Teilprojekt C05 hat zum Ziel, den wichtigen Eintragsweg für Kunststoffe, in Form von Mikroplastik, in die Umwelt aus technischen Anlagen (MP) mechanistisch aufzuklären. Gleichzeitig sollen neue Ansätze verfolgt werden, die zur Vermeidung bzw. Reduktion von MP aus Standardkunststoffen maßgeblich beitragen sollen. Zu diesem Zweck sollen Polyethylen, Polypropylen, Polystyrol, Nylon, Polyethylenterephthalat, Polyisopren und Polyvinylchlorid durch Beschleuniger (in situ) in ihren Oberflächeneigenschaften für die Biofilmbildung modifiziert und dadurch unter Prozessbedingungen biologisch angreifbar und abbaubar gemacht werden. So können auch Standardkunststoffe umweltverträglicher bezüglich der MP-Partikel Bildung werden. Damit geht TP C05 weit über die bislang üblichen eher deskriptiven Studien zu MP in technischen Anlagen und der Umwelt hinaus. Folgende zentrale Fragen sollen in TP C05 in Hinblick MP-Partikel in technischen Anlagen der Abfall- und Abwasserwirtschaft beantwortet werden: 1. Kommt es in den Anlagen zu spezifischen (biologischen) Abbau- und Degradationsvorgängen? 2. Wie hängen die zu beobachtenden Prozesse von MP-Charakteristika (Materialsorte, Zusammensetzung, Größe, Morphologie, Beschichtung) ab, ? 3. Lassen sich die Vorgänge ('Bioabbaubarkeit') durch gezielte Modifikation der Partikeloberfläche vor oder in den Anlagen beschleunigen? 4. Welche ökologischen Konsequenzen einer Ausbringung der (modifizierten) Partikel in die Umwelt und hier vor allem in den Boden lassen sich postulieren?
Stratosphärisches Sulphataerosol ist von großer Bedeutung für das Klimasystem, weil es solare Strahlung streut und damit die planetare Albedo der Erde erhöht. Es ist außerdem wichtig für die Chemie der Stratosphäre, weil die Aerosolpartikel an der Chloraktivierung - sogar außerhalb der Polarwirbel - sowie bekanntermaßen an der Bildung polarer stratosphärischer Wolken beteiligt sind. Darüber hinaus ist stratosphärisches Aerosol laut dem 5. Sachstandsbericht des Intergovernmental Panel on Climate Change mitverantwortlich für die gegenwärtige Erwärmungspause. Boden-gestützte Lidar-Beobachtungen stellen eine der genauesten Methoden zur Fernerkundung stratosphärischer Aerosole dar. Im Rahmen des hier vorgeschlagenen Forschungsprojekts sollen Lidar-Messungen an 3 unterschiedlichen Orten - die bisher noch nicht zur Untersuchung stratosphärischer Aerosole verwendet wurden - genutzt werden. Die Lidar Systeme werden vom Leibniz-Institut für Atmosphärenphysik (IAP) e.V. an der Universität Rostock in Kühlungsborn betrieben und befinden sich im ALOMAR Observatorium in Andenes (Norwegen), auf der Davis Forschungsstation (Antarktis), sowie in Kühlungsborn. Zwei der Lidar-Messreihen decken gegenwärtig einen Zeitraum von 20 Jahren ab und die Lidar-Messungen in Alomar werden bei mehreren Wellenlängen durchgeführt, was die Ableitung von Teilchengrößen der stratosphärischen Aerosolpartikel erlaubt. Ein Alleinstellungsmerkmal der Lidar-systeme ist ihre Tageslichtfähigkeit, d.h., die Messungen können nicht nur nachts durchgeführt werden, was erstmals die Messung stratosphärischer Aerosole im polaren Sommer erlaubt. Die Lidar-Rohdaten werden in der ersten Phase des Projekts in vertikale Profile des Rückstreukoeffizienten und/oder der Aerosolextinktion konvertiert. Darüber hinaus werden aus den Mehrfarbenmessungen in ALOMAR Aerosolteilchengrößen bestimmt. In der zweiten Projektphase werden die abgeleiteten Aerosolzeitreihen verwendet, um deren zeitliche Variabilität sowie Langzeittrends über einen Zeitraum von mehr als 20 Jahren zu untersuchen und zu quantifizieren. Hierbei spielen saisonale Variationen, Einflüsse der QBO (Quasi-Biennial-Oscillation) und von Vulkanausbrüchen eine entscheidende Rolle. Die abgeleiteten Aerosolteilchengrößen liefern außerdem dringend benötigte Randbedingungen für die Ableitung der stratosphärischen Aerosolextinktion aus Satellitenmessungen des Horizont-gestreuten Sonnenlichts. Diese Messmethode wurde in der Vergangenheit zur Auswertung verschiedener Satellitendatensätze (z.B. OSIRIS/Odin, SCIAMACHY/Envisat, OMPS-LP/Suomi) verwendet und basiert auf a priori Wissen der Größenverteilung stratosphärischer Aerosole. Die zu erwartenden Ergebnisse liefern wichtige neue Kenntnisse über die Variabilität und Langzeittrends stratosphärischer Aerosolparameter (Extinktion, optische Dichte und Teilchengröße) sowie des Strahlungsantriebs des stratosphärischen Aerosols in mittleren und hohen nördlichen Breiten und über dekadische Zeitskalen.
Lipide haben wahrscheinlich große Bedeutung für die Stabilisierung organischer Substanz in Böden, sie wurden aber bisher mittels moderner strukturchemischer und isotopischer Methoden nur wenig untersucht. Durch die Kombination dieser Methoden sollen erstmals gleichzeitg Aussagen über Herkunft (Pflanzen, Bakterien, Pilze) und Umsatzraten (d13C) der Lipide auf molekularer Ebene ermöglichen. Der Nutzungswechsel von Roggen- (C3-) zu Mais-Monokultur (C4-Pflanze) markierte die zugeführte Biomasse strukturell und isotopisch. Die Nutzung von Rückstellproben ermöglicht eine über vier Jahrzehnte zeitlich aufgelöste Auswertung dieses landwirtschaftlichen Freilandversuchs. Die Lipide sollen mit einer Kombination moderner struktureller, spektroskopischer und isotopischer Analysetechniken der Bodenchemie, organischen Geochemie und Biochemie untersucht werden. Untersuchungen sollen an Gesamtböden und ausgewählten PartikelgrößenFraktionen erfolgen. Die Bodenlipide werden erstmalig über eine automatisierte sequentielle Flüssigkeitschromatographie in folgende Fraktionen getrennt: a) Aliphaten, b) Ketone/Alkohole, c) Fettsäuren, d) Aromaten, e) basische Lipide und f) hochpolare Biopolymere. Diese Fraktionen sollen anschließend strukturell identifiziert (13C NMR, GC-MS) und die Fraktionen a) bis c) gesamt- und komponentenspezifisch (GC-irmMS) d 13C-isotopisch charakterisiert werden.
Ziel dieses Projektes ist es, ein teilchenbasiertes numerisches Modell für die Simulation der Staubemission im Rahmen des äolischen Sandtransports zu entwickeln. Die Quantifizierung dieser Emission ist für die zuverlässige Repräsentation des Staubzykluses in Klimamodellen wesentlich, da die Aufnahme von Staubpartikeln in die Atmosphäre hauptsächlich durch den Beschuss des Sedimentbettes mit Sandpartikeln verursacht wird. Um den vertikalen Fluss emittierter Staubteilchen als Funktion der Boden- und Windbedingungen vorherzusagen, wurden verschiedene empirische Staubparametrisierungsschemata erarbeitet. Die Physik interpartikulärer Wechselwirkungen ist jedoch durch weitgehend unverstandene stochastische Kräfte gekennzeichnet, was die Entwicklung eines zuverlässigen theoretischen Staubemissionsmodells erschwert. Deshalb soll im vorliegenden Projekt ein numerisches Simulationswerkzeug, welches numerische Strömungsmechanik mit einem auf der Diskrete-Elemente-Methode basierenden Modell für granulare Dynamik koppelt, entwickelt werden, um die Trajektorien äolischer Sand- sowie emittierter Staubpartikel zu berechnen. Dabei werden die Trajektorien aller Teilchen in Luft und im Sedimentbett aus der Wirkung der Schwerkraft sowie interpartikulärer bzw. Teilchen-Wind-Wechselwirkungen berechnet, sodass auf die Annahme einer Splash-Funktion verzichtet wird. Zunächst soll ein physikalisches Modell für die interpartikulären Wechselwirkungen --- welche sowohl Kontakt- als auch van-der-Waals-Kräfte einbeziehen --- unter Berücksichtigung deren stochastischer Natur entwickelt werden. Um die Parameter dieses Modells zu bestimmen, werden Windkanalmessungen von Staubemissionsraten aus einem Sedimentbett unter gegebenen Partikelgrößenverteilungen und Windgeschwindigkeiten mit Vorhersagen der Simulationen verglichen. Daraufhin soll die Staubemission unter verschiedenen Verfügbarkeitsbedingungen mobilisierbarer Sedimente untersucht werden. Dies ist wichtig, um ein Parametrisierungsschema für die Staubemission aus schwer erodierbaren Böden (z.B. Böden mit biogener Kruste) aufstellen zu können.
Untersuchung von Einflussgroessen auf Bildung kondensierter und mitgerissener Tropfen in Hd- und Ueberstromdampfleitungen, Nd-Turbinen, internen und externen Wasserabscheidern, Nasskuehltuermen, Atmosphaere. Die Kenntnis der Zusammenhaenge erlaubt eine Verbesserung von Turbinenwirkungsgraden, Verringerung der Abwaerme sowie Verringerung der Kuehlturmemission und damit der Umweltbelastung durch Kuehlturmschwaden.
Optische Verfahren und Messeinrichtungen; Bereitstellung optischer Messverfahren zur Messung der Verteilung von Konzentration, Teilchengroesse und -geschwindigkeit sowie zur Sichtbarmachung von Bewegungsablaeufen in mehrphasigen Systemen; Methode: Hochfrequenzkinematographie/Spark-Tracing-Verfahren/Laser-Doppler-Anemometrie/Streulichtmessverfahren/Holographie/Extinktionsmessungen.
Im Rahmen dieses Projekts soll das Wolkenpartikelinstrument PHIPS-HALO des KIT um die Messung der winkelabhängigen Polarisation von einzelnen Eispartikeln im rückwärtigen Streuwinkelbereich erweitert werden. Diese Messung ergänzt die bestehenden PHIPS-HALO-Messmethoden zur Erfassung der Partikelform sowie der winkelabhängigen Streufunktion. Die neuen Messmöglichkeiten des PHIPS-HALO/SID-3 Instrumentpakets des KIT werden in der Wolkensimulationskammer AIDA umfangreich getestet und charakterisiert, um diese am Ende der ersten Förderperiode für Messungen auf HALO zur Verfügung zu haben. Dadurch werden schon im Vorfeld der nächsten, für den Winter 2018/2019 geplanten Zirrusmission neuartige relevante Datensätze gewonnen, die von großem Nutzen für die Atmosphärenwissenschaft sein werden. Zusätzlich zu den Labormessungen, soll das verbesserte PHIPS-HALO Instrument sowie das PHIPS-HALO/SID-3 Instrumentpaket im Rahmen des Projekts auch auf anderen Messflugzeugen betrieben und getestet werden. Mit den erweiterten Messmöglichkeiten des PHIPS-HALO/SID-3 Instrumentpakets können in zukünftigen HALO-Missionen Validierungen von Satellitenbeobachtungen durchgeführt werden, die sich auf Polarisationsmessmethoden stützen. Da diese Messmethoden sehr empfindlich auf die Komplexität der Form sowie der Oberflächenrauheit der Eispartikel sind, könnte auf Basis solcher Validierungsmissionen die Frage geklärt werden, ob die Eispartikelkomplexität eine dominante mikrophysikalische Eigenschaft von Zirren ist. Sollte dies der Fall sein, würden Wolkeneispartikel einen deutlich anderen Strahlungseinfluss auf den Wärmehaushalt der Erde haben als bisher angenommen.
The biogeochemical interface (BGI) in this project is defined as the organo-mineral surface of soil particles colonized by microorganisms. In the preceding project it was demonstrated that the different soil particle size fractions were associated with specifically structured microbial communities, a characteristic amount of soil organic carbon, and a specific capacity for adsorption of the organic chemicals phenol and 2,4-dichlorophenol, respectively. While the diversity of the microbial community was responsive to fertilization-determined additional organic soil carbon in the larger particle size fractions, it was unaffected in clay. Stable isotope probing with 13C-labelled phenol and 2,4-dichlorophenol revealed that the soil organic carbon in the BGIs also affected the diversity of microorganisms involved in the degradation of these chemicals. All these results are yet only based on studying one soil with three organic carbon variants (Bad Lauchstädt) and only two organic compounds. The objective of this 2nd phase project is to apply the innovative technology developed in the 1st phase for studying the BGI processes with soil organic carbon variants from another soil (Ultuna, SPP 1315 site) and with the chiralic anilide Fungicide metalaxyl as an additional compound. This 2nd phase SPP 1315 project will also, in a collaborative effort with two other SPP 1315 partners, investigate (1) the importance of BGIs for the entantio-selective degradation of metalaxyl and (2) the role of soil microorganisms in the formation of bound residues, respectively. Furthermore, the project will utilize stable isotope probing and next-generation DNA sequencing to link the structural and functional diversity of the microbial communities responsible for metabolism of organic chemicals in the different BGIs determined by particle size fractions and soil organic carbon variants.
Vorkommen, Häufigkeit, chemische Zusammensetzung und Mischungszustand jener Aerosolpartikel in der Erdatmosphäre, an denen sich durch heterogene Nukleation in unterkühlten Wolken Eis bilden kann (Ice Nucleating Particles = INP), werden experimentell untersucht. Diese Informationen sind wichtig für das Verständnis der Niederschlagsbildung, und finden in parametrisierter Form Eingang in meteorologische Modelle zur Vorhersage des Niederschlages. Das Projekt verwendet hierbei im Wesentlichen physikalische Methoden zur Identifikation und Isolation der Partikel aus der Atmosphäre, und nachfolgend elektronenmikroskopische Methoden zur mineralogischen Analyse einzelner Partikel. Die Identifikation jener wenigen Aerosolpartikel (ca. 1 von 10.000 bis 1 von 100.000), die Eisbildungsfähigkeit besitzen, erfolgt, indem eine Aerosolprobe einer Unterkühlung unter 0°C und Wasserdampfübersättigung ausgesetzt wird, und die an INP entstehenden Eiskristalle fotografiert und gezählt werden. Es werden sowohl Aerosolpartikel aus luftgetragenem Aerosol untersucht (aus dem Eiskeimzähler FINCH) wie auch Partikel, die aus einer Luftprobe auf einem Silizium-Probenträger niedergeschlagen und danach als INP identifiziert wurden (Eiskeimzähler FRIDGE). Eine dritte und vierte Methode (Ice-CVI und ISI) isolieren eisbildungsfähige Partikel, indem aus einer angesaugten Probe von Wolkenluft die Eiskristalle strömungstechnisch von den übrigen Luftbestandteilen getrennt werden. Alle Eiskeimproben werden im Rasterelektronenmikroskop auf Größe, Morphologie, Mischungszustand und chemische Zusammensetzung untersucht und die Ergebnisse der verschiedenen Ansätze verglichen. In Feldexperimenten werden Atmosphärenproben verschiedener geographischer Provenienz (Mitteleuropa, Forschungsstation Jungfraujoch, Wüstenstaub, Vulkanstaub) erhalten. In Laborexperimenten wird mit vorher gesammelt und charakterisierten Modellsubstanzen gearbeitet. Weiterhin wird durch tägliche Messungen der Anzahl-Konzentration und Zusammensetzung von Eiskeimen am Taunus Observatorium nahe Frankfurt über einen längeren Zeitraum untersucht, ob es Saisonalitäten, bevorzugte Quellgebiete (z.B. Wüsten, Industrie, etc.) und biologische Einflussfaktoren (z.B. Pollen, Pflanzenabrieb, Bakterien) für das Vorkommen von Eisnuklei gibt.
Eine effiziente und umweltfreundliche Nutzung von Biomasse zur Bereitstellung von Energie ist von besonderer Bedeutung, da Biomasse CO2-neutral ist und fossile Energiequellen schont. Für die Optimierung von Festbettfeuerungen hinsichtlich Wirkungsgrad und Emissionen wurden in der Vergangenheit eine Vielzahl experimenteller und theoretischer Untersuchungen durchgeführt. Mehrere mathematische Modelle wurden in der Literatur vorgestellt, wobei die meisten dieser Modelle entweder die Vorgänge im einzelnen Partikel oder in der gesamten Schüttschicht beschreiben. Beide Modellgruppen sind für bestimmte Modellbrennstoffe in bestimmten Arbeitsbereichen anwendbar bzw. gültig. Im Fall von Biomasse werden aufgrund des hohen Anteils an Flüchtigen 85Prozent oder mehr der Brennstoffmasse während der Pyrolyse umgesetzt. Es ist bekannt, daß die Pyrolyse von vielen Faktoren abhängt, wie z. B. Partikelgröße, Temperatur, Aufheizrate, umgebende Atmosphäre, etc. Um realistische Berechnungsergebnisse zu erhalten ist es also notwendig, sowohl die Geschichte der einzelnen Brennstoffpartikel als auch die Phänomene in der gesamten Brennstoffschüttung gleichwertig zu berücksichtigen. In dem Projekt wird ein kombiniertes Reaktor/Partikel-Modell zur Berechnung von Temperatur- und Konzentrationsprofilen in Abhängigkeit von Ort und Zeit sowohl im einzelnen Brennstoffteilchen als auch in der gesamten Brennstoffschüttung entwickelt. Die Gase, welche die einzelnen Brennstoffteilchen während der Pyrolyse verlassen, bestimmen das Zünd- und Abbrandverhalten der Brennstoffschüttung und in weiterer Folge die Bildung und Freisetzung von Schadstoffen. Die meisten in der Literatur veröffentlichten experimentellen Untersuchungen konzentrieren sich auf die Bildungsrate und Zusammensetzung der von verschiedenen Brennstoffpartikel freigesetzten Gase bei unterschiedlichen Betriebsbedingungen. Ein Schwerpunkt ist dabei der Teergehalt des Gases. Vom energetischen Gesichtspunkt wäre allerdings der Heizwert der Gase und deren Sauerstoffbedarf sowie der Heizwert des festen Pyrolyserückstandes in Abhängigkeit von dessen Umsatz wesentlich aussagekräftiger. Eine Berechnung dieser Größen ist praktisch unmöglich, da dazu die genaue Zusammensetzung des Teeres bekannt sein müßte. Im Rahmen des Projektes wird daher ein Kalorimeter zur Online-Messung des Heizwertes und Sauerstoffbedarfes der das Brennstoffteilchen verlassenden Gase entwickelt sowie ein Kalorimeter zur Messung des Heizwertes des festen Pyrolyserückstandes in Abhängigkeit von dessen Umsatz angeschafft. Diese Parameter stellen die wesentliche Verbindung zwischen dem Einzelpartikelmodell und dem Reaktormodell dar und werden im Laufe des Projektes für verschiedene Brennstoffe und Randbedingungen gemessen. Um die Berechnungsergebnisse zu validieren werden weiters Versuche in einem Biomasse-Festbett-Reaktor durchgeführt.
Origin | Count |
---|---|
Bund | 863 |
Land | 1 |
Wissenschaft | 13 |
Type | Count |
---|---|
Daten und Messstellen | 9 |
Förderprogramm | 850 |
Text | 2 |
unbekannt | 16 |
License | Count |
---|---|
geschlossen | 14 |
offen | 862 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 754 |
Englisch | 205 |
Resource type | Count |
---|---|
Archiv | 2 |
Datei | 7 |
Dokument | 1 |
Keine | 606 |
Webseite | 262 |
Topic | Count |
---|---|
Boden | 664 |
Lebewesen und Lebensräume | 637 |
Luft | 738 |
Mensch und Umwelt | 877 |
Wasser | 614 |
Weitere | 868 |