Business Improvement Districts (BID), die in Hamburg Innovationsbereiche genannt werden, sind klar begrenzte Geschäftsgebiete (Business Districts), in denen auf Veranlassung der Betroffenen (z. B. Eigentümerschaft und Gewerbetreibenden) in einem festgelegten Zeitraum (maximal 8 Jahre) in Eigenorganisation Maßnahmen zur Quartiersaufwertung (Improvement) durchgeführt werden. Ein Ziel dabei ist es, durch die Schaffung eines Innovationsbereichs die Attraktivität eines Einzelhandels-, Dienstleistungs- und Gewerbezentrums für Kunden, Besucherinnen und Besucher zu erhöhen. Finanziert werden BIDs durch eine kommunale Abgabe, die alle im Gebiet ansässigen Grundeigentümerinnen und Grundeigentümer zu leisten haben.
Internationales Komposit
Web Feature Service (WFS) zum Thema Business Improvement Districts. Zur genaueren Beschreibung der Daten und Datenverantwortung nutzen Sie bitte den Verweis zur Datensatzbeschreibung.
Web Map Service (WMS) zum Thema Business Improvement Districts. Zur genaueren Beschreibung der Daten und Datenverantwortung nutzen Sie bitte den Verweis zur Datensatzbeschreibung.
Deutschland Ausschnitt
Konzeptionen der Schadstoffmessung, einschliesslich Laerm und Strahlen
Konzeptionen der Schadstoffmessung, einschliesslich Laerm und Strahlen
Mehrere Diplomarbeiten mit eigenen Fragestellungen; - Entwicklung von methodischen Ansaetzen/Instrumenten zum Umweltmonitoring und zur Vorhersage von Biomasseentwicklungen und von Landnutzungssystemen zur Stabilisierung der Bodenfruchtbarkeit und Nahrungsmittelproduktion.
This publication includes the metadata schema and documentation for the registration of International Generic Sample Numbers (IGSN) by GFZ Data Services between 2015 and 2024. The IGSN schema definitions included here give an overview of the existing elements for sample description used in the different data centres managed by the IGSN Agent GFZ Data Services. To date, GFZ Data Services organises their IGSN collections according to different projects or research groups which are displayed as different datacentres in the catalogue (https://dataservices.gfz-potsdam.de/igsn-new/). The modular IGSN metadata schema, developed by IGSN e.V., formed the basis for the registration of IGSN sample descriptions. Until 2022, the following three modules were used: IGSN Registration Metadata Schema: mandatory metadata properties required for the IGSN registration (Handle Server) IGSN Descriptive Metadata Schema: generic description of a specimen’s core elements as defined by IGSN e.V. These elements were intended to represent the common metadata kernel for all IGSN allocating agents. IGSN Supplemental Metadata Schema: additional, sample-specific metadata elements that can be individually developed by IGSN Allocating Agents. This schema represents a further development of the IGSN metadata schema originally developed by System for Earth Sample Registration (SESAR², www.geosamples.org) in the framework of the IGSN Organisation (IGSN e.V.) with specific additions for the GFZ use case. It was used for IGSN registrations since 2015. As part of the project "FAIR Workflows to establish IGSN for Samples in the Helmholtz Association" (FAIR WISH), funded by the Initiative and Networking Fund of the Helmholtz Association (Helmholtz Metadata Collaboration HMC). these schemes were secured and the documentation for the registration metadata, descriptive metadata documentation was completed.
This dataset provides the surface velocity fields derived with MatPIV (open-source Matlab toolbox for Particle Image Velocimetry; Sveen 2004) of three seismotectonic analog models (e.g., Rosenau et al., 2017) performed to investigate the role of geometry and friction of a single subducting seamount on the seismogenic behavior of the megathrust. Model 1 has a seamount covered by sandpaper (i.e., high friction) that is placed at 1/2 of the trench-parallel length of the seismogenic zone. Model 3 has the same geometry of model 1, but the seamount is in direct contact with the gelatin (i.e., not covered by sandpaper, hence low friction). Model 5 has a low friction patch (i.e., no geometry) that is placed again at 1/2 of the trench-parallel length of the seismogenic zone. Together with the surface velocity fields, we also provide Matlab scripts for visualization. A more detailed description of the experimental setup, configuration of the models and materials can be found in Menichelli et al. (submitted), to which this dataset is supplementary. Our seismotectonic models represent a downscaled subduction zone (1 cm in the model corresponds to 6.4 km in nature; Rosenau et al., 2017). The experimental setup consists of a 60 x 34 cm2 Plexiglass box with a 10°-dipping aluminum basal plate that moves downward with a constant velocity of 0.01 cm/s, analog of the subducting plate. The overriding plate is represented by an elastic wedge of 2.5 wt% pigskin gelatin at T = 10 °C (Di Giuseppe et al., 2009). The seismogenic zone of the megathrust is simulated using a rectangular sandpaper patch (Corbi et al., 2013), with a downdip width of 16 cm and located 31 and 47 cm from the backstop. This corresponds to a 100-km-wide seismogenic zone extending over a depth interval between 15 and 34 km. The updip and down dip aseismic regions of the megathrust are simulated by plastic sheets that are fixed on the setup frame and not subject to subduction (Corbi et al., 2013). A 3D-printed PLA seamount is placed on the seismogenic zone (e.g., Van Rijsingen et al., 2019). The seamount has a height of 6.28 mm and a diagonal length of 94 mm, corresponding to 4 km and 60 km in nature, respectively. These dimensions scale well-known seamounts, such as the Joban Seamount chain in the Japan Trench or the Louisville seamount chain in the Tonga-Kermadec Trench. Experiments were monitored with a CCD camera that acquired a sequence of high-resolution top-view images (1600 x 1200 pixels2, 8 bit, 256 gray levels) at 7.5 fps for the entire duration of the experiment (i.e., ca. 24 minutes). Images are processed with Particle Image Velocimetry (PIV; Adam et al., 2005) using the open-source Matlab toolbox MatPIV (Sveen, 2004). MatPIV provides the velocity field between two consecutive frames, measured at the surface of the model. The velocity field was then used as input to identify analog seismic events using the open-source Matlab function findpeak. The threshold used was 0.1 cm/s. Once earthquakes were identified, we derived their source parameters such as seismic slip, magnitude, and recurrence time following Corbi et al. (2017) and van Rijsingen et al. (2019).
Origin | Count |
---|---|
Bund | 24 |
Land | 6 |
Wissenschaft | 2 |
Type | Count |
---|---|
Förderprogramm | 18 |
unbekannt | 11 |
License | Count |
---|---|
geschlossen | 4 |
offen | 23 |
unbekannt | 2 |
Language | Count |
---|---|
Deutsch | 23 |
Englisch | 7 |
Resource type | Count |
---|---|
Archiv | 1 |
Keine | 21 |
Webdienst | 3 |
Webseite | 8 |
Topic | Count |
---|---|
Boden | 12 |
Lebewesen & Lebensräume | 16 |
Luft | 12 |
Mensch & Umwelt | 29 |
Wasser | 13 |
Weitere | 29 |