen Analysenmethoden quantitativ nicht bestimmt werden konnten. In 14 Proben wurden Gehalte für Perfluoroctansulfonsäure (PFOS) über der Bestimmungsgrenze ermittelt; diese lagen aber unter dem gesetzlichen Höchstgehalt. Die vollständige Bilanz mit weiteren Hintergründen finden Sie hier auf der Homepage des Landesuntersuchungsamtes .

Messstelle SH Ottendorf, km 358,0, Knetzgau, KA uuh, Fließgewässer Main

Die Messstelle SH Ottendorf, km 358,0, Knetzgau, KA uuh (Messstellen-Nr: 19417) befindet sich im Gewässer Main. Die Messstelle dient der Überwachung des chemischen Zustands.

Messstelle b Pegel i Fürth a Berg, Fließgewässer Steinach

Die Messstelle b Pegel i Fürth a Berg (Messstellen-Nr: 15088) befindet sich im Gewässer Steinach. Die Messstelle dient der Überwachung des chemischen Zustands.

1 2 3 4 5360 361 362