Laminierte Seesedimente sind unschätzbare Informationsquellen zur Geschichte der Umwelt und des Klimas direkt aus der Lebenssphäre des Menschen. Ein exzellentes Beispiel dafür ist der Sihailongwan-Maarsee aus NE-China. In einem immer noch dicht bewaldeten Vulkangebiet gelegen, bieten seine Sedimente ein ungestörtes Abbild der Monsunvariationen über zehntausende von Jahren. Nur die letzten ca. 200 Jahre zeigen einen deutlichen lokalen anthropogenen Einfluss. Das Monsunklima der Region mit Hauptniederschlägen während des Sommers und extrem kalten Wintern unter dem Einfluss des Sibirischen Hochdrucksystems bildet die Voraussetzung für die Bildung von saisonal deutlich geschichteten Sedimenten (Warven), die in dem tiefen Maarsee dann auch überwiegend ungestört erhalten bleiben. Insbesondere die Auftauphase im Frühjahr bringt einen regelmässigen Sedimenteintrag in den See, der das Gerüst für eine derzeit bis 65.000 Jahre vor heute zurückreichende Warvenchronologie bildet. Für das letzte Glazial zeigen Pollenspektren aus dem Sihailongwan-Profil Vegetationsvariationen im Gleichklang mit bekannten klimatischen Variationen des zirkum-nordatlantischen Raumes (Dansgaard-Oeschger-Zyklen) zu dieser Zeit. Der Einfluss dieser Warmphasen auf das Ökosystem See war jedoch sehr unterschiedlich. So sind die Warven aus den Dansgaard-Oeschger (D/O) Zyklen 14 bis 17 mit extrem dicken Diatomeenlagen (hauptsächlich Stephanodiscus parvus/minutulus) denen vom Beginn der spätglazialen Erwärmung zum Verwechseln ähnlich, während Warven aus dem D/O-Zyklus 8 kaum Unterschiede zu überwiegend klastischen Warven aus kalten Interstadialen aufweisen. Gradierte Ereignislagen mit umgelagertem Bodenmaterial sind deutliche Hinweise auf ein Permafrost-Regime während der Kaltphasen. Auch während des Spätglazials treten deutliche klimatische Schwankungen auf, die der in europäischen Sedimentarchiven definierten Gerzensee-Oszillation und der Jüngeren Dryas zeitlich exakt entsprechen. Das frühe Holozän ist von einer Vielzahl Chinesischer Paläoklima-Archive als Phase mit intensiverem Sommermonsun bekannt. Überraschenderweise sind die minerogenen Fluxraten im Sihailongwan-See während des frühen Holozäns trotz dichter Bewaldung des Einzugsgebietes sehr hoch. Sowohl Mikrofaziesanalysen der Sedimente als auch geochemische Untersuchungen deuten auf remoten Staub als Ursache dieses verstärkten klastischen Eintrags hin. Der insbesondere in den letzten Jahrzehnten zunehmende Einfluss des Menschen zeigt sich in den Sedimenten des Sihailongwan-Maarsees vor allem in einem wiederum zunehmenden Staubeintrag und einer Versauerung im Einzugsgebiet. Der anthropogene Einflusss auf die lokale Vegetation ist immer noch gering.
Most soils develop distinct soil architecture during pedogenesis and soil organic carbon (SOC) is sequestered within a hierarchical system of mineral-organic associations and aggregates. Permafrost soils store large amounts of carbon due to their permanently frozen subsoil and a lack of oxygen in the active layer, but they lack complex soil structure. With permafrost thaw more oxidative conditions and increasing soil temperature presumably enhance the build-up of more complex units of soil architecture and may counterbalance, at least partly, SOC mineralization. We aim to explore the development of mineral-organic associations and aggregates under different permafrost impact with respect to SOC stabilization. This information will be linked to environmental control factors relevant for SOC turnover at the pedon and stand scale to bridge processes occurring at the aggregate scale to larger spatial dimensions. We will combine in situ spectroscopic techniques with fractionation approaches and identify mechanisms relevant for SOC turnover at different scales by multivariate statistics and variogram analyses. From this we expect a deeper knowledge about soil architecture formation in the transition of permafrost soils to terrestrial soils and a scale-spanning mechanistic understanding of SOC cycling in permafrost regions.
Die Häufigkeit und das Ausmaß extremer hydrologischer Ereignisse werden höchstwahrscheinlich durch den Klimawandel verstärkt. Hochalpine Einzugsgebiete sind besonders sensible Räume, da diese Regionen der Hydrosphäre stark durch Veränderungen im Temperatur- und Niederschlagsregime beeinflusst werden. Die starke Kopplung zwischen der Hydrologie und weiteren Komponenten der Geosystem in hoch gelegenen Einzugsgebieten erfordert eine detaillierte Beschreibung der ablaufenden hydrologischen Prozesse. Dieser Umstand rechtfertigt die Einrichtung dieses Teilprojekts der im Rahmen des SEHAG Projektes (Sensitivity of high Alpine geosystems to climate change since 1850) beantragten Forschergruppe. Die Innovation der vorgeschlagenen Forschungsrichtung liegt in der Untersuchung der Veränderungen in der Hydrosphäre zwischen 1850 und 2050 und wie diese mit den übrigen Komponenten der Geosystem in hochalpinen Lagen interagieren. Insbesondere werden wir gründliche Zeitreihenanalysen zur Untersuchung der Korrelation zwischen Klimawandel und den Jährlichkeiten extremer hydrologischer Ereignisse (z.B.: zeitliche Verteilung von Niederschlagsereignissen innerhalb eines Jahres und Einsetzen der Schnee- und Gletscherschmelze) durchführen. Daneben wollen wir verifizieren ob es möglich ist die Qualität der hydrologischen Modelle für hochalpine Einzugsgebiete durch 'multi-objective' Kalibrierungsansätze zu verbessern. Archive spielen dabei eine wichtige Rolle als Datenquelle zur Rekonstruktion der meteorologischen Bedingungen der Vergangenheit. Außerdem ermöglicht die Zusammenarbeit mit anderen Teilprojekten die Kalibrierung des hydrologischen Modells, sowohl gegen den Abfluss, als auch gegen Permafrost- sowie Schnee- und Gletschermessungen. Darüber hinaus werden uns die geplanten experimentellen Messungen erlauben die 'multi-objective' Kalibrierung auf weitere Parameter, wie die elektrische Leitfähigkeit des Abflusses oder die Wassertemperatur der Wildbäche auszuweiten. Das resultierende, kalibrierte Modellergebnis, für das eine intensive Unsicherheitsanalyse durchgeführt werden wird, wird dann von den weitern Teilprojekten genutzt, um die Veränderungen in der Geosystem zu interpretieren.
This raster dataset, in Cloud Optimized GeoTIFF format (COG), provides information on land surface changes at the pan-arctic scale. Multispectral Landsat-5 TM, Landsat-7 ETM+, Landsat-8 OLI, and Landsat-9 OLI-2 imagery (cloud-cover less than 70%, months July and August) was used for detecting disturbance trends (associated with abrupt permafrost degradation) between 2005 and 2024. For each satellite image, we calculated the Tasseled Cap multi-spectral index to translate the spectral reflectance signal to the semantic information Brightness, Greenness, and Wetness. In order to characterize change information, we calculated the linear trend of Brightness, Greenness, and Wetness over two decades at the individual pixel level, based on annually aggregated data. The final map product therefore contains information on the direction and magnitude of change for all three Tasseled Cap parameters at 30 m spatial resolution across the pan-arctic permafrost domain. Features detected include coastal erosion, lake drainage, infrastructure expansion, and fires. The general processing methodology was developed by Fraser et al. (2014) and adapted and expanded by Nitze et al. (2016, 2018). Here, we upscaled the processing to the circum-arctic permafrost region and applied it to the recent 20-year period from 2005 through 2024. The service covers the permafrost region up to 81° North: Alaska (USA), Canada, Greenland, Iceland, Norway, Sweden, Finland, Russia, Mongolia, and China. For Russia and China, regions not containing permafrost were excluded. The data have been processed in Google Earth Engine as part of the research projects ERC PETA-CARB, ESA CCI+ Permafrost, NSF Permafrost Discovery Gateway, and EU Arctic PASSION. The dataset is a contribution to the 'Pan-Arctic Requirements-Driven Permafrost Service' of the Arctic PASSION project (see References). Changes in the Tasseled Cap indices – Brightness, Greenness, and Wetness – are displayed in the image bands red, green, and blue, respectively. Here, coastal erosion (a trend of a land surface transitioning to a water surface) is depicted in dark blue tones, while coastal accretion (a trend of a water surface transitioning to a land surface) is depicted in bright orange colors. Drained lakes are shown in bright yellow or orange colors, depending on the soil conditions and vegetation regrowth. Fire scars are a further common feature, appearing in different colors depending on the time of the fire and the pre-fire land cover. The data can be explored via the Arctic Landscape EXplorer (ALEX; see References) and are available as a public web map service (WMS; see References), both hosted by Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research.
Torfgebiete sind die größten Speicher für organischen Kohlenstoff auf der Erde. 80% der weltweiten Torfgebiete befinden sich auf der nördlichen Hemisphäre; daher stellen die nördlichen Torfgebiete die wichtigste natürliche Quelle für Treibhausgase (GHG) wie CH4 und CO2 dar. CH4 ist von besonderer Bedeutung, da es im Vergleich zu CO2 etwa 28-mal klimaschädlicher ist. Die Menge des von Mooren freigesetzten CH4 wird durch aerobe und anaerobe mikrobielle Prozesse bestimmt. Ein wenig untersuchter Teil des CH4-Kreislaufs in nördlichen Torfgebieten sind anaerobe CH4-oxidierende Prozesse (AOM). Insbesondere die erst kürzlich entdeckten AOM-Prozesse, die an die Reduktion organischer Elektronenakzeptoren wie natürlichem organischem Material (NOM) gekoppelt sind (NOM-abhängige AOM, NOM-AOM), wurden in diesen Gebieten noch nie untersucht, obwohl erhebliche Mengen an NOM und CH4-Emissionen in Torfgebieten parallel existieren. Deshalb möchten wir in diesem Projekt die Rolle von NOM für die CH4-Emissionen in die Atmosphäre über verschiedene Mechanismen der CH4-Produktion und der CH4-Oxidation bestimmen. Untersucht werden dabei NOM-Fraktionen, die in Stordalen (Abisko, Schweden), einem Modellstandort für von Permafrost betroffene nördliche Torfgebiete, vorhanden sind. Das übergeordnete Ziel dieses Projekts ist es, die Rolle der gelösten und partikulären Fraktionen von NOM (DOM und POM) für die Stimulierung oder Reduktion der Bildung und des Verbrauchs von CH4 in Mooren und kollabierenden Permafrost-Palsa-Gebieten zu untersuchen. Diese Standorte enthalten große Mengen an organischer Substanz und zeigen gleichzeitig erhebliche CH4-Emissionen. Im Arbeitspaket 1 (WP1) wird Torf vom Probenahmestandort entnommen und geochemische Parameter im Feld gemessen. Der beprobte Torf wird zur Isolierung von DOM- und POM-Fraktionen verwendet, um eine eingehende physikochemische Charakterisierung mit modernsten Analysetechniken durchzuführen, incl. DOC-/TOC-Messungen, FTIR und Messungen der Elektronenaustauschkapazität. Im WP2 werden Isotopen-Tracer-Experimente in Mikrokosmen durchgeführt, die mit Torf versetzt und mit isoliertem DOM oder POM angereichert sind, um deren Rolle bei der Stimulierung oder Unterdrückung der acetoklastischen und hydrogenotrophen Methanogenese sowie der Oxidation von CH4 durch NOM-AOM zu bestimmen. In WP3 werden die Identität und die relative Häufigkeit der Mikroorganismen, die an den untersuchten CH4-Cycling-Prozessen beteiligt sind, sowie die beteiligten funktionellen Gene mit Hilfe von DNA- und RNA-basierten molekularen Techniken wie 16S-Sequenzierung und Quantifizierung von Transkripten der Gene der Methanogenese und Methanotrophie analysiert. Wir verfolgen dabei die Hypothese, dass NOM in Permafrostgebieten je nach seinen Eigenschaften sowohl zur Emission von CH4 beitragen als auch diese abschwächen kann.
Im Lauf der letzten Dekaden wurde für große Teile der Arktis eine signifikante Erwärmung der Erdoberfläche und des oberflächennahen Untergrunds beobachtet. Deren Folgen zeigen sich bereits heute - beispielsweise in einer Ausbreitung der Buschvegetation und einer Vertiefung der saisonalen Auftauschicht. In Anbetracht der Bedeutung von Änderungen in Permafrostregionen für Umwelt, Infrastruktur und Klimasystem besteht ein dringender Bedarf, Parameter dieses Raumes großflächig zu bestimmen und kontinuierlich zu überwachen. Durch die Weite und spärlichen Besiedelung der Arktis sind diese Umweltdaten jedoch nur unzureichend verfügbar und ihre Erhebung ist kostenintensiv. In diesem Kontext können fernerkundliche Daten einen wichtigen Beitrag leisten; Flugzeug- und Satellitengestützte Systeme ermöglichen eine effiziente und flächendeckende Aufnahme von Oberflächeneigenschaften. Ziel des Projekts ist die Identifizierung und Quantifizierung von Zusammenhängen zwischen Eigenschaften der Erdoberfläche, welche durch Fernerkundung abgeleitet werden können, und Eigenschaften des Untergrunds, die den Zustand von Permafrostgebieten charakterisieren. Basierend auf diesen Ergebnissen ist ein weiteres Ziel die Erstellung von konzeptionellen Modellen, welche die Verschränkung und Verbindung von Umwelt-Parameter zeigen. Die Arbeiten werden in einem skalenübergreifenden Multi-Sensor-Ansatz durchgeführt. Der Fokus wird dabei auf die Identifizierung der Kopplungen zwischen Oberfläche und Untergrund, sowie auf den Einfluss des Betrachtungsmaßstabs gelegt. Als fernerkundliche Daten stehen zur Verfügung: (1) grob aufgelöste optische und thermische Satellitendaten, (2) mittel-aufgelöste Radar- und Multi-Spektraldaten und (3) hoch-aufgelöste Thermal-, Hyperspektral- und Laserscanner-Daten von regionalen Befliegungen. Die Charakterisierung des Untergrunds erfolgt mittels (1) geomorphologischer Kartierung, (2) Zeitreihen-Analyse der Temperatur und Bodenfeuchte aus abgeteuften Sensoren, (3) Ground Penetrating Radar (GPR) und (4) elektrischen Widerstandsmessungen. Fernerkundliche Daten der Erdoberfläche und geophysikalische Daten zum Untergrund werden mit multivariaten statistischen Methoden analysiert - mit dem Ziel Zusammenhängen zwischen Oberflächen- und Untergrund-Parametern des periglazialen Systems zu identifizieren und zu quantifizieren. Als Untersuchungsgebiete wurden die Mackenzie Delta Region und das Peel Plateau identifiziert. Beide Regionen liegen in Nord Kanada und zeigen innerhalb geringer Distanzen verschiedenartige, durch Permafrost geprägte Ökosysteme. Zudem stehen durch Vorstudien Daten zur Verfügung; zum einen Referenzdaten von Feld-Kampagnen und zum anderen Satellitenbilder verschiedener Sensoren. Darüber hinaus wird vom Alfred Wegener Institut eine Befliegung dieser Gebiete geplant und finanziert. Das Flugzeug wird mit einer vielfältigen Instrumentenauswahl bestückt; u. a. ein flugzeuggetragenes GPR, ein Laserscanner und eine hyperspektral Kamera.
| Origin | Count |
|---|---|
| Bund | 245 |
| Global | 1 |
| Land | 14 |
| Wissenschaft | 31 |
| Type | Count |
|---|---|
| Daten und Messstellen | 10 |
| Ereignis | 12 |
| Förderprogramm | 220 |
| Taxon | 1 |
| Text | 13 |
| unbekannt | 32 |
| License | Count |
|---|---|
| geschlossen | 22 |
| offen | 265 |
| Language | Count |
|---|---|
| Deutsch | 186 |
| Englisch | 131 |
| Resource type | Count |
|---|---|
| Archiv | 7 |
| Bild | 2 |
| Datei | 15 |
| Dokument | 12 |
| Keine | 159 |
| Unbekannt | 2 |
| Webseite | 109 |
| Topic | Count |
|---|---|
| Boden | 287 |
| Lebewesen und Lebensräume | 279 |
| Luft | 248 |
| Mensch und Umwelt | 283 |
| Wasser | 246 |
| Weitere | 278 |