API src

Found 372 results.

Similar terms

s/pg2/PGM/gi

Entwicklung Luftqualität - Emissionswerte PM 2008/2009 (Umweltatlas)

Emissionswerte PM10 und PM2,5

Langjährige Entwicklung der Luftqualität - Emissionen 2015 (Umweltatlas)

Darstellung der NOx, PM10 und PM2, 5-Emissionen der Verursachergruppen Industrie, Hausbrand und Kfz-Verkehr, Stand 2015

Langjährige Entwicklung der Luftqualität - Berliner Luftgütemessnetz - Standorte und Messdaten (Umweltatlas)

Darstellung aller Stationen und Messwerte der BLUME-, RUBIS- und Passivsammler-Messnetze seit 1975 sowie ausgewählter langjährig betriebener Berliner Klimastationen

Klimaschutz und regenerativ erzeugte chemische Energieträger - Infrastruktur und Systemanpassung zur Versorgung mit regenerativen chemischen Energieträgern aus in- und ausländischen regenerativen Energien

Für die Erreichung langfristiger ambitionierter Klimaschutzziele ist eine auf hohen Anteilen erneuerbarer Energien basierende Energieversorgung notwendig. Dabei können regenerativ erzeugte Energieträger mit Hilfe von Power-to-Gas und Power-to-Liquid für alle Anwendungsbereiche (Strom, Wärme, Verkehr, Industrie) eine wichtige Rolle spielen. Auf Grund der begrenzten deutschen regenerativen Potenziale und insbesondere der energetischen sowie ökonomischen Vorteile von ausländischen Standorten könnte der Import von erneuerbaren Energien bzw. Energieträgern notwendig sein. Vor diesem Hintergrund war das Ziel des Vorhabens, erste Antworten bezüglich der Potenziale regenerativer chemischer Energieträger aus erneuerbaren Energien (EE) im In- und Ausland sowie den zugehörigen Transportanforderungen und -restriktionen von Seiten der Strom- und Gasinfrastruktur zu gewinnen. Dazu wurde an Hand von möglichen internationalen Standorten die dortigen Einspeisepotenziale der Erzeugungstechnologien Wind on-/offshore, PV und CSP sowie die entsprechende Gastransportinfrastruktur (Pipeline- und LNG-Transport) für die Wasserstoff- und Methanaufnahme bestimmt. Auf nationaler Ebene wurden räumlich aufgelöste Überschüsse in einem zukünftigen Szenario mit den Wasserstoffaufnahmepotenzialen innerhalb von Stromnetzregionen verglichen. Zudem wurden CO2-Minderungspotenziale im Transformationsprozess zum Beispiel bei der Wasserstoffwirtschaft aufgezeigt.Als Ergebnis der Studie liegt ein systematischer Vergleich von möglichen Pfaden für den Import von regenerativen Energien vor sowie erste Handlungsempfehlungen für die Integration dieser im Rahmen des Transformationsprozesses hin zu einer treibhausgasärmeren Energieversorgung.<BR>Quelle: Forschungsbericht

ATKIS-Basis-DLM

Das digitale Landschaftsmodell beschreibt die topographischen Objekte der Landschaft und das Relief der Erdoberfläche im Vektorformat. Die Objekte werden einer bestimmten Objektart zugeordnet und mit ihrer räumliche Lage, ihrem geometrischen Typ, den beschreibenden Attributen und Beziehungen zu anderen Objekten (Relationen) definiert. Jedes Objekt besitzt deutschlandweit eine eindeutige Identifikationsnummer (Identifikator). Die räumliche Lage wird für das Basis-DLM maßstabs- und abbildungsunabhängig im Koordinatensystem der Landesvermessung angegeben. Welche Objektarten das DLM beinhaltet und wie die Objekte zu bilden sind, ist im ATKIS-Objektartenkatalog (ATKIS-OK online) festgelegt.Der Informationsumfang des Basis-DLM orientiert sich am Inhalt der topographischen Karte 1:25.000, er weist jedoch eine höhere Lagegenauigkeit (angestrebt sind ± 3m) für die wichtigsten punkt- und linienförmigen Objekte auf. Die Erfassung der Objektarten und Attribute erfolgt in drei aufeinander folgenden Realisierungsstufen, die im ATKIS-OK ausgewiesen sind. Das ATKIS-Basis-DLM steht in Form von WFS-Diensten und Datensätzen im Downloadcenter der HVBG (www.gds.hessen.de) zur Verfügung. HLBG

Präsentationsgraphik PG 25

Die Präsentationsgraphik im Maßstab 1:25.000 wird automatisiert aus dem tagesaktuellen ATKIS®-Basis-DLM abgeleitet. Das in der Graphik dargestellte Schriftgut wird aus den topographischen Kartenwerken entnommen. Im Gegensatz zu den bundeseinheitlichen topographischen Karten liegt die PG 25 nur innerhalb Hessens vor und unterscheidet sich durch einen spezifischen Zeichenschlüssel in Art und Umfang der dargestellten Objekte.

Gehobene Erlaubnis: Einleit v gereinigtem Abwasser aus d Kläranlage Weilerbach

Änderung gehobene Erlaubnis der Verbandsgemeinde Weilerbach für die Einleitung von gereinigtem Abwasser aus der Kläranlage Weilerbach, hinsichtlich Herabsetzung Überwachungswert Pges

Pommersche Bucht, TRUMP: BENTHOS 93/04, TRUMP 40/93/06 (PG2, 54.6000 N, 12.7000 E, 1993-04-22 16:08:00)

Marine chemical, physical or biological investigations in campaign BENTHOS 93/04, TRUMP 40/93/06 at PG2, 54.6000 N, 12.7000 E (1993-04-22) within project(s) Pommersche Bucht, TRUMP.

Gaskraftwerke und die Gasversorgung im Zuge der Energiewende

Anzahl und Leistung der konventionellen Gaskraftwerke, Stromentstehungskosten, Planung, Bau, Baustopp wegen Unrentabilität, Anzahl der Reservekraftwerke, Anzahl und Leistung der Biogaskraftwerke und Power-to-Gas-Anlagen; Berichterstattung der Landesregierung im Ausschuss für Umwelt, Energie, Ernährung und Forsten

Ein (fast) treibhausgasneutrales Deutschland ist möglich

Auch große Industrieländer können ihre CO2-Emissionen bis 2050 um 95 Prozent senken Kann ein Industrieland wie Deutschland seine menschengemachten Treibhausgasemissionen fast vollständig vermeiden? Die Antwort, die das Umweltbundesamt (UBA) in einer neuen Studie gibt, fällt positiv aus: „Technisch ist es möglich, den Treibhausgasausstoß im Vergleich zu 1990 um fast 100 Prozent zu vermindern. Und zwar mit heute schon verfügbaren Techniken.“, sagte UBA-Präsident Jochen Flasbarth. „Unser jährlicher Pro-Kopf-Ausstoß von heute über 10 Tonnen CO2-Äquivalente kann auf weniger als eine Tonne pro Kopf im Jahr 2050 sinken. Im Vergleich zu 1990, dem internationalen Bezugsjahr, entspricht das einer Reduktion um 95 Prozent. Deutschland kann bis zur Mitte des Jahrhunderts annähernd treibhausgasneutral werden.“, sagte der UBA-Präsident bei der Präsentation der UBA-Studie „Treibhausgasneutrales Deutschland 2050“. Für eine vollständige Treibhausgasneutralität müssten zusätzlich Emissionen in anderen Ländern – über deren eigene Klimaschutzverpflichtungen hinausgehend – sinken, um die dann noch verbleibende Tonne pro Kopf auszugleichen. Die entscheidenden Weichenstellungen stehen im Energiesektor an, so Flasbarth: „Strom, Wärme und herkömmliche Kraftstoffe verursachen derzeit rund 80 Prozent unserer Treibhausgasemissionen. Wir können unseren ⁠ Endenergieverbrauch ⁠ im Jahr 2050 gegenüber 2010 aber halbieren und vollständig durch erneuerbare Energien decken. So können wir mehr als Dreiviertel der Emissionen vermeiden. Dafür brauchen wir weder Atomkraft, noch müssen wir CO 2 im Untergrund verklappen.“ 95 Prozent weniger Treibhausgasemissionen sind nur möglich, wenn alle Sektoren einen Beitrag leisten. Neben dem Energiesektor (inklusive Verkehr) sind Industrie, Abfall- und Abwasserwirtschaft sowie Land- und Forstwirtschaft gefragt. Die Emissionen der Landwirtschaft und aus bestimmten Industrieprozessen lassen sich leider nicht vollständig vermeiden. Daher ist eine vollständig regenerative Energieversorgung das Kernstück des ⁠ UBA ⁠-Szenarios – und zwar sowohl für die Strom-, als auch für die Wärme- und Kraftstoffversorgung. Für das Jahr 2050 setzt das UBA vor allem auf Wind- und Solarenergie. Keine Zukunft hat dagegen die so genannte Anbaubiomasse: „Statt Pflanzen wie Mais und Raps allein zum Zweck der Energieerzeugung anzubauen, empfehlen wir auf Biomassen aus Abfall und Reststoffen zu setzen. Diese stehen auch nicht in Konkurrenz zur Lebensmittelproduktion“, sagte Flasbarth. Zentral für eine fast treibhausgasneutrales Deutschland ist, den künftig zu 100 Prozent erneuerbar erzeugten Strom in Wasserstoff, Methan und langkettige Kohlenwasserstoffe umzuwandeln. Bei diesen Power-to-Gas und Power-to-Liquid genannten Verfahren wird Solar- und Windstrom genutzt, um mittels Elektrolyse von Wasser und weiterer katalytischer Prozesse das Gas Methan oder flüssige Kraftstoffe herzustellen. Diese können dann als Ersatz für Diesel oder Benzin genutzt werden, ebenso als Ersatz für Erdgas zum Heizen von Wohnungen eingesetzt sowie als Rohstoffe in der chemischen Industrie dienen. Erste erfolgreiche Pilotprojekte zu dieser Technik gibt es bereits in Deutschland. Allerdings ist dieser Prozess mit hohen Umwandlungsverlusten verbunden und derzeit noch teuer. Weitere Forschung – auch zu anderen Optionen bei der Mobilität und Wärmeversorgung – ist nötig. Der Verkehrssektor verursacht heute rund 20 Prozent der Klimagase. Diese können bis zum Jahr 2050 auf null sinken. Ganz wichtig dazu ist, unnötigen Verkehr überhaupt zu vermeiden. Nicht vermeidbare Mobilität sollte möglichst auf Fahrrad, Bus und Bahn verlagert werden. Bei Pkw und Lkw muss zudem die technische Effizienz der Fahrzeuge deutlich besser werden. Der wesentliche Schlüssel für null Emissionen im Verkehrssektor ist die Umstellung auf erneuerbare Energien: „Autos werden im ⁠ Szenario ⁠ des Umweltbundesamtes für das Jahr 2050 knapp 60 Prozent der ⁠ Fahrleistung ⁠ elektrisch erbringen. Flugzeuge, Schiffe und schwere Lkw werden in Zukunft zu einem großen Teil weiterhin auf flüssige Kraftstoffe angewiesen sein – dann aber als klimaverträglich hergestellte, synthetische Flüssigkraftstoffe, hergestellt im Power-to-Liquid-Verfahren.“, sagte Flasbarth. Ob und in welcher Form die strombasierten Kraftstoffe dann für einzelne Verkehrsträger bereitgestellt werden können, bedarf der weiteren Forschung. Sämtliche Raum- und ⁠ Prozesswärme ⁠ für die Industrie wird laut UBA-Szenario bis zum Jahr 2050 aus erneuerbaren Strom und regenerativ erzeugtem Methan erzeugt. Hierdurch sinken die energiebedingten Treibhausgasemissionen vollständig auf null. Die prozess- bzw. rohstoffbedingten Treibhausgasemissionen sinken immerhin um 75 Prozent auf etwa 14 Millionen Tonnen. Die heute sehr stark erdölbasierte Rohstoffversorgung der chemischen Industrie müsste dazu auf regenerativ erzeugte Kohlenwasserstoffe umgestellt werden; so entstünden künftig fast keine Treibhausgasemissionen etwa bei der Ammoniakherstellung oder anderen chemischen Synthesen. Die Emissionen aus dem Sektor Abfall und Abwasser sind bis heute schon stark gesunken und liegen laut UBA im Jahr 2050 bei nur noch drei Millionen Tonnen CO 2 -Äquivalenten. Nötig wäre dazu, noch mehr Deponiegase zu erfassen und in Blockheizkraftwerken zu nutzen. Auch eine bessere Belüftung von Kompostanlagen für Bioabfall kann künftig noch stärker helfen, dass sich kein klimaschädliches Methan in den Anlagen bildet. Der größte Emittent im Jahr 2050 könnte die Landwirtschaft mit 35 Millionen Tonnen CO 2 -Äquivalenten sein. Da technische Maßnahmen alleine nicht ausreichen, um diese Minderung zu erreichen, ist es notwendig, den Tierbestand vor allem der Wiederkäuer zu verringern. Das Umweltbundesamt ist in seinem Szenario davon ausgegangen, dass Deutschland im Jahr 2050 weiterhin eines der führenden Industrieländer der Welt ist. Die Studie stellt nur ein technisch mögliches Szenario dar – und ist keine sichere ⁠ Prognose ⁠ dessen, was kommen wird. Dargestellt wird eine technisch mögliche Zukunft im Jahr 2050. Der Transformationspfad von heute bis 2050 wird ebenso wenig betrachtet, wie ökonomische Fragen zu Kosten und Nutzen. Außerdem wurde angenommen, dass das Konsumverhalten der Bevölkerung sich nicht grundlegend ändert. Mit klima- und umweltfreundlicheren Lebensstilen ließen sich die Klimaschutzziele deshalb natürlich noch leichter erreichen. Die 95-prozentige Treibhausgasminderung leitet sich aus Erkenntnissen der Wissenschaft ab. Auf diesen Erkenntnissen basiert auch die internationale Vereinbarung, den Anstieg der globalen Mitteltemperatur auf maximal 2 Grad zu begrenzen. Dazu muss der weltweite Ausstoß an Klimagasen bis zur Mitte des Jahrhunderts um 50 Prozent sinken, für die Industrieländer entspricht das um 80-95 Prozent weniger als 1990. Entsprechende Klimaschutzziele haben sich Deutschland und die EU gesetzt.

1 2 3 4 536 37 38