API src

Found 81 results.

Biozide in der Umwelt

Biozidprodukte bekämpfen tierische Schädlinge und Lästlinge, aber auch Algen, Pilze oder Bakterien. Sie werden in vielen Bereichen eingesetzt, etwa als Desinfektionsmittel und Holzschutzmittel bis hin zum Mückenspray und Ameisengift. Biozidwirkstoffe können auch potenziell gefährlich für die Umwelt und die Gesundheit von Mensch und Tier sein. Was sind Biozide? Biozidprodukte sind gemäß europäischer Biozidverordnung (EU 528/2012) dafür bestimmt, Schadorganismen „zu zerstören, abzuschrecken, unschädlich zu machen, ihre Wirkung zu verhindern oder sie in anderer Weise zu bekämpfen“. Sie wirken sich jedoch häufig auch auf andere, sogenannte Nicht-Zielorganismen aus, und können deshalb mit hoher Wahrscheinlichkeit auch ungewollte Wirkungen in der Umwelt entfalten. Die Anwendungsbereiche für Biozidprodukte sind zahlreich. Die Palette der Anwendungen reicht von Desinfektions- und Materialschutzmitteln über Mittel zur Bekämpfung von Nagetieren und Insekten bis hin zu Schiffsanstrichen gegen Bewuchs. Insgesamt werden 22 Produktarten (PT) unterschieden. Zahl der Wirkstoffe für Biozidprodukte In der Europäischen Union (EU) sind 164 Wirkstoffe für die Verwendung in Biozidprodukten genehmigt (Stand 04/2025). Es gibt zahlreiche weitere Wirkstoffe, die als ⁠ Altstoffe ⁠ noch auf dem Markt sind und zurzeit überprüft werden. ⁠ Neustoffe ⁠ befinden sich ebenfalls im Prüfverfahren. Meldepflicht von Biozidprodukten Für Herstellende oder Einführende gab es bisher keine Mitteilungspflicht über die Menge der jeweiligen Biozidprodukte, die sie in Deutschland verkaufen oder ins Ausland ausführen. Daher war nicht bekannt, welche Mengen an Bioziden in Deutschland hergestellt oder verbraucht werden. Mit der 2021 in Kraft getretenen Biozidrechts-Durchführungsverordnung wird sich dies in den kommenden Jahren ändern. Bis zum 31.03.2022 mussten diese Daten erstmalig an die Bundesstelle für Chemikalien (BfC) gemeldet werden. In Zukunft erfolgt eine jährliche Meldung bis Ende März des Folgejahres. Derzeit liegen allerdings noch keine ausgewerteten Ergebnisse der ersten Meldungen vor. Bis diese Daten vorliegen, liefert die Anzahl der auf dem deutschen Markt erhältlichen Biozidprodukte einen Anhaltspunkt. Neben den bereits zugelassenen Biozidprodukten gibt es Biozidprodukte, die Altwirkstoffe enthalten und deren Überprüfungsverfahren noch nicht abgeschlossen sind. Diese müssen der Bundesstelle für Chemikalien gemeldet werden, um sie in Deutschland verkaufen zu können. Die Bundesstelle gibt jährlich bekannt, welche Biozidprodukte aus welcher der 22 Produktarten auf dem deutschen Markt erhältlich sein dürfen. So waren im April 2025 circa 35.000 Biozidprodukte auf dem deutschen Markt verkehrsfähig, wovon ca. 1.900 Biozidprodukte zugelassen sind (siehe Abb. „Verkehrsfähige Biozidprodukte“). Auf der Internetseite der Europäischen Chemikalienagentur (ECHA) kann jeder die abgestimmten Bewertungsberichte für biozide Wirkstoffe einsehen, welche in die Unionsliste der genehmigten Wirkstoffe aufgenommen wurden. Zudem sind alle in den einzelnen EU-Mitgliedsstaaten bereits geprüften und zugelassenen Produkte auf der Internetseite der Europäischen Chemikalienagentur (ECHA) aufgeführt. Eintragspfade von Bioziden in die Umwelt Aufgrund der unterschiedlichen Anwendungsbereiche kommt es zu vielfältigen Einträgen von Bioziden oder ihren Abbauprodukten in die Umwelt. Sowohl direkte als auch indirekte Einträge, wie zum Beispiel über Kläranlagen, sind möglich und können alle Umweltkompartimente wie Oberflächengewässer, Meeresgewässer, Grundwasser, Sedimente, Böden oder die ⁠ Atmosphäre ⁠ betreffen (siehe Abb. „Eintragspfade von Bioziden in die Umwelt“). Biozide Wirkstoffe sind erst seit relativ kurzer Zeit im Fokus der Öffentlichkeit und werden daher deutlich seltener als zum Beispiel ⁠ Pflanzenschutzmittel ⁠ von den Überwachungsprogrammen der Bundesländer erfasst. Untersuchungen belegen aber, dass sich auch diese Stoffe in der Umwelt wiederfinden lassen. Untersuchungen von Biozideinträgen in Gewässer Einträge in die Gewässer können auf direktem Weg erfolgen, beispielsweise durch Antifoulinganstriche an Sportbooten. So wurde beispielsweise die Konzentration des Antifouling-Wirkstoffes Cybutryn (Irgarol ® ) im Sommer 2013 in 50 deutschen Sportboothäfen untersucht . In 35 der 50 Sportboothäfen lagen die gemessenen Konzentrationen über der ⁠ Umweltqualitätsnorm ⁠ für Gewässer von 0,0025 Mikrogramm pro Liter (μg/L), welche die EU-Richtlinie 2013/39/EU vorschreibt. Dieser Wert darf als Jahresdurchschnittskonzentration nicht überschritten werden. An fünf Standorten übertrafen die Konzentrationen sogar die zulässige Höchstkonzentration von 0,016 μg/L (siehe Abb. „Cybutryn-Konzentrationen in Sportboothäfen“). Außerdem wurden in einem ⁠ Monitoring ⁠ in der Fließ- und Stillgewässersimulationsanlage des Umweltbundesamtes ökotoxikologische Wirkungen auf im Binnengewässer lebende Wasserpflanzen und Kleinstlebewesen nachgewiesen. Aufgrund dieser unannehmbaren Umweltrisiken ist Cybutryn als Antifouling-Wirkstoff seit dem 31. Januar 2017 nicht mehr in der EU verkehrsfähig, darf also nicht mehr gehandelt und verkauft werden. Untersuchungen von Schwebstoffproben der Umweltprobenbank an sieben Standorten von großen deutschen Flüssen zeigten eine Abnahme der Cybutryn-Konzentrationen über die Jahre 2011 bis 2020. Allerdings treten trotz des Verbots des Wirkstoffs noch immer ubiquitär geringe Gehalte in den Schwebstoffen auf ( UBA TEXTE 119/2022 ). Biozide werden auch in Baumaterialien eingesetzt, zum Beispiel in Fassadenfarben oder Außenputzen, um diese vor einem unerwünschten Algen- oder Pilzbewuchs zu schützen. Durch den Regen werden diese Substanzen von den Fassaden abgespült und gelangen entweder zusammen mit dem häuslichen Schmutzwasser in die Mischkanalisation und anschließend in die Kläranlage, oder sie erreichen Oberflächengewässer über den Regenkanal direkt und oft unbehandelt. Das Kompetenzzentrum Wasser Berlin ( KWB ) hat in Zusammenarbeit mit den Berliner Wasserbetrieben und der Ostschweizer Fachhochschule ( OST ) im Auftrag des Umweltbundesamtes (UBA) in zwei Neubaugebieten in Berlin über zwei Jahre den Austrag von Bioziden und weiteren Stoffen aus Bauprodukten erforscht. Anhand von Felduntersuchungen, Produkttests und Modellierungen wurde untersucht, aus welchen Bauprodukten Biozide und andere Stoffe in das abfließende Regenwasser gelangen. Besonders die Biozidwirkstoffe Terbutryn und Diuron gelangten in Konzentrationen in den Regenkanal, die über den Umweltqualitätsparametern für Gewässer liegen ( Wicke et al. 2022 ). Anhand von Frachtabschätzungen konnte zudem gezeigt werden, dass ein Großteil der Stoffmenge vor Ort verbleibt und zusammen mit dem Regenwasser versickert. Durch die Versickerung kann es jedoch zu einer Belastung des Bodens und Grundwassers kommen (siehe Abb. Spurenstoff-Konzentrationen im Gebietsabfluss (Regenkanal) eines Baugebiets). Anhand eines deutschlandweiten Kläranlagen-Monitoringprojektes konnte gezeigt werden, dass Biozide, die über die Kanalisation in die Kläranlage gelangen, nicht alle gleichermaßen eliminiert werden. Das Karlsruher Institut für Technologie ( KIT ) und das DVGW-Technologiezentrum Wasser ( TZW ) untersuchten im Auftrag des Umweltbundesamtes über einen Zeitraum von mehr als einem Jahr (11/2017-04/2019) 29 kommunale Kläranlagenabflüsse auf 26 Biozidwirkstoffe und ⁠ Transformationsprodukte ⁠. Vor allem Substanzen aus dem Bereich der Materialschutzmittel und Insektizide wurden im Kläranlagenablauf wiedergefunden (siehe Abb. „Kläranlagenmonitoring“). Teilweise lagen die Konzentrationen hierbei über dem jeweiligen Umweltqualitätsparameter für die Gewässer. Aber auch Stoffe, die beispielsweise aufgrund ihrer hohen Adsorptionsneigung in der Regel sehr gut in Kläranlagen zurückgehalten werden (Anreicherung im Klärschlamm), können Gewässer belasten. Sie gelangen insbesondere bei starken Regenereignissen ins Gewässer, wenn unbehandeltes Mischwasser (häusliches Abwasser plus Regenwasser) kontrolliert aus der Kanalisation ins Gewässer eingeleitet wird, um ein Überlaufen der Kläranlage zu verhindern. Dieser relevante Eintragspfad konnte unter anderem für das Schädlingsbekämpfungsmittel Permethrin gezeigt werden, bei dem die Umweltqualitätsparameter in Mischwasserentlastungen deutlich überschritten wurden ( Nickel et al. 2021 ). Cybutryn-Konzentrationen in Sportboothäfen Quelle: Umweltbundesamt Diagramm als PDF Diagramm als Excel mit Daten Spurenstoff-Konzentrationen im Gebietsabfluss (Regenkanal) eines Baugebiets Quelle: Umweltbundesamt Prozentualer Anteil an Positivdetektionen (in %) der untersuchten Biozidwirkstoffe ... Quelle: Umweltbundesamt Diagramm als PDF Diagramm als Excel mit Daten Funde von Bioziden in Schwebstoffen Gelangen stark adsorptive Stoffe ins Gewässer, so können diese sich in Schwebstoffen, im Sediment und folglich auch in Sedimentbewohnern anreichern und zu unterwünschten Effekten führen (Dierkes et al. in prep.). Biozide mit einem hohen Sorptionsverhalten wurden in einem von der Bundesanstalt für Gewässerkunde ( BfG ) durchgeführten Projekt in ausgewählten Schwebstoffproben der Umweltprobenbank der Jahre 2008-2021 chemisch analysiert, um die langfristige Entwicklung der Gewässerbelastung im urbanen Bereich zu untersuchen. Insgesamt 16 der 25 untersuchten Biozide wurden in Schwebstoffen nachgewiesen, wobei 10 Stoffe (vor allem Azolfungizide, Triazine und Quartäre Ammoniumverbindungen-QAV) in sämtlichen Proben gefunden wurden. Dies verdeutlicht die ubiquitäre Belastung von Schwebstoffen mit Bioziden. Das Pyrethroid Permethrin konnte nur in wenigen Schwebstoffproben oberhalb der ⁠ Bestimmungsgrenze ⁠ gefunden werden, dabei überschritten die Konzentrationen aber durchgehend die Predicted no effect concentration (⁠ PNEC ⁠) für das Kompartiment Sediment von 1,0 ng/g (ECHA, 2014). Dies zeigt die Relevanz dieser Substanz und vermutlich der gesamten Stoffklasse der Pyrethroide für das Schwebstoffmonitoring. Für die Materialschutzmittel Propiconazol und Tebuconazol, die QAV ADBAC C12-C14 und DDAC C8-C10 und für das Pyrethroid Permethrin sind in der folgenden Abbildung (siehe Abb. Biozid-Konzentrationen in Schwebstoffen) für alle Probenahmestandorte die gemessenen Konzentrationen in den Schwebstoffen bezogen auf das Trockengewicht (TG) für die Jahre 2013-2019 exemplarisch dargestellt. Belastung von Lebewesen mit Bioziden Sind Biozide einmal in die Umwelt gelangt, können diese auch zu einer Belastung von Lebewesen führen. Davon sind sowohl terrestrische als auch aquatische Lebensgemeinschaften betroffen. Beispielsweise werden die blutgerinnungshemmenden Wirkstoffe (Antikoagulanzien), die in giftigen Fraßködern zur Bekämpfung von Ratten und Mäusen enthalten sind, häufig in der Umwelt, insbesondere in Wildtieren nachgewiesen. Dies ist vor allem auf die für die Umwelt sehr problematischen Eigenschaften dieser Wirkstoffe zurückzuführen. Die meisten dieser Substanzen sind sogenannte ⁠ PBT ⁠-Stoffe, das heißt, sie werden in der Umwelt nur schlecht abgebaut (P = persistent), besitzen ein hohes Potential zur Anreicherung in anderen Lebewesen (B = bioakkumulierend) und sind zudem giftig (T = toxisch) ( Umweltbundesamt, 2019 ). In einer vom Julius-Kühn-Institut im Auftrag des ⁠ UBA ⁠ durchgeführten Untersuchung wurden 2018 erstmalig in Deutschland systematisch Rückstände von Antikoagulanzien in wildlebenden Tieren untersucht. Die Ergebnisse zeigen, dass sowohl in verschiedenen Kleinsäugerarten (zum Beispiel Wald- und Spitzmäusen, die nicht Ziel der Bekämpfung und teilweise besonders geschützte Arten sind) als auch in Eulen und Greifvögeln (vor allem Mäusebussarden) Rückstände von Antikoagulanzien nachweisbar sind. Auch wurden in 61 % von insgesamt 265 untersuchten Leberproben von Füchsen Rückstände von Antikoagulanzien gefunden ( Geduhn et al. 2016 ). Auch aquatische Organismen sind mit Antikoagulanzien belastet. So wurden vor einigen Jahren Rückstände von Antikoagulantien in Deutschland erstmalig in Fischen nachgewiesen (Kotthoff et al. 2018 ). Im Rahmen einer vom UBA in Auftrag gegebenen Untersuchung durch das Fraunhofer Institut für Molekulare Biologie und Angewandte Ökologie wurden Leberproben von Brassen (Abramis brama) aus den größten Flüssen in Deutschland – darunter Donau, Elbe und Rhein – sowie aus zwei Seen untersucht. In allen Fischen der bundesweit 16 untersuchten Fließgewässer-Standorte im Jahr 2015 wurde mindestens ein Antikoagulans der 2. Generation nachgewiesen. Lediglich in Proben von Fischen aus den beiden Seen wurde keine Belastung mit Antikoagulanzien festgestellt. In fast 90 % der 18 untersuchten Fischleberproben wurde Brodifacoum mit einem Höchstgehalt von 12,5 μg/kg Nassgewicht nachgewiesen. Difenacoum und Bromadiolon kamen in 44 bzw. 17 % der Proben vor (siehe Abb. „Rodentizide in Fischen“). In einer späteren von der Bundesanstalt für Gewässerkunde (BfG) durchgeführten Studie wurde gezeigt, dass Antikoagulanzien bei der konventionellen Abwasserbehandlung nicht vollständig eliminiert werden und sich in der Leber von Fischen anreichern. Insbesondere bei ⁠Starkregen⁠- und Rückstauereignissen führt die gängige Praxis der Ausbringung von Fraßködern am Draht in der Kanalisation zur Freisetzung antikoagulanter Wirkstoffe in die aquatische Umwelt ( Regnery et al. 2020 ). Datenportal „Biozide in der Umwelt – BiU“ Um nachvollziehen zu können, wie groß die Belastung der Umwelt mit Bioziden tatsächlich ist und ob Maßnahmen zur Reduktion des Eintrags von Bioziden in die Umwelt wirkungsvoll sind, wurde ein eigenständiges Modul in der Datenbank "Informationssystem Chemikalien" (ChemInfo) des Bundes und der Länder angelegt. Die neu entwickelte Datenbank „ Biozide in der Umwelt “ (BiU) stellt frei zugänglich und kostenlos Umweltmonitoringdaten zu Bioziden aus Deutschland, Österreich und der Schweiz zur Verfügung. Derzeit sind 91 biozide Wirkstoffe mit Datensätzen aus etwa 80.000 Wasser-/Abwasserproben, 380 Boden-/Klärschlammproben sowie 4.500 biotischen Proben recherchierbar. An einer Erweiterung des Datenumfangs wird aktuell gearbeitet. Neben den Monitoringdaten werden auch Informationen zur Zulassung der Wirkstoffe im Rahmen der Biozid-Verordnung sowie physikalisch-chemische Daten bereitgestellt.

Stickstoffeintrag aus der Landwirtschaft und Stickstoffüberschuss

Stickstoff ist ein essenzieller Nährstoff für alle Lebewesen. Im Übermaß in die Umwelt eingebrachter Stickstoff führt aber zu enormen Belastungen von Ökosystemen. Stickstoffüberschuss der Landwirtschaft Eine Maßzahl für die Stickstoffeinträge in Grundwasser, Oberflächengewässer, Böden und die Luft aus der Landwirtschaft ist der aus der landwirtschaftlichen Stickstoff-Gesamtbilanz ermittelte Stickstoffüberschuss (siehe Abb. „Saldo der landwirtschaftlichen Stickstoff-Gesamtbilanz in Bezug auf die landwirtschaftlich genutzte Fläche“). Die Stickstoff-Gesamtbilanz setzt sich zusammen aus den Komponenten Flächenbilanz (Bilanzierung der Pflanzen- bzw. Bodenproduktion), Stallbilanz (Bilanzierung der tierischen Erzeugung) und der Biogasbilanz (Bilanzierung der Erzeugung von Biogas in landwirtschaftlichen Biogasanlagen). Der Stickstoffüberschuss der Gesamtbilanz ergibt sich aus der Differenz von Stickstoffzufuhr in und Stickstoffabfuhr aus dem gesamten Sektor Landwirtschaft (siehe Schaubild „Schema der Stickstoff-Gesamtbilanz der Landwirtschaft“). Der ⁠ Indikator ⁠ wird vom Institut für Pflanzenbau und Bodenkunde des Julius Kühn-Instituts und dem Umweltbundesamt berechnet und jährlich vom ⁠ BMEL ⁠ veröffentlicht (siehe BMEL, Tabellen zur Landwirtschaft, MBT-0111-260-0000 ). Der Stickstoffüberschuss der Gesamtbilanz ist als mittlerer Überschuss aller landwirtschaftlicher Betriebe in Deutschland zu interpretieren. Regional können sich die Überschüsse jedoch sehr stark unterscheiden. Grund dafür sind vorrangig unterschiedliche Viehbesatzdichten und daraus resultierende Differenzen beim Anfall von Wirtschaftsdünger. Um durch ⁠ Witterung ⁠ und Düngerpreis verursachte jährliche Schwankungen auszugleichen wird ein gleitendes 5-Jahresmittel errechnet. ___ * jährlicher Überschuss bezogen auf das mittlere Jahr des 5-Jahres-Zeitraums (aus gerundeten Jahreswerten berechnet) ** 1990: Daten zum Teil unsicher, nur eingeschränkt vergleichbar mit Folgejahren. *** Ziel der Nachhaltigkeitsstrategie der Bundesregierung, bezogen auf das 5-Jahres-Mittel, d.h. auf den Zeitraum 2028 bis 2032 Bundesministerium für Ernährung und Landwirtschaft (BMEL) 2024, Statistischer Monatsbericht Kap. A Nährstoffbilanzen und Düngemittel, Nährstoffbilanz insgesamt von 1990 bis 2022 (MBT-0111260-0000) Die Ergebnisse der Bilanzierung zeigen einen abnehmenden Trend bei den Stickstoffüberschüssen über die erfasste Zeitreihe (siehe Abb. „Saldo der landwirtschaftlichen Stickstoff-Gesamtbilanz in Bezug auf die landwirtschaftlich genutzte Fläche“). Im Zeitraum 1992 bis 2020 ist der Stickstoffüberschuss im gleitenden 5-Jahresmittel von 117 Kilogramm Stickstoff pro Hektar landwirtschaftlich genutzter Fläche und Jahr (kg N/ha*a) auf 77 kg N/ha*a gesunken. Das entspricht einem jährlichen Rückgang von 1 % sowie einem Rückgang über die Zeit um 34 %. Die Reduktion des Stickstoffüberschusses zu Beginn der 1990er Jahre ist größtenteils auf den Abbau der Tierbestände in den neuen Bundesländern zurückzuführen. Der durchschnittliche Rückgang des Stickstoffüberschusses über die gesamte Zeit von 1992 bis 2020 beruht auf Effizienzgewinnen bei der Stickstoffnutzung (Effizienterer Einsatz von Stickstoff-Düngemitteln, Ertragssteigerungen in der Pflanzenproduktion und höhere Futterverwertung bei Nutztieren). In den Jahren seit 2015 ist der Überschuss besonders stark gesunken. Grund dafür sind neben einer veränderten und wirksameren Gesetzgebung, gesunkene Tierzahlen sowie Dürrejahre und höhere Mineraldüngerpreise und der damit einhergehende verminderte Einsatz von Mineraldüngern. Im Jahr 2016 wurde in der Deutschen Nachhaltigkeitsstrategie der Bundesregierung (BReg 2016) ein Zielwert von 70 kg N/ha*a für das gleitende 5-Jahresmittel von 2028-2032 verankert. Von 2016 bis 2020, also in 4 Jahren, wurde somit bereits etwa dreiviertel der angestrebten Reduktion erreicht. Bewertung der Entwicklung Wenn die Stickstoffüberschüsse weiterhin so schnell sinken wie in den letzten Jahren bzw. auf dem aktuellen Niveau bleiben wird das Ziel der Deutschen Nachhaltigkeitsstrategie voraussichtlich in den nächsten zwei bis drei Jahren erreicht werden. Für einen umfassenden Schutz von Umwelt und ⁠ Klima ⁠ ist dies aber noch nicht ausreichend. Die in 2016 in Kraft getretene EU-Richtlinie über nationale Emissionshöchstmengen für bestimmte Luftschadstoffe (⁠ NEC-Richtlinie ⁠) verpflichtet Deutschland bis 2030 dazu 29 % der Ammoniak-Emissionen im Vergleich zum Jahr 2005 zu reduzieren. Bis zum Jahr 2022 wurde hier nur eine Minderung von 18 % erreicht. Da der Sektor Landwirtschaft der größte Verursacher von Ammoniak-Emissionen ist, sind hier also noch weitere Maßnahmen für die Zielerreichung nötig. Aber auch für das Erreichen von weiteren Zielen, wie Nitrat im Grundwasser, Stickstoffeintrag über die Zuflüsse in Nord- und Ostsee und ⁠ Eutrophierung ⁠ der Ökosysteme wird voraussichtlich das Erreichen des 70 kg-Ziels nicht ausreichen, denn hier kommt es weniger auf den durchschnittlichen nationalen Stickstoffüberschuss, sondern eher auf die regionale Verteilung der Stickstoffüberschüsse an. Einen Überblick über die Verteilung der Überschüsse finden Sie hier . Stickstoffzufuhr und Stickstoffabfuhr in der Landwirtschaft Die Stickstoffzufuhr zur landwirtschaftlichen Gesamtbilanz berücksichtigt Mineraldünger, Wirtschaftsdüngerimporte, Kompost und Klärschlamm, atmosphärische Stickstoffdeposition, Stickstoffbindung von Leguminosen, Co-Substrate für die Bioenergieproduktion sowie Futtermittelimporte. Die Stickstoffabfuhr berücksichtigt pflanzliche und tierische Marktprodukte. Im Durchschnitt lag die Stickstoffzufuhr zwischen 1990 und 2022 bei 187 Kilogramm pro Hektar landwirtschaftlich genutzter Fläche und Jahr (kg N/ha*a), mit einem Maximum von 209 kg N/ha*a im Jahr 1990 und einem Minimum von 151 kg N/ha*a im Jahr 2022. Die Zufuhr hat sich bis 2017 kaum verändert. Lediglich in den letzten 5 Jahren gab es einen mittleren Rückgang von 8 kg N/ha*a. Die Stickstoffabfuhr betrug im gesamten Betrachtungszeitraum durchschnittlich 87 kg N/ha*a, mit einem Maximum von 103 kg N/ha*a im Jahr 2014 und einem Minimum von 67 kg N/ha*a im Jahr 1990. Im gleitenden 5-Jahresmittel stieg die Abfuhr von 73 kg N/ha*a im Jahr 1992 auf 88 kg N/ha*a im Jahr 2020 an. Dies entspricht einem Anstieg des über tierische und pflanzliche Produkte abgefahrenen Stickstoffs von etwa 21 %. 2022 stammten 44 % der Stickstoffzufuhr der Landwirtschaft aus Mineraldüngern, 25 % aus inländischem Tierfutter sowie 14 % aus Futtermittelimporten. Wirtschaftsdünger und betriebseigene Futtermittel werden in der Flächenbilanz, nicht aber in der Gesamtbilanz berücksichtigt. 3 % des Stickstoffs wurden über den Luftpfad eingetragen (⁠ Deposition ⁠ aus Verkehrsabgasen und Verbrennungsanlagen) und 2 % stammte aus Kofermenten für die Biogasproduktion. 10 % sind der biologischen Stickstofffixierung von Leguminosen (zum Beispiel Klee oder Erbsen) anzurechnen, die Luftstickstoff in erheblichem Maße binden. Etwa 1 % der Stickstoffzufuhr stammte aus Saat- und Pflanzgut. Die Stickstoffabfuhr fand zu 32 % über Fleisch, Schlachtabfälle und sonstige Tierprodukte und zu 68 % über pflanzliche Marktprodukte statt. Umweltwirkungen der Stickstoffüberschüsse Überschüssiger Stickstoff aus landwirtschaftlichen Quellen gelangt als Nitrat in Grund- und Oberflächengewässer und als Ammoniak und Lachgas in die Luft. Lachgas trägt als hochwirksames ⁠ Treibhausgas ⁠ zur Klimaerwärmung bei. Der Eintrag von Nitrat und Ammoniak in Land- oder Wasser-Ökosysteme kann weitreichende Auswirkungen auf den Naturhaushalt haben. Diese sind unter anderem eine Nitratbelastung des Grundwassers, eine ⁠ Versauerung ⁠ der Böden und Gewässer und somit eine Beeinträchtigung der biologischen Vielfalt sowie eine Nährstoffanreicherung (⁠ Eutrophierung ⁠) in Wäldern, Mooren, Heiden, Oberflächengewässern und Meeren. Im Mittel der Jahre 2012 bis 2016 wurden rund 480 Kilotonnen Stickstoff pro Jahr in die deutschen Oberflächengewässer eingetragen (siehe „Einträge von Nähr- und Schadstoffen in die Oberflächengewässer“ ). Durchschnittlich stammten in diesem Zeitraum 74 % dieser Einträge aus landwirtschaftlich genutzten Flächen. Die Düngeverordnung Die Düngeverordnung definiert „die gute fachliche Praxis der Düngung“ und gibt vor, wie die mit der Düngung verbundenen Risiken zu minimieren sind. Sie ist wesentlicher Bestandteil des nationalen Aktionsprogramms zur Umsetzung der EU-Nitratrichtlinie . Nach der Düngeverordnung dürfen Landwirtinnen und Landwirte Pflanzen nur entsprechend ihres Nährstoffbedarfs düngen. Die Düngeverordnung wurde 2017 und 2020 novelliert um Strafzahlungen als Folge des Urteils des EuGHs gegen Deutschland wegen Verletzung der EU-Nitratrichtlinie zu verhindern. Dieses Ziel wurde vorerst erreicht. Die kurzfristige Wirkung der Maßnahmen der novellierten Düngeverordnung werden aktuell im Rahmen eines Effizienzmonitorings geprüft, um die mit Nitrat belasteten und von ⁠ Eutrophierung ⁠ betroffenen Gebiete zu identifizieren und eine schnelle Nachsteuerung von Maßnahmen in diesen Gebieten zu erreichen. Informationen zu den Novellierungen finden Sie hier . Weitere Maßnahmen zur Verringerung der Überschüsse Um das Ziel der Bundesregierung zum Stickstoffüberschuss und der damit untrennbar verbundenen Umweltziele zu Nitrat im Grundwasser, ⁠ Eutrophierung ⁠ von Ökosystemen sowie Oberflächengewässern und zu Emissionen von Luftschadstoffen zu erreichen, muss die Gesamtstickstoffzufuhr in der Landwirtschaft verringert und der eingesetzte Stickstoff effizienter genutzt werden. Die Voraussetzung dafür ist das Schließen des Stickstoffkreislaufs. Dafür müssen Maßnahmen umgesetzt werden, die dazu führen, dass die Anwendung von Mineraldünger reduziert wird, importierte Futtermittel durch heimische ersetzt werden und die Anzahl von Nutztieren reduziert wird. Zudem muss die Effizienz der Stickstoffnutzung durch weitere Optimierungen des betrieblichen Nährstoffmanagements, wie standortangepasste Bewirtschaftungsmaßnahmen, geeignete Nutzpflanzensorten und passende, vielfältige Fruchtfolgen verbessert werden. Dabei ist am Ende nicht nur die Verringerung der durchschnittlichen Überschüsse entscheidend, sondern auch die Verteilung der Nährstoffe in die Fläche, denn nur so können die genannten Umweltziele erreicht werden. Um diese Verteilung zu erreichen müssen große Tierbestände reduziert und die Tiere gleichmäßiger auf die gesamte landwirtschaftliche Fläche verteilt werden.

Out of Sight – The Insufficiency of the Phase I Action Limit in Veterinary Early Impact Assessment

The VICH GL 6 guideline outlines a tiered assessment scheme that is mandatory for all active substances (AS) used in veterinary medicines before they enter the market. As the first step, the predicted environmental concentration of the AS in question is compared to a so-called “action limit” of 100 μg/kg for soil. If this action limit is exceeded, an extended environmental risk assessment is required. This limit is currently based on data that were recorded between 1973 and 1997 in the USA. Since then, new active ingredients with higher efficacy (and, therefore, potential environmental impacts at lower concentrations) have been developed and put on the market. This consequently elevates the probability of environmental and organismic impact, which in turn affects biodiversity and, ultimately, the natural functioning of ecosystems. A critical evaluation of the action limit is therefore necessary. Does it still serve its purpose as a precautionary decision criterion on whether an experimental Phase II risk assessment must be conducted? To assess the protectiveness of the soil action limit of 100 µg/kg, we evaluated 82 tests (34 plant and 48 earthworm tests) for 18 parasiticides, 28 antibiotic and 5 other AS, using data from European Medicines Agencies Public Assessment Reports, supplemented by internal data of the German Environment Agency. We included parasiticides in the data evaluation, although the action limit does not apply here, as their environmental hazard is determined by their toxicity to insects. Tests between model predictions reveal no difference between models with and without parasiticides (with parasiticides n = 51, without parasiticides n = 33). For each AS, we included the lowest available NOEC/EC10 and fitted a sigmoidal non-linear least squares model in the range of [0,1]. 18±5 % of the NOECs/EC10 values are below 100 µg/kg soil. This reduces to 17±6 % if only non- parasiticides are included in the data analysis. A total of 11 substances are below or equal to the action limit, 7 antibiotics and 4 parasiticides. In order to ensure that the action limit covers approximately 95 % of AS currently on the market, a reduction from 100 to 5 µg/kg would be necessary. The analysis shows that the current action limit is insufficient to protect organisms and ecosystems. In future revisions of the guideline, it will be necessary to adapt the action limit to current scientific standards.

AquaticPollutants: Antimikrobielle Biozide im Wasserkreislauf - ein integrierter Ansatz zur Einschätzung und zum Management der Risiken von Antibiotikaresistenzentwicklung

Nutzung der Dioxin- und Furandaten des UNECE/LRTAP POPs Protokolls zum Reporting unter der Stockholm Konvention, Artikel 5 – Annex C

Mit der Ratifizierung des Stockholmer Übereinkommens über persistente organische Schadstoffe (POP) hat die Bundesrepublik Deutschland Verpflichtungen über Berichtspflichten gemäß Artikel 5 und Annex C zur Freisetzung von polychlorierten Dibenzodioxinen und - furanen (PCDD/PCDF) (kurz „Dioxininventare“) übernommen. Berichte müssen alle fünf Jahre erstellt werden. In Entscheidung SC-6/9 ist das Format für die Berichterstattung festgelegt. Dieses Format beinhaltet zehn Hauptkategorien, die in verschiedene Quellenkategorien von Emissionen eingeteilt sind. Jede der Hauptkategorien ist wiederum in Unterkategorien unterteilt und berichtet Emissionen in fünf Vektoren (Luft, Wasser, Land, Produkte und Rückstände). Die erforderliche Berichterstattung gemäß Stockholm Konvention weicht erheblich von der aktuellen Berichtspraxis in Deutschland ab. Letztere richtet sich derzeit nach dem EMEP/EEALeitfaden für Emissionsinventare im Rahmen des UNECE-Übereinkommens über weiträumige grenzüberschreitende Luftverschmutzung und der EU-Richtlinie über nationale Emissionshöchstmengen. Mit dem Projekt werden die Emissionsdaten, die seitens des Umweltbundesamtes unter dem UNECE POPs Protokoll erhoben und berichtet werden, auf das Toolkit-Format des Stockholmer Übereinkommens übertragen und die fehlenden Vektoren (Wasser, Land, Produkte, Rückstände) unter Benutzung der Default-Emissionsfaktoren, ergänzt. Das Ergebnis soll für den 6. Nationalen Bericht zur Umsetzung des Stockholmer Übereinkommens in Deutschland genutzt werden, wenn alle erforderlichen Informationen vorliegen. Zum Schließen von Informationslücken werden Lösungsvorschläge erarbeitet.

Inhaltliche Vorbereitung der Öffentlichkeitsbeteiligung im Rahmen der Aktualisierung des nationalen Luftreinhalteprogramms

Die im nationalen Luftreinhalteprogramm der Bundesrepublik Deutschland (Berichtspflicht gemäß Art. 6 und Art. 10 der Richtlinie (EU) 2016/2284 über die Reduktion der nationalen Emissionen bestimmter Luftschadstoffe sowie gemäß §§ 4 und 16 der 43. Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes) vorgesehenen Maßnahmen zur Reduktion der nationalen Emissionen von Luftschadstoffen und die damit verbundenen Auswirkungen auf die Luftqualität werden im Rahmen des Vorhabens so aufbereitet, dass sie von einer breiten Öffentlichkeit nachvollzogen und für die Öffentlichkeitsbeteiligung für eine fortgeführte Maßnahmenauswahl im Rahmen der Aktualisierung des nationalen Luftreinhalteprogramms verwendet werden können.

German Informative Inventory Report 2023

The Informative Inventory Report (IIR) is providing complementary information to Germany's air pollution inventories under the Geneva Convention on Long-range Transboundary Air Pollution of the United Nations Economic Commission for Europe (UNECE/CLRTAP) as well as the EU's National Emission Ceiling Directive (NECD). Germany's air pollution inventory includes emission data in consistent time-series ranging from 1990 (1995 for PM10, PM2.5 and 2000 for Black Carbon) to the latest reported year (2 years back) for nine air pollutants and priority heavy metals & persistent organic pollutants (POP). This report includes a comprehensive analysis of the inventory data, descriptions of methods, data sources, and carried out QA/QC activities. It follows the outline established by the latest guidelines for estimating and reporting of emission data and all data presented in this report were compiled according to those same guidelines. Quelle: Bericht

Process design for removal of pharmaceuticals in wastewater treatment plants based on predicted no effect concentration (PNEC)

Increasing concern on water contamination by micropollutants like pharmaceuticals fuels the development and implementation of technologies to remove micropollutants from municipal wastewater treatment plants (WWTP). However, often the targets and criteria for process design of such technologies are not clarified. This study was conducted to test whether predicted no-effect concentrations (PNEC) can be used as a design parameter for advanced treatment technologies to achieve pharmaceutical levels in WWTP effluents. This goal is consistent with environmental requirements, currently being discussed both by the Danish authorities and the European goals on zero emissions as documented in the draft of the Urban Wastewater Directive. The effluent of a conventional activated sludge WWTP was treated by ozonation and granular activated carbon (GAC) and monitored for 50 pharmaceuticals and iodinated X-ray contrast media, as well as 23 transformation products. Treatment with GAC alone initially achieved concentrations below PNEC for all targeted compounds, but after treating 3,000 - 5,000 bed volumes, the removal for several compounds decreased and the effluent concentrations for clarithromycin and venlafaxine were no longer below PNEC. Ozonation alone effectively reduced the concentrations of most of the compounds with standard ozone dosing of 0.5 mg O3/mg DOC. However, ozonation was unable to remove bicalutamide and oxazepam to reach target concentrations. The operation of both technologies in combination achieved concentrations of all measured pharmaceuticals below the PNEC (even with ozone concentrations of below 0.5 mg O3/mg DOC). Nonetheless, this study suggests that proper steering of WWTP design via the PNEC values alone is obstructed by lack of reliable primal PNEC data and absence of PNEC references for emerging pollutants and potential biologically active transformation products. © 2023 The Author(s). Published by Elsevier B.V.

Bioanalytical and chemical characterization of organic micropollutant mixtures in long-term exposed passive samplers from the Joint Danube Survey 4: Setting a baseline for water quality monitoring

Monitoring methodologies reflecting the long-term quality and contamination of surface waters are needed to obtain a representative picture of pollution and identify risk drivers. This study sets a baseline for characterizing chemical pollution in the Danube River using an innovative approach, combining continuous three-months use of passive sampling technology with comprehensive chemical (747 chemicals) and bioanalytical (seven in vitro bioassays) assessment during the Joint Danube Survey (JDS4). This is one of the world's largest investigative surface-water monitoring efforts in the longest river in the European Union, which water after riverbank filtration is broadly used for drinking water production. Two types of passive samplers, silicone rubber (SR) sheets for hydrophobic compounds and AttractSPETM HLB disks for hydrophilic compounds, were deployed at nine sites for approximately 100 days. The Danube River pollution was dominated by industrial compounds in SR samplers and by industrial compounds together with pharmaceuticals and personal care products in HLB samplers. Comparison of the Estimated Environmental Concentrations with Predicted No-Effect Concentrations revealed that at the studied sites, at least one (SR) and 4-7 (HLB) compound(s) exceeded the risk quotient of 1. We also detected AhR-mediated activity, oxidative stress response, peroxisome proliferator-activated receptor gamma-mediated activity, estrogenic, androgenic, and anti-androgenic activities using in vitro bioassays. A significant portion of the AhR-mediated and estrogenic activities could be explained by detected analytes at several sites, while for the other bioassays and other sites, much of the activity remained unexplained. The effect-based trigger values for estrogenic and anti-androgenic activities were exceeded at some sites. The identified drivers of mixture in vitro effects deserve further attention in ecotoxicological and environmental pollution research. This novel approach using long-term passive sampling provides a representative benchmark of pollution and effect potentials of chemical mixtures for future water quality monitoring of the Danube River and other large water bodies. © 2023 The Author(s).

Sauer ist nicht immer lustig - Effekt des pH auf die Toxizität und Bioakkumulation ionischer Stoffe

Bei der Umweltrisikobewertung von Chemikalien werden Konzentrationen (PNEC) mittels OECD Standardtests abgeleitet, bei denen keine Gefährdung für aquatische Lebewesen erwartet wird. Die Entscheidung ob ein Stoff bioakkumulativ (B) im Rahmen der PBT-Bewertung ist, wird auf Basis des Biokonzentrationsfaktors (BCF) aus Fischstudien getroffen. Beide Konzepte stoßen bei ionischen Verbindungen (elektrisch geladenen Molekülen) jedoch an Grenzen, wenn die entsprechenden Tests unter den in der Guideline vorgegeben Bedingungen durchgeführt werden. Je nach pH-Wert des Testmediums kann sich die Toxizität der Chemikalie ändern, da angenommen wird, dass nur ungeladene Moleküle die Zellmembranen passieren können. Erste Untersuchungen zeigen, dass sich die aquatische Toxizität zwischen pH 5 und pH 9 um mehr als eine Größenordnung unterscheiden kann. Die BCF-Werte können sich in diesem pH-Bereich um einen Faktor von 3 unterscheiden, was zu einer Überschreitung des B-Triggerwertes von 2000 führen könnte. Aus diesem Grund sollte im Stoffvollzug der Einfluss des pH-Werts auf Bioakkumulation und Toxizität berücksichtigt werden. So erlauben die OECD Testguidelines bisher relativ breite pH-Wert Bereiche, was zu einer starken Unterschätzung der Toxizität und Bioakkumulation führen kann. Im Projekt sollen zunächst die publizierten Untersuchungen hierzu systematisch ausgewertet werden, um für schwache Säuren und Basen die pH Werte mit der maximalen Anreicherung im Organismus vorherzusagen. Im Idealfall kann ein mathematischer Zusammenhang abgeleitet werden, der es erlauben würde, bestehende Testergebnisse umzurechnen. Die theoretischen Erkenntnisse sollen dann durch experimentelle Studien überprüft werden, in denen die Toxizität und Bioakkumulation bei verschiedenen pH-Werten ermittelt werden. Daraufhin soll ein Vorschlag erarbeitet werden, wie dies in die bestehenden Bewertungsrichtlinien integriert werden kann (z.B. schwache Säuren bei niedrigen pH Werten zu testen).

1 2 3 4 57 8 9