PlumeBaSe beschäftigt sich mit der detaillierten Analyse der Zusammensetzung organischer Aerosole, freigesetzt während der Verbrennung fossiler Treibstoffe durch Schiffe, und deren weiterem Weg in der marinen Umwelt. Durch die hochaufgelöste Beprobung der Aerosole und ihrer Transformationsprodukte vom Schiffsschornstein bis in die Ostsee wird eine Brücke zwischen Atmosphären- und Meeresforschung geschlagen. Der zunehmende globale Warentransport auf dem Wasserweg erhöht den Druck auf marine Ökosysteme. Große Schiffe emittieren, zusätzlich zu gasförmigen Schadstoffen, große Mengen an Partikeln reich an Spurenmetallen und organischen Schadstoffen zunächst in die Atmosphäre von wo aus die Schadstoffe ins Meer gelangen. Negative Auswirkungen saurer Oxide und organischer Schadstoffe sind bekannt, weniger hingegen wurde bisher die Deposition der Schiffsaerosole und deren Beitrag zur Meeresverschmutzung untersucht. Besonders lückenhaft ist das Verständnis für die Alterungsprozesse während des atmosphärischen Transports sowie in der Wassersäule, beispielweise durch UV-Strahlung oder reaktive Sauerstoffspezies, obwohl die Transformationsprodukte sehr unterschiedliche Auswirkungen auf Biota haben und die Molekülstruktur den weiteren Weg in der Umwelt maßgeblich beeinflussen können.Um diese Wissenslücken zu schließen, soll in PlumeBaSe durch eine vielschichtige Umweltbeprobung eine neuartige, umfassende Erhebung des Emissionstransports und der Aerosolalterung erreicht werden. Die Projektpartner des Leibniz Instituts für Ostseeforschung Warnemünde (IOW), der Universität Rostock (UR) und der Karls-Universität Prag (CU) befassen sich mit den folgenden zentralen Hypothesen: (H1) Schiffsemissionen tragen signifikant zur Verschmutzung des Oberflächenwassers bei, der Eintrag ist besonders hoch entlang der Hauptschifffahrtsrouten. (H2) Während des atmosphärischen und marinen Transports ändern sich die physikalischen (Partikelgrößenverteilung) und chemischen (molekulare Profile) Eigenschaften der emittierten Aerosole, was ihren weiteren Weg in der Umwelt beeinflusst. (H3) Die Veränderungen auf molekularer Ebene können verfolgt und genutzt werden um Schadstoffeinträge über die Atmosphäre von den über Nassabscheider eingebrachte Verschmutzungen zu unterscheiden.Diese angestrebten Zielsetzungen werden in drei Arbeitspaketen adressiert via I. Zeitlich und räumlich hochaufgelöster Analyse von Partikelgrößenverteilungen direkt in den Abgasfahnen der Schiffe unter Nutzung eines unbemannten Luftschiffes, kombiniert mit hochsensitiven gerichteten und ungerichteten chemischen Analysen der II. atmosphärischen Schadstoffe in Partikeln unterschiedlicher Größe, sowie der III. Schadstoffe im Meerwasser. Die Ostsee stellt durch die hohe Schiffsverkehrsdichte, gute Erreichbarkeit und Regulation der Schiffsemissionen ein ideales Untersuchungsgebiet dar, welches sich auch als Modellsystem für die Beeinflussung küstennaher Ozeane durch Schiffsverkehr weltweit eignet.
Stratosphärisches Sulphataerosol ist von großer Bedeutung für das Klimasystem, weil es solare Strahlung streut und damit die planetare Albedo der Erde erhöht. Es ist außerdem wichtig für die Chemie der Stratosphäre, weil die Aerosolpartikel an der Chloraktivierung - sogar außerhalb der Polarwirbel - sowie bekanntermaßen an der Bildung polarer stratosphärischer Wolken beteiligt sind. Darüber hinaus ist stratosphärisches Aerosol laut dem 5. Sachstandsbericht des Intergovernmental Panel on Climate Change mitverantwortlich für die gegenwärtige Erwärmungspause. Boden-gestützte Lidar-Beobachtungen stellen eine der genauesten Methoden zur Fernerkundung stratosphärischer Aerosole dar. Im Rahmen des hier vorgeschlagenen Forschungsprojekts sollen Lidar-Messungen an 3 unterschiedlichen Orten - die bisher noch nicht zur Untersuchung stratosphärischer Aerosole verwendet wurden - genutzt werden. Die Lidar Systeme werden vom Leibniz-Institut für Atmosphärenphysik (IAP) e.V. an der Universität Rostock in Kühlungsborn betrieben und befinden sich im ALOMAR Observatorium in Andenes (Norwegen), auf der Davis Forschungsstation (Antarktis), sowie in Kühlungsborn. Zwei der Lidar-Messreihen decken gegenwärtig einen Zeitraum von 20 Jahren ab und die Lidar-Messungen in Alomar werden bei mehreren Wellenlängen durchgeführt, was die Ableitung von Teilchengrößen der stratosphärischen Aerosolpartikel erlaubt. Ein Alleinstellungsmerkmal der Lidar-systeme ist ihre Tageslichtfähigkeit, d.h., die Messungen können nicht nur nachts durchgeführt werden, was erstmals die Messung stratosphärischer Aerosole im polaren Sommer erlaubt. Die Lidar-Rohdaten werden in der ersten Phase des Projekts in vertikale Profile des Rückstreukoeffizienten und/oder der Aerosolextinktion konvertiert. Darüber hinaus werden aus den Mehrfarbenmessungen in ALOMAR Aerosolteilchengrößen bestimmt. In der zweiten Projektphase werden die abgeleiteten Aerosolzeitreihen verwendet, um deren zeitliche Variabilität sowie Langzeittrends über einen Zeitraum von mehr als 20 Jahren zu untersuchen und zu quantifizieren. Hierbei spielen saisonale Variationen, Einflüsse der QBO (Quasi-Biennial-Oscillation) und von Vulkanausbrüchen eine entscheidende Rolle. Die abgeleiteten Aerosolteilchengrößen liefern außerdem dringend benötigte Randbedingungen für die Ableitung der stratosphärischen Aerosolextinktion aus Satellitenmessungen des Horizont-gestreuten Sonnenlichts. Diese Messmethode wurde in der Vergangenheit zur Auswertung verschiedener Satellitendatensätze (z.B. OSIRIS/Odin, SCIAMACHY/Envisat, OMPS-LP/Suomi) verwendet und basiert auf a priori Wissen der Größenverteilung stratosphärischer Aerosole. Die zu erwartenden Ergebnisse liefern wichtige neue Kenntnisse über die Variabilität und Langzeittrends stratosphärischer Aerosolparameter (Extinktion, optische Dichte und Teilchengröße) sowie des Strahlungsantriebs des stratosphärischen Aerosols in mittleren und hohen nördlichen Breiten und über dekadische Zeitskalen.
Ziel dieses Projektes ist es, ein teilchenbasiertes numerisches Modell für die Simulation der Staubemission im Rahmen des äolischen Sandtransports zu entwickeln. Die Quantifizierung dieser Emission ist für die zuverlässige Repräsentation des Staubzykluses in Klimamodellen wesentlich, da die Aufnahme von Staubpartikeln in die Atmosphäre hauptsächlich durch den Beschuss des Sedimentbettes mit Sandpartikeln verursacht wird. Um den vertikalen Fluss emittierter Staubteilchen als Funktion der Boden- und Windbedingungen vorherzusagen, wurden verschiedene empirische Staubparametrisierungsschemata erarbeitet. Die Physik interpartikulärer Wechselwirkungen ist jedoch durch weitgehend unverstandene stochastische Kräfte gekennzeichnet, was die Entwicklung eines zuverlässigen theoretischen Staubemissionsmodells erschwert. Deshalb soll im vorliegenden Projekt ein numerisches Simulationswerkzeug, welches numerische Strömungsmechanik mit einem auf der Diskrete-Elemente-Methode basierenden Modell für granulare Dynamik koppelt, entwickelt werden, um die Trajektorien äolischer Sand- sowie emittierter Staubpartikel zu berechnen. Dabei werden die Trajektorien aller Teilchen in Luft und im Sedimentbett aus der Wirkung der Schwerkraft sowie interpartikulärer bzw. Teilchen-Wind-Wechselwirkungen berechnet, sodass auf die Annahme einer Splash-Funktion verzichtet wird. Zunächst soll ein physikalisches Modell für die interpartikulären Wechselwirkungen --- welche sowohl Kontakt- als auch van-der-Waals-Kräfte einbeziehen --- unter Berücksichtigung deren stochastischer Natur entwickelt werden. Um die Parameter dieses Modells zu bestimmen, werden Windkanalmessungen von Staubemissionsraten aus einem Sedimentbett unter gegebenen Partikelgrößenverteilungen und Windgeschwindigkeiten mit Vorhersagen der Simulationen verglichen. Daraufhin soll die Staubemission unter verschiedenen Verfügbarkeitsbedingungen mobilisierbarer Sedimente untersucht werden. Dies ist wichtig, um ein Parametrisierungsschema für die Staubemission aus schwer erodierbaren Böden (z.B. Böden mit biogener Kruste) aufstellen zu können.
Polarimetrische Radar Beobachtungen zeigen eine detaillierte und komplexe Sicht der Mikrophysik von Wolken und Niederschlag. Die Nutzung diese Daten ist jedoch immer noch eine große Herausforderung, z.B. aufgrund der zahllosen unterschiedlichen Formen und Größen von Eispartikeln und Schneeflocken. Dieses Wirrwarr zu entschlüsseln, ist das Ziel dieses Forschungsprojektes. Um dies zu erreichen, wird eine spezielle Messkampagne mit den modernsten polarimetrischen Radargeräten durchgeführt werden, um winterliche stratiforme Mischwolken zu vermessen. Durch die Kombination von Multifrequenz-Messung und spektraler Polarimetrie stellen diese Beobachtungen eine nie dagewesene Informationsfülle bereit. Der Detailreichtum diese Daten wird es erlauben, empirische Hypothesen für dominanten wolkenmikrophysikalische Prozessen in bestimmten Wolkenregionen zu entwickeln. Derartige Hypothesen werden auch polarimetrische Fingerabdrücke oder Signaturen genannt, deren Interpretation und Gültigkeit allerdings für Mischwolken noch recht unsicher ist. Um diese Hypothesen zu konkretisieren und zu quantifizieren, wird ein Lagrangesches Monte-Carlo Partikelmodell verwendet. Unter Verwendung einer Modellhierarchie vom 3d mesoskaligen Modell ICON mit parametrisierter Wolkenmikrophysik hin zum 1d spektral aufgelösten Monte-Carlo Prozessmodell, werden die beobachteten Fälle und Phänomene simuliert, mit dem Ziel die Interpretation auf ein solide physikalisch-theoretische Basis zu stellen. Das Testen von Hypothesen erfolgt natürlich auch in die andere Richtung, d.h. alternative Modellformulierungen und -annahmen können anhand der Beobachtungsdaten kritisch getestet und validiert bzw. falsifiziert werden. Um die Lücke zwischen Modell und Beobachtung zu schließen, ist ein verläßlicher polarimetrischer Radar-Vorwärtsoperator notwendig, der im Rahmen des Projekt entwickelt bzw. verbessert wird. So werden z.B. Streurechnungen für partiell bereifte Schneeflocken durchgeführt werden. Durch diese schlagkräftige Kombination von modernsten Beobachtungssystemen und detailierten Modellen mit einem konsistenten Vorwärtsoperator werden Prozesse wie Depositionswachstum, Aggregation, Bereifen und Eismultiplikation untersucht werden und unser derzeitiges Wissen über diese Prozesse wird kritisch hinterfragt, getestet und erweitert. Basierend auf diesem verbesserten Prozessverständnis erhoffen wir uns die Parametrisierungen von Wolken- und Niederschlagsprozessen in Wetter- und Klimamodellen verbessern zu können. Nur mit solch verbesserten Prozessparametrisierungen wird es mittelfristig möglich sein, die reichhaltige Information, die die modernen polarimetrischen Radarsysteme bieten, in Wettervorhersagesystemen zu assimilieren, um so die Vorhersagen von Wolken und Niederschlag weiter zu verbessern.
Das Vorhaben 'LangEFeld' zielt auf ein Langzeit-Monitoring von Elektroabscheidern im Feld an Kleinfeuerungsanlagen wie dem Pellet- und Kaminofen ab. Hierbei soll es um die Verfügbarkeit und mögliche Alterungseffekte der Elektroabscheider im Feld gehen und die Abscheideeffizienz vor und nach dem Feldversuch werden ermittelt. Für die Beurteilung der Abscheidegrade sind geeignete Messverfahren zu suchen. Außerdem werden verschiedene Messmethoden zur Bestimmung der Partikelanzahl und Partikelgrößenverteilung in Prüfständen vor und nach dem Abscheider miteinander verglichen. Daraus sollen Empfehlungen an die Praxis hinsichtlich der Betriebssicherheit und der Vermeidung von Fehlbedienungen abgeleitet werden. Gleichzeitig werden auch die Grundlagen erarbeitet, um zukünftig effektive Staubminderungsmaßnahmen entwickeln zu können sowie wirkungsvolle Benutzerregeln und Fördermaßnahmen für solche nachrüstbaren Komponenten ableiten zu können. Neben den Elektroabscheidern gibt es auch vielversprechende Katalysatorlösungen als integrierte Emissionsminderungsmaßnahme, die jedoch bisher keinen Langzeittests ausgesetzt wurden, weshalb momentan noch keine belastbaren Aussagen zu Standzeiten von Katalysatoren in Einzelraumfeuerungen getroffen werden können. Damit werden die im Projekt ohnehin erforderlichen Datenerfassungen und Dokumentationen an den Praxisanlagen zusätzlich dazu verwendet, die Einsatzbedingungen bei der gezielt herbeigeführten Katalysatoralterung über längere Betriebszeiten zu charakterisieren.
Das Vorhaben 'LangEFeld' zielt auf ein Langzeit-Monitoring von Elektroabscheidern im Feld an Kleinfeuerungsanlagen wie dem Pellet- und Kaminofen ab. Hierbei soll es um die Verfügbarkeit und mögliche Alterungseffekte der Elektroabscheider im Feld gehen und die Abscheideeffizienz vor und nach dem Feldversuch werden ermittelt. Für die Beurteilung der Abscheidegrade sind geeignete Messverfahren zu suchen. Außerdem werden verschiedene Messmethoden zur Bestimmung der Partikelanzahl und Partikelgrößenverteilung in Prüfständen vor und nach dem Abscheider miteinander verglichen. Daraus sollen Empfehlungen an die Praxis hinsichtlich der Betriebssicherheit und der Vermeidung von Fehlbedienungen abgeleitet werden. Gleichzeitig werden auch die Grundlagen erarbeitet, um zukünftig effektive Staubminderungsmaßnahmen entwickeln zu können sowie wirkungsvolle Benutzerregeln und Fördermaßnahmen für solche nachrüstbaren Komponenten ableiten zu können. Neben den Elektroabscheidern gibt es auch vielversprechende Katalysatorlösungen als integrierte Emissionsminderungsmaßnahme, die jedoch bisher keinen Langzeittests ausgesetzt wurden, weshalb momentan noch keine belastbaren Aussagen zu Standzeiten von Katalysatoren in Einzelraumfeuerungen getroffen werden können. Damit werden die im Projekt ohnehin erforderlichen Datenerfassungen und Dokumentationen an den Praxisanlagen zusätzlich dazu verwendet, die Einsatzbedingungen bei der gezielt herbeigeführten Katalysatoralterung über längere Betriebszeiten zu charakterisieren.
Ziele: Bestimmung der die Abscheidung von Teilchen an Nadeln und Blaettern bestimmenden Groessen. Angaben eines Abscheidungsgrades Motive: Umweltschutz
Durch den Bau eines Flugzeit-Massenseparators wird es moeglich sein, kleine Teilchen der Masse nach zu trennen und nachzuweisen. Damit kann der Gehalt von sehr kleinen Pb-Clustern in Autoabgasen bestimmt werden. Es sollen ausserdem die Bedingungen fuer die Clusterbildung studiert werden und Methoden entwickelt werden, um die Clustergroesse zu variieren. So ist denkbar, dass man durch eine Zunahme der Teilchengroesse mit anschliessendem Filter die schaedliche Wirkung von Fabrikabgasen wesentlich reduziert.
| Origin | Count |
|---|---|
| Bund | 868 |
| Land | 1 |
| Wissenschaft | 13 |
| Type | Count |
|---|---|
| Daten und Messstellen | 9 |
| Förderprogramm | 851 |
| Text | 4 |
| unbekannt | 18 |
| License | Count |
|---|---|
| geschlossen | 18 |
| offen | 863 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 758 |
| Englisch | 207 |
| Resource type | Count |
|---|---|
| Archiv | 2 |
| Datei | 7 |
| Dokument | 3 |
| Keine | 608 |
| Webseite | 265 |
| Topic | Count |
|---|---|
| Boden | 668 |
| Lebewesen und Lebensräume | 671 |
| Luft | 719 |
| Mensch und Umwelt | 882 |
| Wasser | 613 |
| Weitere | 866 |