<p>Die privaten Haushalte benötigten im Jahr 2023 etwa gleich viel Energie wie im Jahr 1990 und damit gut ein Viertel des gesamten Endenergieverbrauchs in Deutschland. Sie verwendeten mehr als zwei Drittel ihres Endenergieverbrauchs, um Räume zu heizen.</p><p>Endenergieverbrauch der privaten Haushalte</p><p>Private Haushalte verbrauchten im Jahr 2023 632 Terawattstunden (<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>) Energie, das sind 632 Milliarden Kilowattstunden (Mrd. kWh). Dies entsprach einem Anteil von gut einem Viertel am gesamten <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a>. </p><p>Im Zeitraum von 1990 bis 2023 fiel der Endenergieverbrauch in den Haushalten – ohne Kraftstoffverbrauch, da dieser dem Sektor Verkehr zugeordnet ist – um 3,5 % (siehe Abb. „Entwicklung des Endenergieverbrauchs der privaten Haushalte“). Dabei herrschten in den Jahren 1996, 2001 und 2010 sehr kalte Winter, die zu einem erhöhten Brennstoffverbrauch für Raumwärme führten. So lag der Energieverbrauch im sehr kalten Jahr 2010 etwa 12 % über dem Wert des eher warmen Jahres 1990.</p><p>Höchster Anteil am Energieverbrauch zum Heizen</p><p>Die privaten Haushalte benötigen mehr als zwei Drittel ihres Endenergieverbrauchs, um Räume zu heizen (siehe Abb. „Anteile der Anwendungsbereiche am <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> der privaten Haushalte 2008 und 2023“). Sie nutzen zurzeit dafür hauptsächlich Erdgas und Mineralöl. An dritter Stelle folgt die Gruppe der erneuerbaren Energien, an vierter die Fernwärme. Zu geringen Anteilen werden auch Strom und Kohle eingesetzt. Mit großem Abstand zur Raumwärme folgen die Energieverbräuche für die Anwendungsbereiche Warmwasser sowie sonstige <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozesswrme#alphabar">Prozesswärme</a> (Kochen, Waschen etc.) bzw. <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozessklte#alphabar">Prozesskälte</a> (Kühlen, Gefrieren etc.).</p><p>Mehr Haushalte, größere Wohnflächen – Energieverbrauch pro Wohnfläche sinkt</p><p>Der Trend zu mehr Haushalten, größeren Wohnflächen und weniger Mitgliedern pro Haushalt (siehe „<a href="https://www.umweltbundesamt.de/daten/private-haushalte-konsum/strukturdaten-privater-haushalte/bevoelkerungsentwicklung-struktur-privater">Bevölkerungsentwicklung und Struktur privater Haushalte</a>“) führt tendenziell zu einem höheren Verbrauch. Diesem Trend wirken jedoch der immer bessere energetische Standard bei Neubauten und die Sanierung der Altbauten teilweise entgegen. So sank der spezifische <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> (Energieverbrauch pro Wohnfläche) für Raumwärme seit 2008 um 20 % (siehe Abb. „Endenergieverbrauch und -intensität für Raumwärme – Private Haushalte (witterungsbereinigt“)).</p><p>Stromverbrauch mit einem Anteil von rund einem Fünftel</p><p>Der Energieträger Strom hat einen Anteil von rund einem Fünftel am <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> der privaten Haushalte. Hauptanwendungsbereiche sind die <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozesswrme#alphabar">Prozesswärme</a> (Waschen, Kochen etc.) und die <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozessklte#alphabar">Prozesskälte</a> (Kühlen, Gefrieren etc.), die zusammen rund die Hälfte des Stromverbrauchs ausmachen. Mit jeweiligem Abstand folgen die Anwendungsbereiche Informations- und Kommunikationstechnik, Warmwasser und Beleuchtung (siehe Abb. „Anteile der Anwendungsbereiche am Netto-Stromverbrauch der privaten Haushalte 2008 und 2023“).</p><p>Direkte Treibhausgas-Emissionen privater Haushalte sinken</p><p>Der Energieträgermix verschob sich seit 1990 bis heute zugunsten von Brennstoffen mit geringeren Kohlendioxid-Emissionen und erneuerbaren Energien. Das verringerte auch die durch die privaten Haushalte verursachten direkten Kohlendioxid-Emissionen (d.h. ohne Strom und Fernwärme) (siehe Abb. „Direkte Kohlendioxid-Emissionen von Feuerungsanlagen der privaten Haushalte“).</p>
Belasteter Boden wird in der Regel verbrannt oder deponiert. Durch spezielle Bakterien und Hefen koennen die Belastungen zum Teil sehr erheblich abgebaut werden. Im Vordergrund dieses Projektes steht die Analyse der Boeden. Eine Pilotanlage ist in Planung. Der erste Abschnitt der Forschungsarbeit umfasst die Analyse von Boeden auf Mineraloelkohlenwasserstoffen in ihrer Konzentration und Zusammensetzung. Die Sanierung der Bodenproben stellte sich je nach Art der Kohlenwasserstoffe unterschiedlich dar. Der zweite Schritt der Forschungsarbeit umfasst die Analyse von Boeden auf Ruestungs- und Sprengstoffrueckstaende. Erste Erkenntnisse der Sanierungserfolge sind fruehestens Ende 1996 zu erwarten.
Zielsetzung und Anlass des Vorhabens: Sinnvolle Konzepte zur Regenwasserbewirtschaftung trennen die Regenabflüsse von gering und stark verschmutzten Flächen. Abflüsse von stärker verschmutzten Flächen bedürfen einer Behandlung, die den örtlichen Anforderungen an den Gewässerschutz entspricht. Die bestmögliche Reinigung und Zwischenspeicherung stärker verschmutzter Niederschlagsabflüsse ist die wesentliche Aufgabe eines Retentionsbodenfilters. Im Forschungsvorhaben sollte ein semizentraler Bodenfilter entwickelt werden, der mit geringem Flächenbedarf eine bestmögliche Reinigung stark verschmutzter Regenabflüsse von Verkehrsflächen leistet. Darstellung der Arbeitsschritte und der angewandten Methoden: Nach dem bisherigen Forschungsstand kommt bei der Adsorption von Inhaltsstoffen dem Bodensubstrat in den Bodenfilteranlagen eine entscheidende Rolle zu. Die Auswahl und Entwicklung eines geeigneten Substrates erfolgte in einem dreistufigen Vorgehen. Über einer Literaturrecherche wurden Anforderungen an Bodensubstrate zur Regenwasserreinigung formuliert. Daraufhin wurden in Schüttelversuchen verschiedene Substrate ausgewählt und ihre Adsorptionseigenschaften gegenüber Schwermetallen, PAKs und Mineralölen ermittelt. Ausgehend von diesen Vorversuchen wurden verschiedene Bodenfilteraufbauten entwickelt und in halbtechnischen Lysimetern untersucht. Dazu wurden die Lysimeter in einem einjährigen Messprogramm mit stark verunreinigten Straßenabflüssen belastet. Die Gesamtfrachten an Inhaltsstoffen im Zulauf zu den Lysimetern wurden ermittelt. An Einzelereignissen wurde die Reinigungsleistung der verschiedenen Bodenfilteraufbauten ermittelt. Die Lysimeter wurden mit einer hohen hydraulischen und somit auch stofflichen Belastung beaufschlagt, die über den bisher bei der Bemessung von Bodenfilteranlagen üblichen Belastungen lagen. Aus den Messergebnissen wurden Rückschlüsse für den Einsatz von Bodenfiltern mit hoher hydraulischer Belastung bei beengten Platzverhältnissen gezogen und Empfehlungen für die Bemessung gegeben. Über die Messung der aufgebrachten Feststoffbelastung und der Durchlässigkeit der Lysimeter wurde eine eventuell eintretende Kolmation der Bodensubstrate erfasst. Fazit: Die untersuchten halbtechnischen Bodenfilter (Lysimeter) führten im Untersuchungszeitraum zu einer deutlichen Reduzierung der straßenspezifischen Schmutzstoffe geführt. Aussagen über den Langzeitbetrieb können auch mit einem Stofftransportmodell nicht gemacht werden. Insgesamt führen adsorptionsstarke Substrate zu einem höheren Rückhalt gelöster Inhaltsstoffe (Schwermetalle). Die Empfehlung des ATV-DVWK-Merkblatt 153 zum Einsatz der Bodenfilter zur Straßenentwässerung kann nach den bisherigen Untersuchungen bestätigt werden. Weiterer Forschungsbedarf besteht hinsichtlich der Belastbarkeit der eingebauten Substrate gegenüber der Chloridbelastung, die bei der Straßenentwässerung als Regelfall anzusehen ist. ...
Literaturstudium: a) Die effektive Gefaehrdung des Menschen durch die Erzeugung und Nutzung von Energie in Abhaengigkeit von der Energieform (Kohle, Oel, Erdgas, Wasserkraft und Kernenergie); Gesundheitsschaeden und Sterbefaelle. b) Die potentiellen Gefahren (z.B. der Wasserkraft und der Kernenergie).
Verpackungen von Lebensmitteln beispielsweise Tiefkühlprodukten sind längst ein Bestandteil unseres täglichen Lebens geworden. Gerade bei Tiefkühlprodukten begegnen dem Endverbraucher dabei aber immer wieder teils große Kunststoffbestandteile in den Verpackungen. Der stetige wachsende Hunger nach Tiefkühlpizza und generell nach Tiefkühlprodukten sowie sonstigen industriell verarbeiteten Lebensmitteln hat aber auch eine Schattenseite: Zur Verpackung der Tiefkühlpizza werden sogenannte Pizzafolien eingesetzt um die Tiefkühlpizza vor allem zur Vermeidung des direkten Kontakts fettiger Lebensmittel mit Recyclingkarton und somit gegen die Kontaktmigration von Mineralölbestandteilen in die Lebensmittel zu schützen. Zusätzlich wirken diese Folien als Wasserdampfsperre, um die Lebensmittel vor dem Austrocknen oder Aufweichen zu schützen. Dadurch entstehen alleine durch Tiefkühlpizzen in Deutschland mehr als 2.500 t Kunststoffabfälle pro Jahr - Tendenz steigend. Ziel des vorliegenden Projektes ist die Entwicklung eines neuartigen Verfahrens zur Beschichtung von Verpackungskarton-Material aus recyclingfähigen GD2-Kartonagen mit mehreren Schichten sogenannter Barrierelacke zur Verhinderung der Migration von Mineralölen aus Druckfarben in die Lebensmittel hinein. Die neuentwickelte Beschichtung fungiert erstmals gleichzeitig als Wasserdampfsperre. Durch die neuartige Beschichtung werden die Folienverpackungen daher bei gleicher Funktionalität der Verpackung obsolet, womit eine signifikante Reduzierung von Kunststoffabfällen einher gehen wird. Die Entwicklung beinhaltet: 1.) Die Entwicklung anwendungsspezifischer, funktional optimierter Rezepturen für die Barrierelacke. 2.) Die Entwicklung des Verfahrens zum Aufbringen der neuartigen Beschichtung. 3.) Die Entwicklung einer hochautomatisierten Beschichtungsanlage, die kurze Umrüstzeiten sowie den lokalen Einsatz direkt am Produktionsort der Verpackungen ermöglicht.
Fehlerhafte Zertifikate in Höhe von rund 215.000 Tonnen CO₂ gelangen nicht in den Markt Die intensive und komplexe Aufklärungsarbeit des Umweltbundesamtes (UBA) in Sachen „Upstream Emission Reductions“ (UER) zeigt weitere Erfolge: „Bei acht UER-Projekten in China, bei denen bis zum 31. August 2024 über die Freischaltung entschieden werden musste, werden wir aufgrund von uns ermittelter Unregelmäßigkeiten die beantragten Freischaltungen nicht durchführen. Es werden aus diesen Projekten also keine neuen UER-Zertifikate in den Markt gelangen. Das ist eine gute Nachricht“, sagte UBA-Präsident Dirk Messner. Sein weiteres Fazit ist, dass die reine Begutachtung von UER-Projekten aus der Ferne auf Basis von Satellitenbildern oder die Papier-Prüfung der von Projektträgern eingereichten Berichte oftmals nicht ausreiche, um den Missbrauch des UER-Systems aufzudecken und nachzuweisen. Das UBA hat sich daher zusätzlich zu seinen eigenen Ermittlungen durch eine internationale Anwaltskanzlei unterstützen lassen. Diese hat Projekte in China vor Ort im Auftrag des UBA untersucht. Insgesamt gibt es weltweit 75 UER-Projekte, zumeist in China – das UBA wird neben den acht Projekten auch weitere kritische UER-Projekte untersuchen. UER-Projekte sind Maßnahmen zu Minderung von CO 2 -Emissionen bei Kraftstoffen im „Upstream“-Bereich, d.h. vor der Verarbeitung des Rohöls in der Raffinerie. Ein typisches Beispiel ist das Abstellen von so genannten Fackelungen auf Ölbohrtürmen, die üblicherweise Begleitgase bei der Förderung von Erdöl vor Ort verbrennen, da sich der Umbau der Anlage zur Sammlung und Speicherung der Gase nicht rentiert. Bei der Fackelung entstehen jedoch CO 2 -Emissionen, die sich durch erfolgreiche UER-Projekte vermeiden lassen. UER-Projekte sind attraktiv für die Mineralölwirtschaft, die damit eine vergleichsweise kostengünstige Möglichkeit hat, ihre Treibhausgasminderungsquote nach dem Bundesimmissionsschutzgesetz zu erfüllen. Bei sieben der acht Projekte – die von großen, internationalen Unternehmen durchgeführt werden – wurden die Anträge auf Freischaltung von UER-Zertifikaten für 2023 zurückgezogen, nachdem das UBA die Projektträger mit gravierenden rechtlichen und technischen Ungereimtheiten bei ihren Projekten konfrontiert und eine Vor-Ort-Überprüfung angedroht hatte. Das UBA hat so sichergestellt, dass für diese Projekte keine UER-Nachweise für 2023 mehr ausgestellt werden können. Insgesamt hat das UBA auf diese Weise verhindert, dass unberechtigte UER-Zertifikate im Umfang von 159.574 Tonnen CO 2 -Äquivalente in den Markt gelangt sind. Bei einem weiteren Projekt in China hat das UBA die Ausstellung von UER-Zertifikaten untersagt, weil das Projekt, wie umfassende Satellitenbild- und vertiefte technische Analysen durch UBA-Experten ergaben, vorzeitig begonnen wurde. Ein solcher vorzeitiger Beginn ist nach der Verordnung zur Anrechnung von Upstream-Emissionsminderungen auf die Treibhausgasquote (UERV) nicht zulässig. Hier hat das UBA durch die Versagung der Freischaltung verhindert, dass allein aus diesem Projekt unberechtigte UER-Zertifikate im Umfang von 55.225 Tonnen CO 2 -Äquivalenten in den Markt gelangten. Den nächsten Aufklärungsschwerpunkt setzt das UBA zusätzlich zu den acht Projekten mit Freischaltungsanträgen für das Jahr 2023 auf weitere 13 Projekte. In allen diesen 21 Projekten wurden die Projektträger um Autorisierung von Kontrollbesuchen vor Ort gebeten. In nur fünf dieser 21 Projekte hat das UBA diese Autorisierungen uneingeschränkt bekommen; zwei der Besuche fanden schon statt, drei weitere stehen aus. „Für uns ist die Verweigerung der Vor-Ort-Kontrollen ein sehr starkes Indiz, dass die Projektträger nicht bereit sind, ihre Verpflichtungen unter der UERV zu erfüllen, oder – wie in der UERV gefordert – die erforderliche Kontrolle über die Projekte haben. Wir nehmen das unter anderem zum Anlass, die Aufhebung unserer Zustimmung zu diesen Projekten zu prüfen. Und wir werden sicherstellen, dass nur noch rechtmäßige UER-Zertifikate neuer Projekte in den Markt kommen“, so UBA-Präsident Dirk Messner. Neben den acht nun nicht freigeschalteten Projekten wird das UBA weitere kritische UER-Projekte weltweit überprüfen, bis alle Vorwürfe ausgeräumt sind. „In den nächsten Wochen und Monaten wird das UBA seine Aufklärungstätigkeit, auf der Grundlage der jetzt vorliegenden Erkenntnisse aus China, mit Hochdruck fortsetzen. Dafür setze ich mich persönlich mit einem ganz erheblichen Teil meiner Arbeitszeit ein“, sagte Messner. Die vielen Kolleginnen und Kollegen im UBA, die intensiv mit der Aufklärung des UER-Komplexes befasst sind, werden dabei von einer internationalen Rechtsanwaltskanzlei mit deren Partnerkanzlei in China unterstützt. Die Kanzlei fungiert als „Augen und Ohren“ des UBA vor Ort. Parallel ermittelt – laut Pressemitteilung – die Staatsanwaltschaft Berlin gegen 17 Personen wegen des Verdachts des gemeinschaftlichen gewerbsmäßigen Betruges. Bei den Beschuldigten handelt es sich um die Geschäftsführer bzw. Mitarbeitende von Prüfstellen, die an der Verifizierung UER-Projekten beteiligt gewesen sein sollen. Gegen die Beschuldigten bestehe der Anfangsverdacht, die zuständigen Mitarbeitenden des UBA hinsichtlich der Existenz und/oder jedenfalls der Antragsberechtigung verschiedener Klimaschutzprojekte getäuscht zu haben, weshalb zwischenzeitig gewährte Sicherheiten der Projektträger nicht zugunsten der Staatskasse vereinnahmt werden konnten.
Cadmium verdient unter den Schwermetallen besondere Beachtung, da seine Toxizität für Tiere und Menschen erheblich größer als die anderer Schwermetalle ist. Als Akkumulationsgift wird es im Körper angereichert und kann dort über Jahrzehnte verbleiben. Auf Grund seiner chemischen Verwandtschaft zum Zink kommt es fast ausschließlich mit diesem vor, insbesondere in allen zinkführenden Mineralen (u. a. Zinkblende, Galmei) und Gesteinen. Die durchschnittliche Cd-Konzentration der Gesteine der oberen kontinentalen Erdkruste (Clarkewert) beträgt 0,1 mg/kg, in Böden finden sich Gehalte in der Regel 0,50 mg/kg. Im Gegensatz zu As und anderen Schwermetallen (z. B. Cr, Ni) ist in den oberflächennah anstehenden sächsischen Hauptgesteinstypen keine geochemische Spezialisierung auf Cd nachweisbar. Die petrogeochemische Komponente liegt im Bereich des Clarkwertes um 0,1 mg/kg. In den Erzlagerstätten ist Cd vor allem an die Zinkerze der polymetallischen hydrothermalen Gänge und teilweise an die Skarnlagerstätten und stratigen-stratiformen Ausbildungen gebunden (chalkogene Komponente). Seit Beginn der Industrialisierung gelangt Cadmium über die Emissionen der Buntmetallhütten, die Verbrennung von Kohlen und Erdöl und in jüngerer Zeit über Galvanotechnik, Müllverbrennung, Düngemittel, Klärschlämme und Komposte anthropogen in die Umwelt. Während in den Oberböden Nord- und Mittelsachsens niedrige Gehalte dominieren (Cd-arme periglaziäre sandige bis lehmige Substrate; Löss), kommt es in den Verwitterungsböden über Festgesteinen zu einer relativen Anreicherung. Eine Abhängigkeit vom Tongehalt ist insofern festzustellen, dass die sandigen Substrate gegenüber lehmigen Substraten etwas niedrigere Cd-Gehalte aufweisen. Auf Acker- und Grünlandstandorten sind im Vergleich zu den Waldstandorten im Oberboden höhere Cd-Gehalte anzutreffen, da infolge der sehr niedrigen pH-Werte unter Forst eine Cd-Mobilisierung und Verlagerung in größere Bodentiefen stattfindet. Besonders hohe Cd-Belastungen befinden sich im Freiberger Raum, die durch die geogene Cd-Anreicherung bei der Bildung buntmetallführender Erzgänge aber vor allem anthropogen durch die Verhüttung von Zinkerzen verursacht werden. Die höchsten Gehalte sind in den Oberböden in unmittelbarer Nähe der Hüttenstandorte sowie in geringeren Konzentrationen östlich davon (in Hauptwindrichtung) festzustellen. Andere Lagerstättengebiete mit Zinkverzungen im Westerzgebirge und in der Erzgebirgsnordrandzone weisen nur schwach erhöhte Gehalte auf. Eine besondere Stellung bei der Belastung mit Cadmium nehmen die Auenböden der Freiberger und der Vereinigten Mulde ein. Durch die Abtragung von Böden mit geogen verursachten Anreicherungen im Einzugsgebiet und den enormen anthropogenen Zusatzbelastungen durch die Erzaufbereitung und die Hüttenindustrie, kommt es bei Ablagerung der Flusssedimente und Schwebanteile in den Überflutungsbereichen zu hohen Cd-Anreicherungen. In den Auenböden der Elbe und Zwickauer Mulde treten dagegen deutlich niedrigere Gehalte auf. Die geogenen und anthropogenen Prozesse führen im Freiberger Raum und in den Auenböden der Freiberger und Vereinigten Mulde zu flächenhaften Überschreitungen der Prüf- und Maßnahmenwerte der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) für Cadmium.
<p>Die wichtigsten Fakten</p><p><ul><li>Die deutschen <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>-Emissionen sind laut <a href="https://www.umweltbundesamt.de/presse/pressemitteilungen/klimaemissionen-sinken-2023-um-101-prozent">einer ersten Berechnung</a> zwischen 1990 und 2024 um 48,2 % gesunken.</li><li>Deutschlands Treibhausgas-Emissionen sollen bis 2030 um mindestens 65 % gegenüber den Emissionen von 1990 sinken. Bis 2045 soll die vollständige Treibhausgasneutralität erreicht werden.</li><li>Mit dem im Jahr 2024 geänderten Bundes-Klimaschutzgesetz werden die sektoralen zulässigen Jahresemissionsmengen durch eine sektorübergreifende Jahresemissionsgesamtmenge ersetzt. 2024 lagen Emissionen mit 649 Mio. Tonnen CO2- Äquivalenten unterhalb der nach dem Bundes-Klimaschutzgesetz festgelegten Jahresemissionsgesamtmenge von 693,4 Mio. Tonnen CO2- Äquivalenten.</li></ul></p><p>Welche Bedeutung hat der Indikator?</p><p>Treibhausgase werden überwiegend durch die Nutzung fossiler Energieträger wie Kohle oder Erdöl freigesetzt. Sie entstehen aber auch bei industriellen Prozessen oder durch Tierhaltung in der Landwirtschaft. Wenn der Gehalt von Treibhausgasen in der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> ansteigt, führt dies zur Erwärmung der Erdatmosphäre und somit zum <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a>. Die globale Erwärmung hat vielfältige negative Auswirkungen, wie zum Beispiel den Anstieg des Meeresspiegels und die Zunahme der Risiken von Überschwemmungen, Dürreperioden oder anderen extremen Wetterereignissen.</p><p>Die internationale Staatengemeinschaft hat sich deshalb im Jahr 2015 auf dem Klimagipfel in Paris darauf geeinigt, dass der globale Anstieg der Temperatur die Schwelle von 1,5 Grad nach Möglichkeit nicht überschreiten soll. Der Anstieg soll auf <strong>deutlich unter</strong> 2 Grad begrenzt werden. Dies kann nur gelingen, wenn der weltweite Ausstoß von Treibhausgasen schnell und drastisch reduziert wird.</p><p>Wie ist die Entwicklung zu bewerten?</p><p>Der Ausstoß (<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Emission#alphabar">Emission</a>) von Treibhausgasen geht in Deutschland seit 1990 zurück: von 1.252 Millionen Tonnen (Mio. t) Kohlendioxid-Äquivalenten im Jahr 1990 auf 649 Mio. t im Jahr 2024. Insgesamt entspricht dies einem Rückgang von über 48 %. Trotz deutlicher Sondereffekte in einzelnen Jahren folgt der <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> einem langfristigen Abwärtstrend. Nach einer Phase der Stagnation sind die Emissionen in den Jahren 2018 bis 2024 deutlich gesunken, vor allem durch den steigenden Anteil erneuerbarer Energien und Rückgange bei der fossilen Energieerzeugung. 2024 sanken die Emissionen gegenüber dem Vorjahr deutlich um 23 Mio. t <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Kohlendioxid-quivalente#alphabar">Kohlendioxid-Äquivalente</a> bzw. um 3,4 % (vgl. <a href="https://www.umweltbundesamt.de/presse/pressemitteilungen/klimaziele-bis-2030-erreichbar">UBA-Pressemeldung 11/2025</a>).</p><p>Ende 2015 wurde mit dem Übereinkommen von Paris ein Nachfolge-Abkommen für das Kyoto-Protokoll vereinbart. Die bisherige Entwicklung macht deutlich, dass intensive Anstrengungen beim <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimaschutz#alphabar">Klimaschutz</a> notwendig sind, um die Ziele zu erreichen. Die Bundesregierung hat dazu beginnend mit dem <a href="https://www.bmuv.de/fileadmin/Daten_BMU/Download_PDF/Aktionsprogramm_Klimaschutz/aktionsprogramm_klimaschutz_2020_broschuere_bf.pdf">Aktionsprogramm Klimaschutz 2020</a> sowie dem <a href="https://www.bundesregierung.de/breg-de/themen/klimaschutz/massnahmenprogramm-klima-1679498">Klimaschutzprogramm 2030</a> und dem <a href="https://www.bundesregierung.de/breg-de/suche/klimaschutzprogramm-2023-2226992">Klimaschutzprogramm 2023 </a>Maßnahmen eingeleitet. Mit dem <a href="https://www.gesetze-im-internet.de/ksg/index.html">Bundes-Klimaschutzgesetz</a> wurden verbindliche Jahresemissionsgesamtmengen beschlossen, um das <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>-Minderungsziel von „mindestens 65 %“ bis zum Jahr 2030 und die Treibhausgasneutralität in 2045 sicherzustellen.</p><p>Wie wird der Indikator berechnet?</p><p>Der <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> basiert auf den Daten des <a href="https://unfccc.int/ghg-inventories-annex-i-parties/2025">Nationalen Treibhausgasinventars</a> der Jahre 1990 bis 2023 (Stand EU-Berichterstattung, Januar 2025) sowie separat errechnete Emissionsdaten für das Jahr 2024 (vgl. <a href="https://www.umweltbundesamt.de/presse/pressemitteilungen/klimaziele-bis-2030-erreichbar">UBA-Pressemeldung 10/2025</a>). Die Methodik zur Berechnung wird im jeweils aktuellen <a href="https://www.umweltbundesamt.de/publikationen/berichterstattung-unter-der-klimarahmenkonvention-9">Inventarbericht</a> beschrieben. Dabei werden die Emissionen aller im Kyoto-Protokoll geregelten Treibhausgase (zum Beispiel Kohlendioxid, Methan) normiert zusammengefasst. Da die verschiedenen Gase das <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a> unterschiedlich beeinflussen, wird ihr Effekt auf die Wirkung von Kohlendioxid normiert (<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Kohlendioxid-quivalente#alphabar">Kohlendioxid-Äquivalente</a>).</p><p><strong>Ausführliche Informationen zum Thema finden Sie in im Daten-Artikel <a href="https://www.umweltbundesamt.de/daten/klima/treibhausgas-emissionen-in-deutschland">"Treibhausgas-Emissionen in Deutschland"</a>.<br></strong></p>
<p>Der Endenergieverbrauch in Deutschland ist seit Beginn der 1990er Jahre bis zum Jahr 2019 kaum gesunken. Im langjährigen Trend war nur der Wärmeverbrauch rückläufig, während der Verbrauch von Kraftstoff und Strom nahezu konstant blieben. Seit 2020 ist der Endenergieverbrauch auf Grund der „Coronakrise“ als auch in Folge des Krieges gegen die Ukraine rückläufig.</p><p>Allgemeine Entwicklung und Einflussfaktoren</p><p>Der <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> (EEV) in Deutschland ist seit Beginn der 1990er Jahre nur in geringem Umfang gesunken (siehe Abb. „Endenergieverbrauch nach Sektoren“). Energie wird zwar immer effizienter genutzt und teilweise eingespart, doch Wirtschaftswachstum und Konsumsteigerungen verhindern einen deutlicheren Rückgang des absoluten Endenergieverbrauchs (siehe auch Artikel <a href="https://www.umweltbundesamt.de/daten/energie/energieproduktivitaet">"Energieproduktivität"</a>). Im kurzfristigen Zeitraum eines Jahres betrachtet hat die <a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Witterung#alphabar">Witterung</a>, die sich auf den Bedarf an Wärmeenergie auswirkt, großen Einfluss auf die Verbrauchsentwicklung. Auch die Corona-Pandemie verursachte im Jahr 2020 einen Sondereffekt, der Endenergieverbrauch sank auf den bis dato niedrigsten Wert seit 1990. Zwar stieg der Verbrauch in 2021 in Folge der wirtschaftlichen Erholung nach der Pandemie wieder an. Doch seit dem russischen Angriffskrieg auf die Ukraine reduzierte sich der EEV zwei Jahre hintereinander. Somit lag der Verbrauch des Jahres 2023 auf einem historischen Tiefstand seit der Wiedervereinigung.</p><p>Der Gesetzgeber hat im Herbst 2023 das „Energieeffizienzgesetz“ (EnEfG) beschlossen. Dieses sieht vor, dass der Endenergieverbrauch gegenüber dem Wert des Jahres 2008 bis 2030 um etwa 26,5 % sinken soll (1.867 <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>) und bis 2045 um 45 % (1.400 TWh). Dabei legt das EnEfG für die Ziele eine von der in der deutschen Energiestatistik verwendeten Definition der AG Energiebilanzen leicht abweichende Definition zugrunde. Diese Abweichungen betreffen insbesondere die Umweltwärme und oberflächennahe Geothermie, die bei der Berechnung des Indikators nicht einbezogen werden. Damit wird eine Konvention der europäischen Energieeffizienz-Richtlinie übernommen. Der so ermittelte EEV (also ohne Umweltwärme und Geothermie) lag 2022 etwa 1 % unter dem von der AG Energiebilanzen ermittelten Wert. Durch den Ausbau der Wärmepumpentechnik wird der aus Umweltwärme bereitgestellte EEV künftig voraussichtlich wachsen.</p><p>Entwicklung des Endenergieverbrauchs nach Sektoren und Energieträgern</p><p>Im Sektor <strong>Industrie</strong> ist der <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> (EEV) abgesehen von Jahren mit Konjunktureinbrüchen (2009, 2020 sowie 2022/23) in den letzten drei Jahrzehnten nahezu konstant geblieben. Fortschritte bei der Energieeffizienz wurden durch das Wirtschaftswachstum kompensiert (siehe Abb. „Endenergieverbrauch nach Energieträgern“). Etwa zwei Drittel des Endenergieverbrauchs werden in der Industrie für <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozesswrme#alphabar">Prozesswärme</a> benötigt. <a href="https://www.umweltbundesamt.de/service/glossar/m?tag=Mechanische_Energie#alphabar">Mechanische Energie</a> zum Beispiel zum Betrieb von Motoren oder Maschinen sorgt für circa ein Viertel des Verbrauchs, Raumwärme hat nur einen kleinen Anteil (siehe auch Artikel „<a href="https://www.umweltbundesamt.de/daten/energie/energieverbrauch-fuer-fossile-erneuerbare-waerme">Energieverbrauch für fossile und erneuerbare Wärme</a>“).</p><p>Der Kraftstoffverbrauch im <strong>Verkehrssektor</strong> war lange weitgehend unverändert, stieg dann in den Jahren bis 2018 aber auf einen neuen Höchstwert. Im Zuge der Verkehrseinschränkungen durch die Corona-Krise im Jahr 2020 fiel der Verbrauch auf den niedrigsten Wert seit 1990. Auch im Jahr 2021 lag der Energieverbrauch noch auf einem verhältnismäßig niedrigen Niveau, bevor er im Jahr 2022 wieder leicht anstieg. 2023 reduzierte sich der EEV des Sektors erneut leicht aufgrund des geringeren Energiebedarfs im Straßenverkehr – der Energieverbrauch der Luftfahrt stieg dagegen innerhalb von zwölf Monaten leicht an. Insgesamt liegt der EEV des gesamten Verkehrssektors noch deutlich unter dem Niveau vor der Corona-Pandemie (siehe Abb. „Endenergieverbrauch nach Energieträgern und Sektoren im Jahr 2023“).</p><p>Im Verkehrssektor werden zu über 90 % Kraftstoffe aus Mineralöl eingesetzt, Biokraftstoffe und Strom spielen bislang nur eine geringfügige Rolle. Fast die gesamte im Verkehr eingesetzte Energie wird zur Erzeugung von mechanischer Energie verwendet, wovon bei Verbrennungsmotoren durchschnittlich jedoch nur weniger als die Hälfte für den Antrieb umgewandelt wird. Ein großer Anteil geht als Abwärme verloren. Der Anteil des Stroms am Endenergieverbrauch im Verkehr beträgt etwas mehr als 2 %, stieg in den letzten Jahren jedoch.</p><p>Der Endenergieverbrauch der <strong>privaten Haushalte</strong> wird zu etwa 70 % von dem Energieverbrauch für Raumwärme bestimmt. Zwar wurden viele Wohngebäude in den letzten Jahrzehnten gedämmt, gleichzeitig hat die zu beheizende Wohnfläche zugenommen. Da die hier dargestellten Daten nicht temperaturbereinigt sind, wird der Energieverbrauch der Haushalte eines Jahres sehr von der <a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Witterung#alphabar">Witterung</a> des jeweiligen Jahres beeinflusst, insbesondere von den Temperaturen in den Wintermonaten. Dadurch schwankt der EEV der privaten Haushalte deutlich. Langfristig sinkt der EEV der Haushalte zwar, seit 2014 zeigt der <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> jedoch wieder einen Aufwärts-Trend.</p><p>Erdgas und Heizöl weisen beim EEV der Haushalte die höchsten Anteile auf, auch erneuerbare Wärme wird verstärkt in diesem Sektor eingesetzt. Zunehmende Bedeutung kommt auch der Fernwärme aus fossilen und erneuerbaren Energieträgern zu (siehe auch Artikel <a href="https://www.umweltbundesamt.de/daten/private-haushalte-konsum/wohnen/energieverbrauch-privater-haushalte">"Energieverbrauch der privaten Haushalte"</a>).</p><p>Der Endenergieverbrauch des Sektors <strong>Gewerbe, Handel und Dienstleistungen</strong> (GHD) ist in den letzten Jahrzehnten ebenfalls deutlich zurück gegangen: Er lag 2023 etwa 25 % niedriger als im Jahr 2008. Der Energieverbrauch des Sektors ist dabei stark von der Witterung abhängig. Raumwärme macht hier immerhin fast die Hälfte des Endenergieverbrauchs aus. Da im GHD-Sektor viele Gebäude in den letzten Jahrzehnten energetisch ertüchtigt und gedämmt wurden, ist aber der absolute Bedarf an Raumwärme deutlich zurückgegangen. Gleichzeitig ist im GHD-Sektor der relative Stromanteil von allen Endenergiesektoren am höchsten, was auf den Stromeinsatz für mechanische Energie, Informations- und Kommunikationstechnik sowie Beleuchtung zurückzuführen ist. Die Umstellung auf sparsame LED-Beleuchtung hat aber in den letzten Jahren zu Energieeinsparungen geführt.</p><p>Anteil erneuerbarer Energien am gesamten Bruttoendenergieverbrauch</p><p>Ein immer größerer Anteil des Bruttoendenergieverbrauchs wird in Deutschland durch erneuerbare Energien gedeckt. Anders als der <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> umfasst der <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Bruttoendenergieverbrauch#alphabar">Bruttoendenergieverbrauch</a> (BEEV) neben dem Endenergieverbrauch der Letztverbraucher (private Haushalte, GHD, Industrie und Verkehr) auch die Eigenverbräuche der Erzeugungsanlagen und die Leitungsverluste.</p><p>In seinem „Nationalen Energie- und Klimaplan“ (NECP) hat sich Deutschland verpflichtet, den Anteil der Erneuerbaren am BEEV bis zum Jahr 2030 auf 41 % zu steigern. Die NECPs der EU-Mitgliedsstaaten beschreiben die unterschiedlichen nationalen Beiträge zur Erreichung der europäischen Erneuerbaren- und Klimaziele. Um das deutsche Ziel zu erreichen, wird in den nächsten Jahren eine deutliche Beschleunigung des Ausbaus der erneuerbaren Energien sowie der Elektrifizierung der Wärmeversorgung (durch Wärmepumpen) und der E-Mobilität nötig werden.</p><p>Bei den Werten des Anteils der erneuerbaren Energien ist zu berücksichtigen, dass bei der Berechnung des erneuerbaren Anteils gemäß der EU-Richtlinie 2018/2001 verschiedene spezielle Rechenregeln angewandt werden müssen. Beispielsweise wird über eine „Normalisierung“ der Einfluss ungewöhnlich guter oder schlechter <a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Witterung#alphabar">Witterung</a> korrigiert.</p>
| Origin | Count |
|---|---|
| Bund | 2189 |
| Land | 629 |
| Wissenschaft | 19 |
| Zivilgesellschaft | 9 |
| Type | Count |
|---|---|
| Chemische Verbindung | 1171 |
| Daten und Messstellen | 500 |
| Ereignis | 58 |
| Förderprogramm | 636 |
| Gesetzestext | 1080 |
| Kartendienst | 1 |
| Lehrmaterial | 1 |
| Taxon | 10 |
| Text | 318 |
| Umweltprüfung | 33 |
| unbekannt | 92 |
| License | Count |
|---|---|
| geschlossen | 1419 |
| offen | 751 |
| unbekannt | 642 |
| Language | Count |
|---|---|
| Deutsch | 2721 |
| Englisch | 618 |
| Resource type | Count |
|---|---|
| Archiv | 160 |
| Bild | 7 |
| Datei | 496 |
| Dokument | 278 |
| Keine | 1959 |
| Unbekannt | 11 |
| Webdienst | 35 |
| Webseite | 341 |
| Topic | Count |
|---|---|
| Boden | 2812 |
| Lebewesen und Lebensräume | 1375 |
| Luft | 1252 |
| Mensch und Umwelt | 2812 |
| Wasser | 1241 |
| Weitere | 2040 |