API src

Found 91 results.

Related terms

Klimaschutz im Erwerbsobstbau durch modellgestützte Bilanzierung und intelligente Reduktion von THG-Emissionen auf dem digitalen Zukunftsbetrieb, Teilprojekt A

Quantification of small-scale physicochemical properties of intact macropore surfaces in structured soils

In structured soils, the interaction of percolating water and reactive solutes with the soil matrix is mostly restricted to the surfaces of preferential flow paths. Flow paths, i.e., macropores, are formed by worm burrows, decayed root channels, cracks, and inter-aggregate spaces. While biopores are covered by earthworm casts and mucilage or by root residues, aggregates and cracks are often coated by soil organic matter (SOM), oxides, and clay minerals especially in the clay illuviation horizons of Luvisols. The SOM as well as the clay mineral composition and concentration strongly determine the wettability and sorption capacity of the coatings and thus control water and solute movement as well as the mass exchange between the preferential flow paths and the soil matrix. The objective of this proposal is the quantitative description of the small-scale distribution of physicochemical properties of intact structural surfaces and flow path surfaces and of their distribution in the soil volume. Samples of Bt horizons of Luvisols from Loess will be compared with those from glacial till. At intact structural surfaces prepared from soil clods, the spatial distribution (mm-scale) of SOM and clay mineral composition will be characterized with DRIFT (Diffuse reflectance infrared Fourier transform) spectroscopy using a self-developed mapping technique. For samples manually separated from coated surfaces and biopore walls, the contents of organic carbon (Corg) and the cation exchange capacity (CEC) will be analyzed and related to the intensities of specific signals in DRIFT spectra using Partial Least Square Regression (PLSR) analysis. The signal intensities of the DRIFT mapping spectra will be used to quantify the spatial distribution of Corg and CEC at these structural surfaces. The DRIFT mapping data will also be used for qualitatively characterizing the small scale distribution of the recalcitrance, humification, and microbial activity of the SOM from structural surfaces. The clay mineral composition of defined surface regions will be characterized by combining DRIFT spectroscopic with X-ray diffractometric analysis of manually separated samples. Subsequently, the spatial distribution of the clay mineral composition at structural surfaces will be determined from the intensities of clay mineral-specific signals in the DRIFT mapping spectra and exemplarily compared to scanning electron microscopic and infrared microscopic analysis of thin sections and thin polished micro-sections. The three-dimensional spatial distribution of the total structural surfaces in the volume of the Bt horizons will be quantified using X-ray computed tomography (CT) analysis of soil cores. The active preferential flow paths will be visualized and quantified by field tracer experiments. These CT and tracer data will be used to transfer the properties of the structural surfaces characterized by DRIFT mapping onto the active preferential flow paths in the Bt horizons.

Klimaschutz im Erwerbsobstbau durch modellgestützte Bilanzierung und intelligente Reduktion von THG-Emissionen auf dem digitalen Zukunftsbetrieb, Teilprojekt C

Klimaschutz im Erwerbsobstbau durch modellgestützte Bilanzierung und intelligente Reduktion von THG-Emissionen auf dem digitalen Zukunftsbetrieb, Teilprojekt B

Herabsetzung des Pflanzenschutzmittelaufwandes u. Verringerung der Umweltbelastung durch Verbesserung d. Applikationstechnik (Abstreifgeraete, Rotationsduesen im Feldbau, Feinspruehen im Obst- und Weinbau, elektrostatische Aufladung der Troepfchen)

Die Flaechenleistung und Zielgenauigkeit der Geraete soll erhoeht, die Abtrift verringert und der Praeparateaufwand gesenkt werden. Dadurch wurde der chemische Pflanzenschutz nicht nur oekonomischer sondern auch umweltfreundlicher.

VEB Lacke und Farben

Das Gelände ist Teil eines seit 1871 durch die chemische Industrie- und Farbenproduktion geprägten Industriebereiches entlang der Schnellerstraße im Bezirk Treptow-Köpenick. Durch die Chemischen Fabriken Kunheim wurde ab 1889 neben Schwefelsäure mit der Produktion von Rotkali, Gelbkali, Berliner-, Pariser- und Stahlblau begonnen. Als Grundstoff wurden die Abfallprodukte aus der Gasgewinnung (Gaswässer, Reinigermassen und Teere) herangezogen. Ab 1993 erfolgte der Rückbau der industriellen Anlagen im Rahmen des ÖGP(Ökologisches Großprojekt.). Zukünftig wird das Gelände als Verwaltungsstandort sowie für Lagerhaltung und Verkauf genutzt. Am Standort gelangten Schadstoffe über Havarien, Handhabungsverluste und als Aufschüttungsmaterial nach Kriegsschäden in den Boden und in das Grundwasser. Eine akute Schädigung des Grundwassers mit Cyaniden und Arsen bis in die Rohwassergewinnungsanlagen des Wasserwerkes Johannisthal ist nachgewiesen. In den Schadenszentren liegen Kontaminationen des Bodens bis zu 3 g/kg an Cyaniden und bis zu 7 g/kg an Arsen vor. Die Belastungen des Bodens reichen bis in eine Tiefe von 10 m unter GOK(Geländeoberkante.). Zum Schutz der Trinkwassergewinnung im Bereich des Wasserwerkes Johannisthal waren erhebliche Sanierungs- und Sicherungsmaßnahmen erforderlich bzw. sind in Form einer hydraulischen Abstromsicherung weiterhin notwendig. Um sowohl den Zufluss von Spreewasser in die kontaminierten Bodenschichten zu vermindern als auch den Transfer von Schadstoffen in die Spree zu unterbinden, erfolgte 1995 bis 1996 die Errichtung einer bis in eine Tiefe von 31,8 m reichenden einwandigen Schlitzwand entlang der Spree und des Britzer Zweigkanals auf einer Länge von ca. 1.000 m. Außerdem wurde im Jahr 1995 partiell stark kontaminierter Boden im Rahmen eines Neubaus einer Lagerhalle ausgehoben. Ab 1998 fand auf den nicht mehr mit nutzbaren Gebäuden belegten Flächen eine Tiefenenttrümmerung statt. Zur Verhinderung weiterer Schadstoffverlagerungen in das Grundwasser wurde die Regenwasserkanalisation erneuert, die Freiflächen wurden mittels Kunststoffdichtungsbahnen abgedeckt und anschließend begrünt. Die Verkehrsflächen erhielten eine neue Oberflächenabdichtung aus Asphalt. Die Versiegelungsmaßnahmen konnten 2004 mit der Revitalisierung der “Alten Grünfläche” abgeschlossen werden. Die Abstromsicherung wird seit 1996 durch den Betrieb einer Grundwasserreinigungsanlage mit derzeit 19 Sicherungsbrunnen gewährleistet. Der obere, ca. 15 m mächtige 1. Grundwasserleiter wird allein mit 15 Brunnen gesichert. 2012 wurde die Anzahl der Sicherungsbrunnen im 2. Grundwasserleiter auf vier verdoppelt, um ein weiteres Abdriften von arsenbelastetem Grundwasser zu vermeiden. Die Grundwasserreinigungsanlage wurde letztmalig 2012 an neuem Standort, am Fuße der ehem. Betriebsdeponie, errichtet und reinigt nun ca. 80 m³/h. In diesem Zusammenhang wurden 2011 die Zuleitungen zur Reinigungsanlage erneuert. Die Betriebsdeponie wurde schon 1997 mittels Kunststoffdichtungsbahnen abgedichtet und begrünt. Nach der Errichtung der Minna-Todenhagen-Brücke“ über die Spree im Jahr 2017, erfolgt 2018 bis 2020 die abschließende Oberflächenversiegelung auf den angrenzenden Grundstücken mit gleicher historisch bedingter Bodenbelastung. Die Gesamtkosten der Maßnahmen belaufen sich auf insgesamt ca. 6,2 Mio. € für den Zeitraum von 1991 bis 2010. Davon entfielen u.a. 1,85 Mio. € auf die Herrichtung der Verkehrsflächen einschließlich des Neubaus der Regenwasserkanalisation, 1,5 Mio. € anteilig auf die Schlitzwand, 1,78 Mio. € auf die Tiefenenttrümmerung und Oberflächenversiegelung sowie 300.000 € auf die Boden- und Grundwasseruntersuchungen. In den Jahren 2011 bis 2012 betrugen die Investitionen am Standort und den Nachbargrundstücken 0,9 Mio. €. Der Abschluss der Oberflächenversiegelung auf den Nachbargrundstücken bedingt bis 2020 weitere Investitionen von ca. 6 Mio €.

Technische Lösungen zur Senkung der Umweltbelastung durch Biozide

Insektizide oder Grünbelagsentferner werden im Außenbereich häufig versprüht. Dabei hängt es insbesondere von den verwendeten Geräten ab, wie stark die Chemikalien durch Abdrift auch in Bereiche getragen werden, die eigentlich nicht behandelt werden sollen. Durch die richtige Geräteauswahl kann die Belastung der Umwelt reduziert und der Gebrauch der Produkte effektiver gestaltet werden. Im Auftrag des Umweltbundesamts führte das Julius Kühn-Institut großangelegte Messungen zur ⁠ Abdrift ⁠ von Biozidanwendungen mit hohem Abdriftpotential durch, um die Auswirkungen auf die Umwelt und mögliche Risikominderungsmaßnahmen zu evaluieren. Zu diesen Anwendungen gehören beispielsweise die Bekämpfung des Eichenprozessionsspinners, die Bekämpfung von fliegenden und kriechenden Insekten und die Entfernung von Algen auf Terrassen und Wegen. Ein Exkurs enthält eine Literaturrecherche mit Geräten, die zur Moskitobekämpfung eingesetzt werde können. Diese Recherche zeigt die Unterschiede zwischen Geräten zur Vektorbekämpfung und Geräten zum Einsatz von Pflanzenschutzmitteln. Zur Messung der Abdrift bei der Bekämpfung des Eichenprozessionsspinners wurden sowohl in einem vorhergehenden als auch in diesem Projekt in verschiedenen Anwendungsbereichen, wie Einzelbaum, Allee und Waldrand, und mit verschiedenen Geräten, wie Sprühkanone, Hubschrauber und UAV, Untersuchungen durchgeführt. Das Ergebnis ist eine Liste von empfohlenen Abdrifteckwerten, die in Zukunft bei der Expositionsbewertung im Rahmen der Produktzulassungen verwendet werden können. Zur Messung der Abdrift bei der Bekämpfung von fliegenden und kriechenden Insekten und bei der Entfernung von Algen wurden erste Untersuchungen mit einer Rückenspritze an einer Hauswand und auf einem gepflasterten Weg durchgeführt. Basierend auf allen Ergebnissen werden Empfehlungen zur Expositionsbewertung und möglichen Maßnahmen zur Driftreduktion gegeben. Diese beinhalten einen Wechsel von Sprühkanonen mit pneumatischer Zerstäubung zu Sprühkanonen mit hydraulischer Zerstäubung mit drift-reduzierenden modernen Düsen oder den Wechsel von Hohlkegeldüsen zu Flachstrahldüsen bei der Verwendung von Rückenspritzen. Die Ergebnisse der Versuche zum Run-off zeigten zudem hohe Verluste von bis zu 50%, die minimiert werden könnten, indem bei vertikaler Applikation angemessene Aufwandmengen empfohlen werden. Diese Ergebnisse können in der Praxis angewendet werden, um die Belastung der Umwelt zu reduzieren. Ein Factsheet des UBA fasst die Ergebnisse der zwei Forschungsvorhaben knapp zusammen.

Pflanzenschutzmittel in der Umwelt

Unsere Umwelt ist einer Vielzahl von menschengemachten Chemikalien ausgesetzt. Eine Sonderrolle nehmen dabei die Pflanzenschutzmittel ein. Diese werden zwar zum Schutz der Kulturpflanzen eingesetzt, haben jedoch schädliche Auswirkungen auf weitere Pflanzen und Tiere. Keine andere Stoffgruppe wird so gezielt und in so großem Umfang offen in die Umwelt ausgebracht. Zugelassene Pflanzenschutzmittel Das europäische und das deutsche Pflanzenschutzrecht gewährleisten, dass nur ⁠ Pflanzenschutzmittel ⁠ auf den Markt kommen, die auf ihre Umweltauswirkungen geprüft werden. Die Umweltprüfung erfolgt im Rahmen des Zulassungsverfahrens durch das Umweltbundesamt. Im Jahr 2022 waren 1.000 Pflanzenschutzmittel mit 1.849 Handelsnamen zugelassen. Pflanzenschutzmittel sind jedoch Stoffgemische und enthalten einen oder mehrere Wirkstoffe, aber auch Beistoffe. Die Zahl eingesetzter Wirkstoffe in den zugelassenen Pflanzenschutzmitteln ist seit 2000 annähernd konstant. In 2022 wurden insgesamt 281 Wirkstoffe eingesetzt. (siehe Abb. „Zahl zugelassener Pflanzenschutzmittel und Wirkstoffe“). Menge der eingesetzten Pflanzenschutzmittel Systematisch erfasste Zahlen zu den tatsächlich ausgebrachten Pflanzenschutzmitteln gibt es bisher nicht. Die Größenordnung lässt sich aber zumindest ansatzweise aus den Verkaufszahlen der ⁠ Pflanzenschutzmittel ⁠ ableiten: Der Absatz von Pflanzenschutzmitteln in der deutschen Landwirtschaft liegt in den letzten Jahrzehnten mehr oder weniger unverändert bei etwa 30.000 Tonnen (t) Wirkstoff pro Jahr, Tendenz in den letzten Jahren wieder leicht steigend (ohne Berücksichtigung der im Vorratsschutz eingesetzten inerten Gase). Insbesondere der Verkauf problematischer Wirkstoffe steigt jedoch (siehe auch Einsatz problematischer Pflanzenschutzmittel gestiegen ). (siehe Abb. „Inlandsabsatz einzelner Wirkstoffgruppen in Pflanzenschutzmitteln“ und Tab. „Inlandsabsatz von Pflanzenschutzmitteln“). ___ * zum Beispiel Kohlendioxid; inert = wenig reaktionsfreudig; Einsatz in geschlossenen Räumen/Lagerungsbehältern Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL): Absatz an Pflanzenschutzmitteln in der Bundesrepublik Deutschland. Ergebnisse der Meldungen gemäß § 64 (früher § 19) Pflanzenschutzgesetz Aus den Verkaufszahlen der ⁠ Pflanzenschutzmittel ⁠ kann jedoch nicht unmittelbar auf deren Verbrauch geschlossen werden, da die ausgebrachten Mengen je nach Art des Anbaus und der Fruchtfolge sowie der standörtlichen Bedingungen zum Teil erheblich variieren. Außerdem werden die Präparate unter Umständen über mehrere Jahre hinweg gelagert. Die tatsächlich ausgebrachten Mengen an Pflanzenschutzmitteln werden bisher nur stichprobenartig und in unregelmäßigen Abständen durch das Bundesforschungsinstitut für Kulturpflanzen, Julius Kühn-Institut (JKI, früher Biologische Bundesanstalt) erfasst. Daraus ergibt sich für die deutsche Landwirtschaft ein durchschnittlicher jährlicher Einsatz von 7,3 Kilogramm (kg) Pflanzenschutzmitteln beziehungsweise 2,4 kg Wirkstoff je Hektar Anbaufläche (Berechnung für 2021, bei ca. 11,9 Millionen Hektar Ackerland und Dauerkulturen laut Statistischem Bundesamt). Mit der Überarbeitung und Verabschiedung der europäischen Verordnung zu Statistiken von landwirtschaftlichen Betriebsmitteln ( SAIO-Verordnung, EU 2022/2379 ) müssen die Anwendungsdaten ab 2028 vollständig in digitaler Form systematisch erfasst und bestimmten Behörden in anonymisierter Form zugänglich gemacht werden. Funde von Pflanzenschutzwirkstoffen im Grundwasser Kaum ein Wirkstoff wird sofort in der Umwelt abgebaut. Rückstände verbleiben zum Teil längerfristig im Boden, in Gewässern und im Grundwasser. So werden Pflanzenschutzwirkstoffe und deren Abbauprodukte, relevante wie auch nicht relevante Metaboliten, immer noch häufig im Grundwasser gefunden. Zwischen 2017 und 2021 überschritten noch etwa 3,6 % der Proben im oberflächennahen Grundwasser den jeweiligen gesetzlichen Grenzwert von 0,1 Mikrogramm pro Liter (µg/l) für Wirkstoffe und relevante Metaboliten bei mindestens einem Wirkstoff (letzte vorliegende Daten) (siehe auch hier und Abb. „Häufigkeitsverteilung der Funde von Pflanzenschutzwirkstoffen und ihren relevanten Metaboliten in oberflächennahen Grundwassermessstellen“). Nicht relevante Metaboliten (nrM) wurden in den letzten Jahren zudem immer häufiger im Grundwasser gefunden. Sie haben per Definition eine pestizide (biologische) Aktivität unter 50 % des Wirkstoffs. Dennoch können sie sich aber schädlich auf Ökosysteme auswirken (siehe Nicht relevant? Abbauprodukte von Pflanzenschutzmitteln als Risiko für das Grundwasser und Nicht relevante Metaboliten von Pflanzenschutzmitteln ). Laut LAWA (2024) wurden an 72 % aller Grundwassermessstellen solche Metaboliten nachgewiesen (im vorherigen Berichtszeitraum 2013 bis 2016 war dies an ca. 58 %), teils in Konzentrationen oberhalb der gesundheitliche Orientierungswerte . Vor allem die nrM der Wirkstoffe Metazachlor, S-Metolachlor, Chlorthalonil und Dimethachlor weisen aufgrund ihrer relativ hohen Fundhäufigkeit eine große Bedeutung für das Grundwasser auf. Ebenso wurde der nrM Trifluoressigsäure (TFA) nahezu flächendeckend im Grundwasser in Deutschland nachgewiesen. Viele der bekannten Stoffe werden bisher dennoch nicht standardmäßig bestimmt und es gibt keine gesetzlich festgeschriebenen Grenzwerte. Die Entwicklung gibt Anlass, die Anstrengungen zum Grundwasserschutz fortzuführen. Rückstände von Pflanzenschutzwirkstoffen in oberirdischen Gewässern In Oberflächengewässern wird die Belastung mit Pflanzenschutzmitteln derzeit nur im Gewässermonitoring zur Umsetzung der Wasserrahmenrichtlinie systematisch erhoben. Kleine, unmittelbar an Felder angrenzende Gewässer wurden in Studien im Rahmen des sogenannten Kleingewässermonitorings untersucht. Ergebnisse zeigen, dass die tatsächliche ⁠ Pflanzenschutzmittel ⁠-Belastung häufig um einiges höher ist als in der Zulassung angenommen und als akzeptabel eingeschätzt. Insbesondere nach Regen werden Pflanzenschutzmittel in hohen Konzentrationen in angrenzende Bäche gespült. Dies führt zu kurzzeitigen Belastungsspitzen in den Gewässern, die Auswirkungen auf die Gewässerlebewesen haben . Unter Berücksichtigung dieser Belastungsspitzen wurden an über 60 % der untersuchten Gewässerabschnitte die regulatorisch akzeptablen Konzentrationen (⁠ RAK ⁠) von mindestens einem Pflanzenschutzwirkstoff zwischen April und Juli überschritten, an gut zwei Drittel der Standorte sogar von mehreren Stoffen (siehe Abb. „Rückstände von Pflanzenschutzmitteln in kleinen Gewässern der Agrarlandschaft“). Weitere Informationen zu Pflanzenschutzmitteln und ihrem Zulassungsverfahren sowie Maßnahmen zur Reduzierung des Einsatzes von Pflanzenschutzmitteln in der Landwirtschaft finden Sie im Artikel „Pflanzenschutzmittel“ auf unseren Themenseiten.

Mosel-Apollofalter: Weinbau und Artenschutz zusammenbringen

In aktuellen Genehmigungsverfahren für 16 Fungizide zum Ausbringen per Luftfahrzeug in Weinbausteillagen hat sich das UBA für Auflagen ausgesprochen, um eine vom Aussterben bedrohte Schmetterlingsart zu schützen. Es sind aber bereits viele Mittel ohne Auflagen genehmigt. Wichtig für den Erhalt der Falterart ist die Wiederherstellung seiner Lebensräume. Das soll die Auflagen mittelfristig ablösen. Update vom 12.03.2024: Das Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL) hat am 11.03.2024 in einer Fachmeldung bekannt gegeben, dass es die aktuellen Genehmigungen für die Anwendung von Fungiziden mit Luftfahrzeugen in Weinbausteillagen ohne Anwendungsbestimmungen zum Schutz des vom Aussterben bedrohten Mosel-Apollofalters erteilt hat. Damit wurde eine Entscheidung gegen das hier dargelegte Votum des Umweltbundesamtes getroffen. Aktuell ist das ⁠ UBA ⁠ in 26 Genehmigungsverfahren zur Ausbringung von Pflanzenschutzmitteln mit Luftfahrzeugen in deutschen Weinbausteillagen eingebunden. Eine spezifische Bewertung der Risiken für den weltweit nur noch im Weinbaugebiet des unteren Moseltals vorkommenden Mosel-Apollofalter ergab für 16 der Mittel eine so hohe Toxizität, dass eine Anwendung nur mit einem Sicherheitsabstand von – je nach Mittel – 5 bis 30 Metern zu Vorkommen des Schmetterlings vertretbar ist. Die letztendliche Entscheidung, ob die Mittel für die Anwendung mit Luftfahrzeugen genehmigt werden und ob die vom UBA vorgeschlagenen Auflagen übernommen werden, trifft das Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL). Das UBA kann in Anbetracht der aktuellen Datenlage zum dramatischen Bestandsrückgang des Falters bei der Beurteilung der neuen Anträge nicht mehr auf die Forderung nach Mindestabständen verzichten. Alle bisher genehmigten ⁠ Pflanzenschutzmittel ⁠ zur Anwendung mit Luftfahrzeugen haben solche Auflagen nicht. Denn zum Zeitpunkt der Entscheidung über die Genehmigung dieser Mittel schienen diese nicht nötig zu sein. Die bereits genehmigten Mittel sind also vorerst weiter für die Anwendung an Weinbausteilhängen verfügbar. Wenn für die Ausbringung der Pflanzenschutzmittel Drohnen statt Hubschrauber verwendet werden, verringert sich das Risiko für den Apollofalter. Die genehmigten Drohnentypen können tiefer als Hubschrauber über die Reben fliegen. Dadurch werden die Mittel zielgenauer und mit weniger ⁠ Abdrift ⁠ auf angrenzende Flächen ausgebracht. Die notwendigen Mindestabstände zu angrenzenden Flächen sind deshalb für die Drohne geringer als für den Hubschrauber. Ein vollständiger Umstieg auf Drohnen ist jedoch nicht kurzfristig möglich. Es müssen zum Beispiel erst Genehmigungen eingeholt, Geräteführer angelernt und Landeplätze eingerichtet werden. Der hohe Aufwand erfordert langfristige Planungssicherheit für die Anwender. Der erste Einsatz von Drohnen auf einer kleinen Fläche im Moseltal ist für das Frühjahr 2024 geplant. Die wichtigste Maßnahme für das Überleben des Mosel-Apollofalters ist jedoch die Wiederherstellung seines ursprünglichen Lebensraums in den Flächen, welche an die Rebzeilen angrenzen. Dieser Lebensraum ist seit Beginn des 20. Jahrhunderts um die Hälfte geschrumpft. Solche Flächen können durch entsprechende Pflegemaßnahmen (z.B. Mahd, Beweidung) geschaffen werden. Hier sind regionale Akteure und die zuständigen Behörden des Bundeslandes gefragt. Auf kleinen Flächen wurden solche Schutzmaßnahmen bereits durchgeführt. Sobald wieder ausreichend Raum für den Arterhalt des Mosel-Apollofalters zur Verfügung steht, kann sich die Population erholen und wäre damit widerstandsfähiger gegen die Auswirkungen des Pflanzenschutzes. Dann könnte von den Auflagen zur Einhaltung von Mindestabständen beim Ausbringen von Pflanzenschutzmitteln voraussichtlich abgesehen werden. Auch eine Übertragung der Auflagen auf die schon früher genehmigten Mittel wäre dann nicht nötig. Die Ausbringung von Pflanzenschutzmitteln mit Luftfahrzeugen ist in Deutschland aufgrund der sehr hohen Abdrift in umliegende Flächen grundsätzlich verboten. Für den Anbau in Weinbausteillagen gelten jedoch Ausnahmeregelungen. Fungizide (Pflanzenschutzmittel gegen Pilzkrankheiten) dürfen hier mit Hubschraubern oder Drohnen ausgebracht werden. Im Jahr 2023 wurden die Rebflächen im Moseltal durchschnittlich acht Mal mit Fungiziden aus Luftfahrzeugen behandelt. Werden bei der Risikobeurteilung bestimmte Werte überschritten, kann ein Mittel nicht oder nur mit Auflagen zugelassen werden. Solche Auflagen können beispielsweise Mindestabstände zum Schutz angrenzender Naturräume sein. Die zu behandelnden Rebflächen an Steilhängen sind jedoch sehr schmal und die Übergänge zu den angrenzenden Naturräumen verlaufen nicht geradlinig. Bei Einhaltung der Mindestabstände unter solchen Gegebenheiten kann demnach ein großer Teil der Rebflächen, auf oder neben denen der Apollofalter vorkommt, nicht behandelt werden. Mehrjährige Untersuchungen in Rheinland-Pfalz zeigten in der Vergangenheit, dass, trotz der langjährigen Pflanzenschutzpraxis, die Bestände ausgewählter Tierarten in den Weinhängen stabil waren. Aufgrund dieser Tatsache hat das UBA bisher auf Abstandsauflagen verzichtet. Doch mit dem Bekanntwerden der drastischen Bestandseinbrüche des Apollofalters musste die bisherige Genehmigungspraxis in Frage gestellt werden. Weinbau an der Mosel (Rheinland-Pfalz, Saarland) hat etwas Besonderes. Es ist das weltweit größte Anbaugebiet, in dem Wein in extrem steilen Hanglagen kultiviert wird. Der Einsatz von Traktoren und anderer Technik ist in solchen Steillagen nicht möglich. Pflegearbeiten und Traubenernte sind mühsam und arbeitsaufwendig. Solche Produktionsbedingungen sind oft nicht mehr wirtschaftlich, deshalb wurden viele dieser Weinhänge aufgegeben. Doch gerade diese Hänge, mit ihren nach Süden ausgerichteten Trockenmauern und den freiliegenden Felsen, sind besonders wertvolle Lebensräume für wärmeliebende Tier- und Pflanzenarten. An solchen Steilhängen lebt auch der Mosel-Apollofalter ( Parnassius apollo vinningensis ), eine Unterart des Apollofalters. Der schöne Falter, 2024 zum Schmetterling des Jahres gekürt, ist endemisch. Das heißt, sein Vorkommen im unteren Moseltal ist weltweit das Einzige und Deutschland hat somit eine besondere Verantwortung für den Erhalt dieser Unterart. Deren Vorkommen beschränkt sich auf eine Fläche von ungefähr 400 Hektar. Davon werden 80 Hektar weinbaulich genutzt, das sind etwa ein Prozent der Weinbaufläche an der Mosel. Zum Überleben ist der Falter auf ganz bestimmte Pflanzen angewiesen. An den Felsen und auf den Trockenmauern findet er die wichtigste Futterpflanze für seine Raupen, die Weiße Fetthenne (Sedum album, auch Weißer Mauerpfeffer genannt). Der Falter ist in der europäischen Fauna-Flora-Habitat-Richtlinie (FFH-RL) im Anhang IV gelistet und somit „streng geschützt“. Laut Bundesnaturschutzgesetz § 44 Absatz 4 darf sich der Zustand der in Anhang IV gelisteten Arten durch eine Bewirtschaftung der Flächen nicht verschlechtern. Trotzdem gehen die Bestände des Mosel-Apollofalters stark zurück, an manchen Orten um bis zu 90 Prozent im Zeitraum von 1981 bis 2020. Insbesondere seit 2012 sinken die Bestände fortwährend dramatisch. Der Schmetterling ist auf der Roten Liste Deutschlands als „stark gefährdet” und auf der Roten Liste von Rheinland-Pfalz als „extrem selten“ eingestuft. Der Rückgang des Mosel-Apollofalters hat mehrere Ursachen, welche in ihrer Summe zum baldigen Aussterben dieser Unterart führen könnten. Eine Ursache ist der Verlust der Lebensräume des Falters. Wenn Weinbau in den Steillagen aufgegeben wird und die Flächen nicht durch Pflegemaßnahmen offengehalten werden, verbuschen diese und gehen dadurch als Lebensraum verloren. Als eine weitere Ursache wird der ⁠ Klimawandel ⁠ vermutet. Ist der Herbst zu warm, kann das zu einem früheren Schlupf der Raupen im Frühling führen. Ist der Frühling dann wiederum zu kalt, überleben das viele Raupen nicht. Zusätzlich wird der Apollofalter durch den Einsatz von Pflanzenschutzmitteln gefährdet. Im Weinbau führen insbesondere Pilzkrankheiten, wie zum Beispiel der Falsche Mehltau, zu hohen Ertragsverlusten. Deshalb werden die meisten Behandlungen mit Fungiziden durchgeführt. Einige der Mittel sind giftig für Arthropoden (das sind z.B. Käfer, Schmetterlinge, Spinnen) und damit auch für den Apollofalter. Würde man jedoch auf Fungizide verzichten, wäre der Weinbau aufgrund der geringen Erträge nur noch dann wirtschaftlich, wenn Verbraucher*innen den so angebauten Wein mit einem höheren Preis honorieren würden. Andernfalls wird die Bewirtschaftung der Flächen aufgegeben. Perspektivisch wäre der Umstieg auf neue pilzwiderstandsfähige Sorten (sogenannte PIWIs) eine Alternative. Eine solche Umstellung durch Neuanpflanzungen braucht jedoch Zeit. Der Mosel-Apollofalter profitiert also vom Offenhalten der Flächen durch den Weinbau, und der Weinbau braucht Fungizide, um wirtschaftlich produzieren zu können. Die Ausbringung von Fungiziden gefährdet aber, zusammen mit den anderen genannten Faktoren, die Bestände des streng geschützten Falters. Der Weinbau hat also gleichzeitig positive und negative Auswirkungen auf den Mosel-Apollofalter. Die Wiederherstellung der Lebensräume durch Biotoppflegemaßnahmen würde die Population des Mosel-Apollofalters widerstandfähiger gegen die Auswirkungen der Pflanzenschutzmittel machen. Zusammen mit einem Umstieg auf Drohnen bei der Ausbringung wäre zukünftig eine Verringerung beziehungsweise sogar ein Aussetzen der Mindestabstände möglich. Um gemeinsam tragfähige Lösungen zu erarbeiten, ist ein weiterer Dialog zwischen allen Akteuren, den Behörden von Bund und Ländern sowie den Winzer- und Naturschutzverbänden notwendig. So kann es gelingen, Weinbau und Artenschutz miteinander zu vereinbaren.

Umweltbelastung durch Biozid-Abdrift mindern: Praktische Untersuchung der Abdrift von Geräten zur Biozid-Ausbringung und Erarbeitung von Maßnahmen zur Abdrift-Minderung

Durch Abdrift gelangen Biozide bei bestimmten Anwendungsarten (z.B. Sprühen von Insektiziden) unerwünscht auf Flächen / in Gewässer, die nicht behandelt werden sollen. Die Anwendungstechnik kann einen wesentlichen Beitrag leisten, damit die Auswirkungen auf den Naturhaushalt gemindert werden. In dem Vorhaben sollen Geräte zur Ausbringung von Bioziden hinsichtlich ihres Abdriftpotentials untersucht und mit Hilfe der Ergebnisse Möglichkeiten der Abdriftreduzierung herausgearbeitet werden. Das Vorhaben baut auf einem bereits laufenden Vorhaben auf.

1 2 3 4 58 9 10