API src

Found 882 results.

Related terms

Emissionen aus dem Straßenverkehr und städtische Lufthygiene: Neue Möglichkeiten aus zeitlich hoch aufgelöster Analyse

In diesem Projekt sollen zeitlich hoch aufgelöste Spurengasmessungen und Messungen der Größenspektren der Aerosolpartikel an einem Verkehrsstandort zu einer deutlichen Weiterentwicklung unseres Verständnisses der Dynamik der Konzentrationen von Luftschadstoffen im städtischen Umfeld sowie der Emissionen aus dem Straßenverkehr beitragen. Neue, schnelle Techniken sollen das bereits gut entwickelte Grundlagenwissen zu Emissionsverhältnissen NO / NO2 / NOx einzelner Fahrzeuge und Fahrzeuggruppen entwickeln, den Einfluss auf die Ozonchemie und die Interaktion mit dem vorhandenen Ozon studieren, Emissionsverhältnisse NH3 / CO2 und NOx / CO2 unter realen Bedingungen quantifizieren, und vor allem die Emissionen der Aerosopartikel in einem weiten Größenspektrum (einige nm bis über 1 mym Durchmesser) detailliert quantifizieren. Dies bedeutet und ermöglicht eine neuartige Analyse der Emissionen von Partikeln im echten Straßenverkehr. Die vorgeschlagenen Konzepte und Messungen ergänzen sich mit anderen modernen Konzepten der Analyse von Luftverschmutzung und Emissionen wie z.B. multi-Sensoren-Anwendungen, Einsatz mobiler Plattformen, oder Eddy-Kovarianz. Hier wird Grundlagenforschung vorgeschlagen, die in Ergänzung mit anderen Anwendungen und Konzepten einschließlich Modellierung zu einer deutlichen Verbesserung unseres Verständnisses der städtischen Umwelt führen wird. Das Herzstück der experimentellen Forschung ist eine 18-monatige Messreihe am Straßenrand, die allerdings von zwei Intensivmesskampagnen (IOPs) um Kenntnisse zur räumlichen Representativität und zur chemischen Zusammensetzung der Partikel im Größenspektrum ergänzt werden.

Einfluß von Kolloiden und Partikeln auf den medienübergreifenden Transport von Schadstoffen im Untergrund

Partikel in den Größen von wenigen Mikrometern bis in den makromolekularen Bereich kommen in allen natürlichen (Grund-)Wässern vor. Durch ihre Beweglichkeit können sie die Mobilität solcher partikelgebundener Substanzen entscheidend erhöhen, die in wässrigen Lösungen sonst schwer- oder unlöslich sind (v.a. Schwermetalle und PAK). Da Partikel und Kolloide sensibel auf Milieuveränderungen reagieren, untersucht diese Arbeit die Auswirkungen, die die Entnahme von Wasserproben aus dem Aquifer und der anschließende Umgang mit den Proben auf den Partikelinhalt hat. Ziel ist die Entwicklung eines praxistaun aber noch relativ schonenden Verfahrens, das anschließend an Grundwässern aus verschiedensten Lithologien erprobt werden soll. Vor allem im Hinblick auf Schadstoffmobilitäten ist es nötig, zukünftige Partikelbewegungen unter geänderten Rahmenbedingungen einschätzen glichezu können. Dafür sollen Faktoren, die Partikelvorkommen und -bewegung im Untergrund steuern, identifiziert werden. Dies soll zukünftig eine Simulation der Partikelbewegung im Untergrund ermöglichen.

Untersuchung des Einflusses vulkanischer Eruptionen auf stratosphärische Aerosole und den Strahlungsantrieb

Das Projekt VolARC ist eines von fünf Projekten des Antrags für die zweite Phase der DFG Forschungsgruppe VolImpact (FOR 2820), deren erste Phase im Frühjahr 2019 begann. VolARC befasst sich mit wichtigen und offenen Fragen vulkanischer Effekte auf stratosphärische Aerosole und deren Einfluss auf die Strahlungsbilanz des Erdsystems. Basierend auf den Arbeiten der laufenden Phase I sollen in Phase II folgende drei Themen bearbeitet werden:(1) Konsolidierung des Verständnisses der Entwicklung stratosphärischer Aerosolparameter nach Vulkanausbrüchen und Untersuchung der Gründe für die verbleibenden Unterschiede zwischen beobachteten und modellierten stratosphärischen Aerosolparametern (Aerosolextinktionsprofile, optische Tiefe und insbesondere die Teilchengrößenverteilung stratosphärischer Aerosols), sowie Behebung der Ursachen für die Unterschiede. Insbesondere die zeitliche Entwicklung der Aerosolgrößenverteilung soll besser verstanden werden. (2) Untersuchung des Einflusses von Modellauflösung und Transport auf die Entwicklung vulkanischer Aerosolwolken in der Stratosphäre. In Phase II wird ein “Seamless Simulation”-Ansatz verwendet, der mittels mehrerer Nests eine konsistente Modellierung aller relevanten Prozesse auf den entsprechenden Skalen ermöglicht, von der initialen Entwicklung der Vulkanwolke bis hin zu globalen und längerfristigen Skalen. (3) Untersuchung der Fähigkeit von Limb- und Okkultationsinstrumenten, vulkanische Sulfataerosole in der Stratosphäre nach stärkeren Vulkanausbrüchen zu erfassen. Bereits bei relativ moderaten optischen Tiefen wird die Sichtlinie in Limb-Geometrie optisch dicht und eine robuste Bestimmung der Aerosolextinktion problematisch. Außerdem wird untersucht, ob aktuelle Satelliteninstrument in der Lage sind, eine im Rahmen von Geoengineering Aktivitäten künstliche verstärkte stratosphärische Aerosolschicht zu erfassen und zu überwachen. Diese Themen werden durch die Synergy globaler Satellitenbeobachtung stratosphärischer Aerosolparameter im optischen Spektralbereich und globaler Modellsimulationen mit expliziter Aerosolmikrophysik untersucht. Wir werden u.a. unsere eigenen Algorithmen verwenden um aus Messungen vergangener, aktueller und zukünftiger Satelliteninstrumente (bsp. OMPS-LP, SAGE III and SCIAMACHY) Aerosolparameter abzuleiten. Die Modellsimulationen werden hauptsächlich mit ICON-ART durchgeführt, aber auch MAECHAM-HAM-Simulationen werden zum Vergleich mit Messdaten und ICON-ART-Simulationen zum Einsatz kommen. Das VolARC-Projekt ist sehr gut mit den anderen vier VolImpact-Projekten vernetzt, insbesondere durch die definierten übergreifenden Forschungsthemen an denen jeweils mehrere VolImpact-Projekte beteiligt sind. Diese Themen sind: (1) die Aerosolteilchengrößenverteilung, (2) vulkanische H2O-Injektionen in die mittlere Atmosphäre und (3) Strahlungsantrieb durch vulkanische Effekte. Darüber hinaus wird VolARC alle Aktivitäten zur Seamless-Simulation in VolImpact koordinieren.

Zur Bestimmung kinetischer Daten und zur Verbesserung der Reaktionsführung bei heterogen-katalysierten Gas-Flüssig-Reaktionen - Untersuchungen anhand ausgewählter Reaktionen aus der Raffinerietechnik und Petrochemie

Im Rahmen des geplanten Forschungsvorhabens soll eine verbesserte Methode zur Bestimmung kinetischer Daten von Mehrphasenreaktionen entwickelt und getestet werden. Dabei soll ein Zweiphasenreaktor (Flüssigkeit und Katalysator) mit einer Vorsättigung der flüssigen Phase (z.B. bei Hydrierungen mit Wasserstoff) eingesetzt werden. Da nur eine fluide Phase vorliegt, wird der Einfluss der Fluiddynamik überschaubar. Da außerdem kein Stofftransport mehr aus der Gasphase in die Flüssigkeit erfolgt, bestimmen neben der chemischen Reaktion 'nur' noch Diffusionsvorgänge in der flüssigen (Kern)Phase bzw. in den Katalysatorproben die (effektive) Reaktionskinetik. Dieses wesentlich einfachere Reaktionssystem kann sehr genau untersucht werden, und zwar unter Bedingungen (Partikelgröße, Fluidgeschwindigkeit), die auch in technischen Reaktoren herrschen. Durch den anschließenden Vergleich mit Untersuchungen in einem Dreiphasenreaktor kann dann der Einfluss der Fluiddynamik und des Stofftransportes Gas/Flüssigkeit besser als mit den oben beschriebenen üblichen Methoden beurteilt werden. Diese Methode bietet sich allerdings nicht nur für kinetische Untersuchungen an, sondern auch für eine verbesserte Reaktionsführung bei Mehrphasenreaktionen. (...) Folgende Reaktionen, die in der chemischen Praxis bisher in Dreiphasen-Festbettreaktoren durchgeführt wurden, sollen näher untersucht werden: Hydrierung ungesättigter Kohlenwasserstoffe, Entschwefelung von Erdölfraktionen, die Hydrierung von Nitroaromaten, die Umsetzung von Kohlenmonoxid mit Wasserstoff in höhere Kohlenwasserstoffe wie z.B. Dieselöl durch Fischer-Tropsch-Synthese. Diese Modellsysteme wurden ausgewählt, da sie sich hinsichtlich der Kinetik und der notwendigen Reaktionsführung sehr deutlich unterscheiden. Auf diese Weise soll das Prinzip des Zweiphasenreaktors mit Vorsättigung der flüssigen Phase als Methode für kinetische Untersuchungen und als eine Alternative im Hinblick auf die Reaktionsführung von Mehrphasenreaktoren auf einer möglichst breiten Basis untersucht werden.

Nachweisstrategien zum Ausschluss von Mikroplastik in Trockenmilcherzeugnissen

Sonderforschungsbereich (SFB) 1357: MIKROPLASTIK - Gesetzmäßigkeiten der Bildung, des Transports, des physikalisch-chemischen Verhaltens sowie der biologischen Effekte: Von Modell- zu komplexen Systemen als Grundlage neuer Lösungsansätze; MICROPLASTICS - Understanding the mechanisms and processes of biological effects, transport and formation: From model to complex systems as a basis for new solut, Teilprojekt C 05: Abbau und Verhalten von Kunststoffen und deren Mikroplastik-Partikeln in technischen Systemen der Wasser- und Abfallwirtschaft

Teilprojekt C05 hat zum Ziel, den wichtigen Eintragsweg für Kunststoffe, in Form von Mikroplastik, in die Umwelt aus technischen Anlagen (MP) mechanistisch aufzuklären. Gleichzeitig sollen neue Ansätze verfolgt werden, die zur Vermeidung bzw. Reduktion von MP aus Standardkunststoffen maßgeblich beitragen sollen. Zu diesem Zweck sollen Polyethylen, Polypropylen, Polystyrol, Nylon, Polyethylenterephthalat, Polyisopren und Polyvinylchlorid durch Beschleuniger (in situ) in ihren Oberflächeneigenschaften für die Biofilmbildung modifiziert und dadurch unter Prozessbedingungen biologisch angreifbar und abbaubar gemacht werden. So können auch Standardkunststoffe umweltverträglicher bezüglich der MP-Partikel Bildung werden. Damit geht TP C05 weit über die bislang üblichen eher deskriptiven Studien zu MP in technischen Anlagen und der Umwelt hinaus. Folgende zentrale Fragen sollen in TP C05 in Hinblick MP-Partikel in technischen Anlagen der Abfall- und Abwasserwirtschaft beantwortet werden: 1. Kommt es in den Anlagen zu spezifischen (biologischen) Abbau- und Degradationsvorgängen? 2. Wie hängen die zu beobachtenden Prozesse von MP-Charakteristika (Materialsorte, Zusammensetzung, Größe, Morphologie, Beschichtung) ab, ? 3. Lassen sich die Vorgänge ('Bioabbaubarkeit') durch gezielte Modifikation der Partikeloberfläche vor oder in den Anlagen beschleunigen? 4. Welche ökologischen Konsequenzen einer Ausbringung der (modifizierten) Partikel in die Umwelt und hier vor allem in den Boden lassen sich postulieren?

Beeinflussung der Teilchengroesse bei oxydischem Rauch

Bestimmung von Kenngroessen polydisperser Aerosolsysteme geom. Groesse; stoffliche Zusammensetzung; Dichte

Informationen ueber das Schicksal luftgetragener Aerosolpartikel lassen sich aus dem Studium von Elementdiskriminierungsprozessen bezueglich der Partikelgroesse gewinnen. Hierzu werden die Partikel der bodennahen Luft mit Hilfe von Kaskadenimpaktor bzw. Spektralimpaktor auf Praeparattraegern einer Elektronenstrahlmikrosonde nach ihrer aerodynamischen Groesse abgeschieden. Aus rasterelektronenmikroskopischen Aufnahmen werden bildanalytisch Groesse und Form der abgeschiedenen Partikel ermittelt. Die Messung der charakteristischen Roentgenstrahlung des Substratmaterials, die unterhalb der Partikel von das Teilchen durchdringende Elektronen erzeugt werden, erlaubt eine Abschaetzung der Partikeldichte. Andererseits kann aus der im Partikel erzeugten charakteristischen Roentgenstrahlung seine stoffliche Zusammensetzung bestimmt werden.

Optische Bestimmung von streckenintegrierten Aerosolparametern in der urbanen Atmosphäre

Ziel ist eine Geräteentwicklung für die unbeeinflusste Bestimmung von streckenintegrierten Aerosolparametern in einer anthropogen belasteten Atmosphäre. Das optische Messgerät wird in der Leipziger Stadtluft in 20 bis 40 m Höhe mit mehreren Lichtstrecken von einigen 100 m bis zu einigen Kilometern Länge gleichzeitig Messungen von Partikelextinktionsspektren bei Umgebungsfeuchte und für die Auswertung notwendige Spurengase durchführen. Aus den Extinktionsmessungen werden die Partikelgrößenverteilung und integrale Partikeleigenschaften im ungestörten Zustand mit Inversionsrechnungen berechnet.

Phosphor Speziation in Mineral Staub und Marineaerosol Partikeln

Makronährstoffe, wie Phosphor, sind wichtig für das Wachstum von Meeresmikroorganismen, wie Phytoplankton. Diese sind sehr bedeutsam für die marine Nährstoffkette und Biologie. Verschiedene Phytoplanktonarten emittieren klimarelvante organische Verbindungen, z.B. DMS, welches in der Atmosphäre zu Schwefelsäure oxidiert wird und anschließend zur Bildung neuer Aerosolpartikel beiträgt. Diese können weiterhin als potentielle Wolkenkondensaktionskeime dienen. Informationen über die Verfügbarkeit von Phosphor für diese Mikroorganismen sind somit essentiell für ein besseres Verständnis der Ozean-Atmosphären-Wechselwirkung. Der Haupteintrag von Phosphor in den offenen Ozean erfolgt vorwiegend über atmosphärische Deposition. Informationen über atmosphärische Phosphorkonzentrationen, die Bioverfügbarkeit und Quellen sind notwendig, um den Verbleib in den Ozeanen zu verstehen. Dabei werden vor allem in den Regionen des tropischen Nord- und Südost-Atlantik immer noch Daten benötigt. Die wenigen verfügbaren Daten basieren zumeist auf kurzzeitigen Schiffsmessungen, die in ihrer Anwendung auf langfristige Prognosen und jahreszeitlichen Zyklen sehr begrenzt sind. Um das Verständnis über die Phosphorverfügbarkeit, -quellen, und -bioverfügbarkeit in diesen ozeanischen Gebieten zu verbessern, sollen größenaufgelöste Langzeitmessungen zur Bestimmung des Phosphorgehalts von Aerosolpartikeln durchgeführt werden. Weiterhin werden analytische Methoden entwickelt und optimiert (basierend auf der Kombination von drei Techniken). Diese sollen eine empfindliche Bestimmung von löslichem als auch dem Gesamtphosphor in feinen Partikeln ermöglichen, aufgrund der geringen Aerosolmasse in dieser Größenfraktion. Die ermittelten Daten werden benutzt, um wichtige Quellen des Phosphors in diesen Regionen zu charakterisieren, die Rolle von unterschiedlichen Quellen wie Mineralstaub, Biomassenverbrennung, sowie anthropogenen Verbrennungsaerosols auf die Speziation (organische und anorganische Zusammensetzung), Löslichkeit und atmosphärische Prozessierung des Phosphors, sowie ihre saisonale Variabilität zu untersuchen. Darüber hinaus soll eine regionale Staubmodellsimulation angewendet werden, um den Aerosoltransport und die Staupdeposition in diesen Regionen besser zu beschreiben. Die Ergebnisse sind wichtig für kombinierte Modelle zur Ozean-Atmosphäre Wechselwirkung und das Verständnis der wichtigsten Faktoren, die den Verbleib von atmosphärischem Phosphor im Ozean beeinflussen.

1 2 3 4 587 88 89