API src

Found 15 results.

(Table 2) Planktic foraminifera and their diversity indices of sediment surface samples from the Atlantic Ocean

Species distribution patterns in planktonic foraminiferal assemblages are fundamental to the understanding of the determinants of their ecology. Until now, data used to identify such distribution patterns was mainly acquired using the standard >150 µm sieve size. However, given that assemblage shell size-range in planktonic foraminifera is not constant, this data acquisition practice could introduce artefacts in the distributional data. Here, we investigated the link between assemblage shell size-range and diversity in Recent planktonic foraminifera by analysing multiple sieve-size fractions in 12 samples spanning all bioprovinces of the Atlantic Ocean. Using five diversity indices covering various aspects of community structure, we found that counts from the >63 µm fraction in polar oceans and the >125 µm elsewhere sufficiently approximate maximum diversity in all Recent assemblages. Diversity values based on counts from the >150 µm fraction significantly underestimate maximum diversity in the polar and surprisingly also in the tropical provinces. Although the new methodology changes the shape of the diversity/sea-surface temperature (SST) relationship, its strength appears unaffected. Our analysis reveals that increasing diversity in planktonic foraminiferal assemblages is coupled with a progressive addition of larger species that have distinct, offset shell-size distributions. Thus, the previously documented increase in overall assemblage shell size-range towards lower latitudes is linked to an expanding shell-size disparity between species from the same locality. This observation supports the idea that diversity and shell size-range disparity in foraminiferal assemblages are the result of niche separation. Increasing SST leads to enhanced surface water stratification and results in vertical niche separation, which permits ecological specialisation. Specific deviations from the overall diversity and shell-size disparity latitudinal pattern are seen in regions of surface-water instability, indicating that coupled shell-size and diversity measurements could be used to reconstruct water column structures of past oceans.

Distribution of Upper Cretaceous deep water agglutinated foraminifera in sediments of the North Atlantic and its marginal seas (Tab. 1)

The stratigraphic and biogeographic distribution of more than 170 species of deep-water agglutinated benthic foraminifers (DWAF) from the North Atlantic and adjacent marginal seas has been compared with paleoenvironmental data (e.g. paleobathymetry, oxygenation of the bottom waters, amount of terrigenous input and substrate disturbance). Six general types of assemblages, in which deep water agglutinated taxa occur, are defined from the Turonian to Maastrichtian times: 1. High latitude slope assemblages 2. Low to mid latitude slope assemblages 3. Flysch-type assemblages 4. Deep water limestone assemblages (,,Scaglia,,-type) 5. Abyssal mixed calcareous-agglutinated assemblages 6. Abyssal purely agglutinated assemblages Latitudinal differences in faunal composition are observed, the most important of which is the lack or extreme paucity of calcareous forms in high latitude assemblages. East-to-west differences appear to be of comparatively minor importance. Most DWAF species occur in all studied regions and are thus considered as cosmopolitan. Biostratigraphic turnovers in the taxonomic content of assemblages are observed in the lowermost Turonian, mid-Campanian and in the upper Maastrichtian to lowermost Paleocene. These datum levels correspond to inter-regional and time-constant paleooceanographic events, which probably also affected the deep-water benthic biota. This allows us to use deep-water agglutinated foraminifers for biostratigraphy in the North Atlantic sequences deposited below CCD and to geographically extend the currently used zonal schemes which have been established in the Carpathian and Alpine areas.

Time slice 2 of planktic foraminifera of the last glacial maximum

Sea surface temperatures of the last glacial maximum, GLAMAP

Morphometry of planktonic foraminifera tests from surface sediment samples at stations PS1902-3 to PS2610-2

Distribution of planktic foraminifera at the last glacial maximum

Distribution of planktic foraminifera in surface sediments of the Atlantic Ocean (ATL947)

Calculated sea surface temperatures for the last glacial maximum in the tropical Atlantic

Lead and aluminum in Atlantic surface water measured along the track of POLARSTERN cruise ANT-VIII/7 and ANT-IX/1 (Tables 2, 3)

Lead and aluminum were measured with a 40–100 km resolution in surface water on two transects across the Atlantic Ocean, one in May 1990 from Cape Town to the North Sea, the other in November 1990 from the North Sea to the Strait of Magellan. Samples were drawn 14 m below surface at normal speed from a 2-m-long snorkel system mounted on the bottom of the ship directly into a clean-room area. In the tropics, both Pb and Al show maximum oncentrations in the Intertropical Convergence Zone (ITCZ) correlated with each other and with minimum salinities, indicating wet deposition as their common source. Even in this area characterized by large inputs of mineral aerosols, the Pb/Al ratio shows that the major source of soluble lead (>95%) is anthropogenic. At higher latitudes, Al is low throughout (10–20 nmol/kg), whereas enhanced Pb values show the anthropogenic inputs off south Africa, northern Argentina and especially western Europe. Very low Pb and especially Al concentrations in the upwelling areas associated with the Canary and Benguela currents show that the enhanced biogenic particle fluxes cause an efficient scavenging of both lithogenic particles known to arrive here by dry deposition, and of the adhering reactive trace metals.

Distribution of planktic foraminifera in surface sediments of the Atlantic Ocean

We present a data set of 738 planktonic foraminiferal species counts from sediment surface samples of the eastern North Atlantic and the South Atlantic between 87°N and 40°S, 35°E and 60°W including published Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) data. These species counts are linked to Levitus's [1982] modern water temperature data for the four caloric seasons, four depth ranges (0, 30, 50, and 75 m), and the combined means of those depth ranges. The relation between planktonic foraminiferal assemblages and sea surface temperature (SST) data is estimated using the newly developed SIMMAX technique, which is an acronym for a modern analog technique (MAT) with a similarity index, based on (1) the scalar product of the normalized faunal percentages and (2) a weighting procedure of the modern analog's SSTs according to the inverse geographical distances of the most similar samples. Compared to the classical CLIMAP transfer technique and conventional MAT techniques, SIMMAX provides a more confident reconstruction of paleo-SSTs (correlation coefficient is 0.994 for the caloric winter and 0.993 for caloric summer). The standard deviation of the residuals is 0.90°C for caloric winter and 0.96°C for caloric summer at 0-m water depth. The SST estimates reach optimum stability (standard deviation of the residuals is 0.88°C) at the average 0– to 75-m water depth. Our extensive database provides SST estimates over a range of -1.4 to 27.2°C for caloric winter and 0.4 to 28.6°C for caloric summer, allowing SST estimates which are especially valuable for the high-latitude Atlantic during glacial times.

1 2