API src

Found 44 results.

Kühlschrank

: Mit kleinen Tipps unnötigen Stromverbrauch vermeiden Mit welchen Umwelttipps Sie beim Kühlschrank Energie sparen Kaufen Sie Kühlschränke mit niedrigem Stromverbrauch. So groß wie nötig, so klein wie möglich: Zu große Kühlschränke kosten unnötig Strom. Öffnen Sie den Kühlschrank jeweils nur kurz, damit möglichst wenig warme Luft einströmt. Nutzen Sie Ihren Kühlschrank so lange wie möglich und reparieren Sie diesen bei Bedarf. Entsorgen Sie Ihre Altgeräte sachgerecht bei der kommunalen Sammelstelle oder beim Neukauf über den Händler. Gewusst wie Kühlschränke gehören zu den größten Stromverbrauchern im Haushalt. Auch die Herstellung eines Kühlschranks benötigt wertvolle Ressourcen und verursacht umweltschädliche Emissionen. Wir zeigen Ihnen, wie Sie diese Umweltbelastungen verringern können. Sparsames Gerät kaufen: Kühl- und Gefriergeräte laufen rund um die Uhr und gehören zu den größten Stromfressern im Haushalt. Die Stromkosten bewegen sich – je nach Modell und Alter – zwischen 20 und 80 Euro im Jahr. Bei einer durchschnittlichen Nutzungsdauer von 15 Jahren ergibt dies Stromkosten in Höhe von 300 bis zu 1.200 Euro. Der jährliche Stromverbrauch ist auf jedem Gerät in Kilowattstunden (kWh) angegeben. Kaufen Sie deswegen ein sparsames Gerät. Mit Einführung des neuen EU-Energielabels im Jahr 2021 erfolgt die Einordnung auf Basis des Energieverbrauches bzw. der Energieeffizienz in die Klassen A (geringster Verbrauch) bis G (höchster Verbrauch). Die sparsamsten Kühlgeräte befinden sich aktuell in den Klassen A oder B. Vergleichen Sie in Geschäften, in Katalogen oder im Internet mehrere Geräte, ob nicht eines davon eine noch höhere Kennzeichnung trägt. Mittels des QR-Codes auf dem Label finden Sie weitere Informationen über das betreffende Model auf der neuen EU-Produktdatenbank (EPREL). Die richtige Größe wählen: Kühlgeräte gibt es mit und ohne Gefrierfach oder als Kühl-Gefrier-Kombination. Dabei gilt: Kalkulieren Sie Ihren Kühlbedarf beim Kühlschrankkauf eher vorsichtig. Denn auch der nicht genutzte Stauraum erhöht den Energieverbrauch. Achten Sie aber gleichzeitig auf die angegebenen Jahreswerte in kWh – so kann es nämlich durchaus sein, dass größere Geräte einen gleichen oder geringeren Stromverbrauch aufweisen. Die Stiftung Warentest gibt als Richtgröße für Kühlschränke bei 1- bis 2-Personen-Haushalten ca. 90 Liter Nutzinhalt an. Für das Gefriervolumen werden 50 bis 80 Liter bei geringer und 100 bis 130 Liter bei großzügiger Vorratshaltung vorgeschlagen. Auf dem Markt erhältliche Kühl-Gefrier-Kombinationen weisen aber durchschnittlich wesentlich höhere Nutzinhalte im Kühlbereich auf. Falls bereits ein separates Gefriergerät vorhanden ist, wäre ein Gefrierfach im Kühlschrank überflüssig. Je nach Alter des Gefriergerätes kann sich allerdings ein Wechsel zu einer effizienten Kühl-Gefrier-Kombination lohnen. Kaufberatung Kühlschrank Quelle: Umweltbundesamt EU-Energielabel Kühlgeräte Quelle: Europäische Kommission Reparieren lassen und lange nutzen: Wenn Ihr Kühlschrank einen Defekt hat, lassen Sie ihn nach Möglichkeit reparieren und verhelfen Sie so dem Kühlschrank zu einer möglichst langen Nutzungsdauer. Denn die Herstellung eines Neugeräts ist ebenfalls umweltbelastend und verbraucht wertvolle Ressourcen, die auch oft nur unzureichend zurückgewonnen werden können. Darüber hinaus wird zukünftig nicht mehr mit großen Effizienzsprüngen bei neuen Kühlschränken gerechnet. Falls Sie Ihren Kühlschrank innerhalb der letzten zwei Jahre gekauft oder eine Zusatzgarantie abgeschlossen haben, sollten Sie für die Reparatur Ihre Verbraucherrechte in Anspruch nehmen. Grundsätzlich ist es sinnvoll, schon beim Neukauf auf Langlebigkeit und Reparaturfähigkeit zu achten. Leider lassen sich diese Merkmale beim Kauf nicht feststellen. Hilfsweise können Sie Folgendes tun: Fragen Sie nach dem Reparatur- und Wartungsangebot sowie nach der Ersatzteilverfügbarkeit. Fragen Sie, welche einfachen Reparaturen Sie selbst durchführen können. Garantiedauer sowie Zusatzgarantien können ein Merkmal für einen langlebigen Kühlschrank sein. Prüfen Sie vorab, ob Zusatzkosten entstehen und welche Reparaturfälle abgedeckt sind. Austausch von funktionsfähigen Geräten nur im Ausnahmefall: Der Austausch eines älteren funktionsfähigen Kühlschrankes durch ein hocheffizientes Neugerät ist nur im Ausnahmefall ökologisch sinnvoll. Das ist dann der Fall, wenn Sie Ihren Kühlschrank vor dem Jahr 2005 gekauft haben oder er eine niedrige Energieeffizienzklasse besitzt und Sie ihn gegen einen neuen Kühlschrank in der höchsten Energieeffizienzklasse austauschen (siehe Abbildung unten). Wenn Sie hingegen einen Kühlschrank der vormals höchsten Effizienzklasse nutzen, dann bringt aus ökologischer Sicht der Ersatz durch ein sparsameres Modell kaum Vorteile. Lassen Sie auch diese Geräte bei einem Defekt reparieren. Besitzen Sie nach dem heutigen Stand einen sehr effizienten Kühlschrank, sollten Sie diesen möglichst lange nutzen und bei Bedarf reparieren. Richtig entsorgen: Weitere Informationen zur richtigen Entsorgung Ihres Kühlschranks und anderer Elektroaltgeräte finden Sie in unserem ⁠UBA-Umwelttipp "Alte Elektrogeräte richtig entsorgen" . Was Sie noch tun können: Als Alternative zum Neukauf können Sie auch Gebrauchtgeräte z. B. mit Garantie vom Händler erwerben, denn so wird die Herstellung eines Neugerätes vorerst vermieden. Kaufen Sie Geräte mit halogenfreien Kältemitteln (in der Regel Isobutan (R-600a)) und halogenfreien Schäumungsmitteln. Den Kühlschrank nicht zu lange öffnen. Temperatur regulieren: 7 °C im Kühlschrank und -18 °C im Gefrierfach reichen aus. Keine warmen Speisen hineinstellen. Kühlschränke nicht in die Nähe von Wärmequellen (z.B. Herd) stellen und nicht direkter Sonneneinstrahlung aussetzen. Das Gerät bei Bedarf abtauen. Der Reif von Lebensmitteln verbraucht Energie, daher die Lebensmittel gut verpacken. Wenn Sie in den Urlaub fahren, können Sie Ihren Kühlschrank auf die niedrigste Stufe stellen. Kühlschrank regelmäßig auswischen. Hintergrund Seit 1995 ist in Deutschland der Einsatz von vollhalogenierten, Ozonschicht schädigenden Kohlenwasserstoffen (⁠ FCKW ⁠) als Kälte- und Schäumungsmittel in Kühlgeräten verboten. Das Inverkehrbringen von Haushaltskühl- und gefriergeräten, die teilfluorierte Kohlenwasserstoffe (HFKW) mit einem Treibhauspotenzial von 150 oder mehr enthalten, ist in der EU seit 1. Januar 2015 verboten, ab dem 1. Januar 2026 gilt das Verbot für alle fluorierten Treibhausgase, unabhängig vom Treibhauspotenzial. In Altgeräten können FCKW und HFKW jedoch vorkommen. Durch illegal entsorgte Kühlschränke können diese Stoffe unkontrolliert in die ⁠ Atmosphäre ⁠ entweichen und zur weiteren Zerstörung der Ozonschicht und/ oder zur Erwärmung der Erdatmosphäre beitragen. In Haushaltsgeräten wird heute zumeist Isobutan (R-600a) als Kältemittel und Pentan (R-601) als Schäumungsmittel eingesetzt. Diese halogenfreien Kohlenwasserstoffe haben kein Ozonabbaupotenzial und nur ein sehr geringes Treibhauspotenzial. Marktbeobachtung: Besonders energieeffiziente Kühlgeräte sind nach dem Energieeffizienzlabel mit in der höchsten Energieeffizienzklasse bewertet, s. EU-Energielabel. Ihre Marktanteile lagen im Jahr 2018 bei 82,9 %. Die Marktentwicklung der energieeffizienten Kühlgeräte zeigt beispielhaft, wie stark effiziente Haushaltsgeräte an Bedeutung zulegen konnten: Ihr Marktanteil stieg von lediglich 9 % im Jahr 2008 innerhalb von nur 6 Jahren auf 68,9 % im Jahr 2014 (GfK 2015). Quellen: GfK - Gesellschaft für Konsumforschung (2015): Marktdaten Haushaltsgeräte und Beleuchtung .

Gefriertruhe, Gefrierschrank

Bei der Gefriertruhe den Stromverbrauch im Auge behalten Welche Umwelttipps Sie bei Gefriergeräten beachten sollten Kaufen Sie Gefriergeräte mit niedrigem Stromverbrauch (auf EU-Energielabel achten). So groß wie nötig, so klein wie möglich: Zu große Gefriergeräte kosten unnötig Strom. Öffnen Sie Gefrierschrank und -truhe jeweils nur kurz, damit möglichst wenig warme Luft einströmt. Entsorgen Sie Ihre Altgeräte sachgerecht bei der kommunalen Sammelstelle oder beim Neukauf über den Händler. Gewusst wie Sparsame Geräte: Gefriergeräte laufen rund um die Uhr und gehören wie Kühlgeräte zu den größten Stromfressern im Haushalt. Die Stromkosten bewegen sich – je nach Modell und Alter – zwischen 30 und 80 Euro im Jahr. Bei einer durchschnittlichen Nutzungsdauer von 15 Jahren ergibt dies Stromkosten in Höhe von 450 bis zu 1.200 Euro. Der jährliche Stromverbrauch ist auf jedem Gerät in Kilowattstunden (kWh) angegeben. Mit Einführung des neuen EU-Energielabels im Jahr 2021 erfolgt die Einordnung auf Basis des Energieverbrauches bzw. der Energieeffizienz in die Klassen A (geringster Verbrauch) bis G (höchster Verbrauch). Aufgrund neuer Messmethoden finden sich die aktuell effizientesten Geräte in Klasse B oder C. Vergleichen Sie in Geschäften, in Katalogen oder im Internet mehrere Geräte, ob nicht eines davon eine noch höhere Kennzeichnung trägt. Die richtige Größe: Bei Gefriergeräten gilt die Erfahrung, dass sich das Einfrierverhalten der Gerätegröße anpasst: Je größer das Gerät, umso größer wird die persönliche Vorratshaltung. Dabei ist zu beachten: Je größer das Gefrierfach beziehungsweise das Gefriervolumen, desto höher sind die Stromkosten. Denn auch der nicht genutzte Stauraum erhöht den Energieverbrauch. Kalkulieren Sie deshalb Ihren Vorratsbedarf an Gefriergut eher vorsichtig. Die Stiftung Warentest gibt als Faustregel für das Gefriervolumen 40 bis 80 Liter pro Person an. Wichtig: Bei separatem Gefriergerät ist ein Gefrierfach im Kühlschrank überflüssig. Wenn möglich, sollte das Gefriergerät an einen kühlen Ort (z.B. Keller) gestellt werden. Richtig entsorgen: Weitere Informationen zur richtigen Entsorgung Ihres Gefriergerätes und anderer Elektroaltgeräte finden Sie in unserem ⁠UBA-Umwelttipp "Alte Elektrogeräte richtig entsorgen" . Was Sie noch tun können: Kaufen Sie Geräte mit halogenfreien Kältemitteln (in der Regel Isobutan (R 600a)) und halogenfreien Schäumungsmitteln. Öffnen Sie den Deckel / die Tür nicht zu lange. Temperatur regulieren: Minus 18 °C im Gefriergerät reichen aus. Gefriergeräte nicht in die Nähe von Wärmequellen (z.B. Herd, Spülmaschine, Waschmaschine) stellen und nicht direkter Sonneneinstrahlung aussetzen. Das Gerät regelmäßig abtauen, wenn sich Eis gebildet hat, da ansonsten der Energieverbrauch erhöht ist. Der Reif von Lebensmitteln verbraucht Energie, daher die Lebensmittel gut verpacken. Hintergrund Die Verwendung von vollhalogenierten, Ozonschicht schädigenden Kohlenwasserstoffen (⁠ FCKW ⁠) als Kälte- und Schäumungsmittel in Kühlgeräten ist seit 1995 in Deutschland verboten. Seit dem 1. Januar 2015 ist in der EU auch das Inverkehrbringen von Haushaltskühl- und gefriergeräten verboten, die teilfluorierte Kohlenwasserstoffe (HFKW) mit einem Treibhauspotenzial von 150 oder mehr enthalten, das Verbot des Inverkehrbringens gilt ab dem 1. Januar 2026 für alle Geräte, in denen fluorierte Treibhausgase enthalten sind. Bei einer durchschnittlichen Lebensdauer von 15 bis 20 Jahren sind aber immer noch viele betroffene Geräte im Einsatz. Durch illegal entsorgte Gefrierschränke können FCKW oder HFKW unkontrolliert in die ⁠ Atmosphäre ⁠ entweichen und zur weiteren Zerstörung der Ozonschicht und/ oder zur Erwärmung der Erdatmosphäre beitragen. In Haushaltsgeräten wird heute zumeist Isobutan (R 600a) als Kältemittel und Pentan (R 601) als Schäumungsmittel eingesetzt. Diese halogenfreien Kohlenwasserstoffe haben kein Ozonabbaupotenzial und nur ein sehr geringes Treibhauspotenzial. Weitere Informationen finden Sie auf unseren Themenseiten: EU-Energieverbrauchskennzeichnung Fluorierte Treibhausgase

Transportguterweiterung für die Rohstoffpipeline Rostock-Böhlen (RRB)

Die Dow Olefinverbund GmbH, Olefinstraße 1, 04564 Böhlen hat bei der Landesdirektion Sachsen als obere Wasserbehörde mit Schreiben vom 2. Mai 2022, Unterlagen vollständig am 15.11.2022, die Feststellung beantragt, ob für das Vorhaben „Transportguterweiterung für die Rohstoffpipeline Rostock-Böhlen“ eine Verpflichtung zur Durchführung einer Umweltverträglichkeitsprüfung besteht. Über die Rohstoffpipeline Rostock-Böhlen werden seit ihrer Inbetriebnahme im Jahr 1997 flüssige Kohlenwasserstoffgemische, insbesondere Naphtha (Rohbenzin), Pyrolysebenzin und Kondensat transportiert. Des Weiteren ist die RRB für den Transport von Pentan, Benzol und Rohöl (von Rostock bis Leuna) sowie für Flüssiggase der Fraktion C3+ genehmigt. Zur Umsetzung der globalen Klimaschutzziele sowie der Dow-Nachhaltigkeitsziele zur Reduzierung des CO2-Ausstoßes sowie zur Aufrechterhaltung der Versorgungssicherheit an den mitteldeutschen Industriestandorten ist eine Transportguterweiterung für folgende Einsatzstoffgruppen vorgesehen: - Kohlenwasserstoffe basierend auf pflanzlichen Ölen und/oder tierischen Fetten, hydrierte Pflanzenöle, Einordnung je nach Stoffeigenschaften in Dieseltyp und Naphtha-Typ - Rohstoffe aus Abfällen der Kunststoff-, Holzindustrie etc. - Rohstoffe aus recycelten Kunststoffen - Ergänzende fossile Rohstoffe (Diesel/Kerosin) Insbesondere ist die Erweiterung des Fördermedienspektrums um folgende Rohstoffe geplant. - Diesel-Typ (Biobasis) - Naphtha-Typ (Biobasis) - Cirularity-Co-Processed LWP test-run-product (Diesel/Naphtha-Gemisch) - Kerosin (Jet-A1).

Langzeitverhalten von Kraftstoffdampfrückhaltesystemen (KDRS) bei der Verwendung von Bioethanol als Kraftstoffadditiv, Teilvorhaben 2: Raman-Messungen im Langzeitbetrieb und experimentelle Charakterisierung der Aktivkohleproben

Das Projekt "Langzeitverhalten von Kraftstoffdampfrückhaltesystemen (KDRS) bei der Verwendung von Bioethanol als Kraftstoffadditiv, Teilvorhaben 2: Raman-Messungen im Langzeitbetrieb und experimentelle Charakterisierung der Aktivkohleproben" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: Universität Siegen, Institut für Fluid- und Thermodynamik, Lehrstuhl Technische Thermodynamik.Untersuchungen des TÜV haben gezeigt, dass es nach einem langen Einsatz der Kraftstoffdampfrückhaltesysteme mit Biokraftstoffen vermehrt zu Ausfällen kommen kann. Durch eine Kombination der Techniken zur Bestimmung von Durchbruchskurven und der Raman-Spektroskopie soll das Adsorptionsverhalten der KDRS über viele Zyklen messtechnisch begleitet werden. Die experimentellen Untersuchungen werden im Rahmen einer Modellierung, die auf dem bereits vorliegenden Adsorptionsreaktormodell (UMSICHT) beruht, begleitet. Die ausführliche Vorhabenbeschreibung ist dem Antrag beigelegt. Das Adsorptionsverhalten verschiedener Aktivkohleproben, d.h. neu hergestellter bzw. einer definierten Anzahl von definierten Be- und Entladezyklen (4.000 und 40.000 gefahrenen Kilometern entsprechend) unterzogenen, wird experimentell erfasst. Folgender experimenteller Ablauf ist geplant: Charakterisierung der Aktivkohleproben in Voruntersuchungen. Mit einem Pentan/Ethanol-Gemisch wird dann ein Adsorber, der mit einer Aktivkohleprobe befüllt wurde, bis zum Durchbruch beladen. Zur Desorption wird der Adsorber mit Laborluft gespült bis 300 ausgetauschte Bettvolumina erreicht sind. Die Zusammensetzung der Gasphase wird während Ad- und Desorption mit einem, im Rahmen des Projektes aufzubauenden Raman-Detektor bestimmt. Nach jeweils 50 Zyklen (Ad- und Desorption= 1 Zyklus) wird die Arbeitskapazität der Aktivkohle bestimmt. Dies erfolgt gemäß einer Methode, die analog zur ASTM-Norm D 5228-92 entwickelt wurde. Die erhaltenen experimentellen Daten werden u.a. zur Weiterentwicklung eines mathematischen Berechnungswerkzeugs im Bereich der Kraftstoffdampfrückhaltesysteme im PKW verwendet. Die Weiterentwicklung des Modells stellt die Grundlage für verbesserte Designmöglichkeiten für KDRS dar.

Langzeitverhalten von Kraftstoffdampfrückhaltesystemen (KDRS) bei der Verwendung von Bioethanol als Kraftstoffadditiv, Teilvorhaben 1: Experimentelle Untersuchung und Modellierung des Adsorptionsverhaltens von Aktivkohle in Kraftstoffdampfrückhaltesystemen

Das Projekt "Langzeitverhalten von Kraftstoffdampfrückhaltesystemen (KDRS) bei der Verwendung von Bioethanol als Kraftstoffadditiv, Teilvorhaben 1: Experimentelle Untersuchung und Modellierung des Adsorptionsverhaltens von Aktivkohle in Kraftstoffdampfrückhaltesystemen" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT.Untersuchungen des TÜV haben gezeigt, dass es nach einem langen Einsatz der Kraftstoffdampfrückhaltesysteme mit Biokraftstoffen vermehrt zu Ausfällen kommen kann. Durch eine Kombination der Techniken zur Bestimmung von Durchbruchskurven und der Raman-Spektroskopie soll das Adsorptionsverhalten der KDRS über viele Zyklen messtechnisch begleitet werden. Die experimentellen Untersuchungen werden im Rahmen einer Modellierung, die auf dem bereits vorliegenden Adsorptionsreaktormodell (UMSICHT) beruht, begleitet. Die ausführliche Vorhabenbeschreibung ist dem Antrag beigelegt. Das Adsorptionsverhalten verschiedener Aktivkohleproben, d.h. neu hergestellter bzw. einer definierten Anzahl von definierten Be- und Entladezyklen (4.000 und 40.000 gefahrenen Kilometern entsprechend) unterzogenen, wird experimentell erfasst. Folgender experimenteller Ablauf ist geplant: Charakterisierung der Aktivkohleproben in Voruntersuchungen. Mit einem Pentan/Ethanol-Gemisch wird ein Adsorber, der mit einer Aktivkohleprobe befüllt wurde, bis zum Durchbruch beladen. Zur Desorption wird der Adsorber mit Laborluft gespült bis 300 ausgetauschte Bettvolumina erreicht sind. Die Zusammensetzung der Gasphase wird während Ad- und Desorption mit einem, im Rahmen des Projektes aufzubauenden Raman-Detektor bestimmt. Nach jeweils 50 Zyklen (Ad- und Desorption= 1 Zyklus) wird die Arbeitskapazität der Aktivkohle bestimmt. Dies erfolgt gemäß einer Methode, die analog zur ASTM-Norm D 5228-92 entwickelt wurde. Die erhaltenen experimentellen Daten werden u.a. zur Weiterentwicklung eines mathematischen Berechnungswerkzeugs im Bereich der Kraftstoffdampfrückhaltesysteme im PKW verwendet. Die Weiterentwicklung des Modells stellt die Grundlage für verbesserte Designmöglichkeiten für KDRS dar.

Toxikologische Bewertung von Innenraumluftschadstoffen, Teilprojekt 3: Toxikologische Bewertung von C4-C8 Alkane als Grundlage für die Ableitung von Innenraumluftrichtwerten

Das Projekt "Toxikologische Bewertung von Innenraumluftschadstoffen, Teilprojekt 3: Toxikologische Bewertung von C4-C8 Alkane als Grundlage für die Ableitung von Innenraumluftrichtwerten" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) , Umweltbundesamt (UBA). Es wird/wurde ausgeführt durch: Forschungs- und Beratungsinstitut Gefahrstoffe GmbH (FoBiG).Aufgabenbeschreibung: Der Mensch atmet pro Tag 10 bis 20 m3 Luft ein, was einer Masse von 12 bis 24 kg Luft pro Tag entspricht. Davon entfällt etwa 90 % auf die Innenraumluft. Damit kann kontaminierte Innenraumluft zu einer relevanten Aufnahme von Chemikalien führen. Es ist deswegen äußerst wichtig, die Vorkehrungen zu treffen, die eine gute Innenraumluftqualität sicherstellen. Für diesen Zweck setzt der Ausschuss für Innenraumrichtwerte (AIR) bundeseinheitliche, gesundheitsbezogene Richtwerte für die Innenraumluft fest. Der AIR hat bereits über 100 Stoffe in der Innenraumluft bewertet und für eine Vielzahl von Stoffen Richtwerte abgeleitet, die als Maßstab für die Bewertung der Innenraumluftqualität öffentlicher und privater Gebäude in Deutschland angewandt werden. Wegen der Entwicklung der Bautechnik, kultureller Veränderungen und neuer wissenschaftlicher Erkenntnisse werden stets neue Stoffe in der Innenraumluft identifiziert. Die Liste der Stoffe für die eine toxikologische Bewertung dringend notwendig ist, wurde durch den Ausschuss für Innenraumrichtwerte im Jahr 2016 aktualisiert. Gemäß der Angaben der beteiligten Länder besteht ein akuter Bedarf nach Richtwerten für Pentan, Methylpentan, Hexan, Cyclohexan und Summenrichtwerten für C4-C8 Alkane. Ziel des Projekts ist die Bereitstellung eines geeigneten Stoffdossiers als Bewertungsgrundlage für Ableitung der Richtwerte durch den AIR.

Kunststoff\EPS-DE-2000

Produktion von EPS durch Aufschäumen mit Wasserdampf. Zuschneiden und Verpacken. Es werden 1t/t Polystyrol und 57kg/t Pentan eingesetzt. Der Energiebedarf wird von #2, Empa übernommen. Bezugsquelle ist dann ein Wärmebedarf von 2562 MJ/t aus Industriewärme. Besondere Emissionen wird nach #2 47,9kg/t Pentan und 4,1kg/t Styrol als 52kg/t NMVOC eingestellt. EPS (Handelsname: Styropor) wird sowohl für die Geräusch- als auch die Kälteisolierung eingesetzt. Es werden aber auch Werbe- und Sportartike (z.B. Schwimmwesten)l aus EPS hergestellt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Kunststoffe gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 99,6% Produkt: Kunststoffe

Teilprojekt 5^Teilprojekt 7^Teilprojekt 1^Chemische Prozesse: Innovative Apparate- und Anlagenkonzepte zur Steigerung der Energieeffizienz von Produktionsprozessen (InnovA2)^Teilprojekt 2^Teilprojekt 12^Teilprojekt 4^Teilprojekt 6^Teilprojekt 10^Teilprojekt 11^Teilprojekt 8^Teilprojekt 3, Teilprojekt 9

Das Projekt "Teilprojekt 5^Teilprojekt 7^Teilprojekt 1^Chemische Prozesse: Innovative Apparate- und Anlagenkonzepte zur Steigerung der Energieeffizienz von Produktionsprozessen (InnovA2)^Teilprojekt 2^Teilprojekt 12^Teilprojekt 4^Teilprojekt 6^Teilprojekt 10^Teilprojekt 11^Teilprojekt 8^Teilprojekt 3, Teilprojekt 9" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Linde GmbH.

Entwicklung einer abrasionsbeständigen, oleophoben Beschichtung

Das Projekt "Entwicklung einer abrasionsbeständigen, oleophoben Beschichtung" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Technologie. Es wird/wurde ausgeführt durch: RHENOTHERM Kunststoffbeschichtungs GmbH.Die Aufgabenstellung des geplanten Projektes besteht in der Entwicklung neuartiger mechanisch hochfester Beschichtungssysteme, die einen hierarchischen Aufbau aufweisen. Neben einer hohen mechanischen Beständigkeit sind oleophobe Oberflächeneigenschaften angestrebt. Dies bedeutet, dass die Oberfläche nicht mit Öl und ähnlichen Medien benetzbar bzw. bezüglich dieser Medien bindungsabweisend sein soll (Oberflächenspannung: Diiodmethan; 947;L=50,1 mN/m, Rapsöl; 947;L=35,7 mN/m, Pentan; 947;L=15,7 mN/m). Innerhalb des Vorhabens sind sowohl systematische FuE-Arbeiten zur Auswahl optimaler Materialien und Entwicklung des Beschichtungsaufbaus als auch eines industrietauglichen Oberflächenstrukturierungs- und Beschichtungsverfahrens geplant. Ferner sind begleitend Arbeiten zur Ermittlung geeigneter Charakterisierungsverfahren und umfangreiche Analysearbeiten vorgesehen. Das Ziel des Projektes sind anwendungstaugliche, hierarchisch nanostrukturierte Oberflächen, die sich gegenüber dem aktuellen Stand der Technik (siehe Punkt 3) durch eine deutlich höhere mechanische Beständigkeit und oleophobe, bestenfalls sogar omniphobe Eigenschaften auszeichnen. Die Ergebnisse sollen für eine industrielle Umsetzung geeignet sein, was an mindestens einer beispielhaften Anwendung nachgewiesen werden soll. Der Lösungsansatz basiert zunächst auf einer Mehrfachstrukturierung von Oberflächen, wobei Verfahren der Makro-, Mikro- und Nanostrukturierung miteinander kombiniert werden. Dabei sind erfahrungsgemäß die nanostrukturierten Schichten entscheidend für die Erzielung oleophober oder omniphober Eigenschaften.

KMU-innovativ - PUR-Hartschaum - Erhöhung der Ressourceneffizienz bei der Herstellung von PUR-Hartschaum-Schichtverbunden, Teilprojekt: Umsetzung

Das Projekt "KMU-innovativ - PUR-Hartschaum - Erhöhung der Ressourceneffizienz bei der Herstellung von PUR-Hartschaum-Schichtverbunden, Teilprojekt: Umsetzung" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Vöhringer GmbH.

1 2 3 4 5