<p>Die privaten Haushalte benötigten im Jahr 2023 etwa gleich viel Energie wie im Jahr 1990 und damit gut ein Viertel des gesamten Endenergieverbrauchs in Deutschland. Sie verwendeten mehr als zwei Drittel ihres Endenergieverbrauchs, um Räume zu heizen.</p><p>Endenergieverbrauch der privaten Haushalte</p><p>Private Haushalte verbrauchten im Jahr 2023 632 Terawattstunden (<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>) Energie, das sind 632 Milliarden Kilowattstunden (Mrd. kWh). Dies entsprach einem Anteil von gut einem Viertel am gesamten <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a>. </p><p>Im Zeitraum von 1990 bis 2023 fiel der Endenergieverbrauch in den Haushalten – ohne Kraftstoffverbrauch, da dieser dem Sektor Verkehr zugeordnet ist – um 3,5 % (siehe Abb. „Entwicklung des Endenergieverbrauchs der privaten Haushalte“). Dabei herrschten in den Jahren 1996, 2001 und 2010 sehr kalte Winter, die zu einem erhöhten Brennstoffverbrauch für Raumwärme führten. So lag der Energieverbrauch im sehr kalten Jahr 2010 etwa 12 % über dem Wert des eher warmen Jahres 1990.</p><p>Höchster Anteil am Energieverbrauch zum Heizen</p><p>Die privaten Haushalte benötigen mehr als zwei Drittel ihres Endenergieverbrauchs, um Räume zu heizen (siehe Abb. „Anteile der Anwendungsbereiche am <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> der privaten Haushalte 2008 und 2023“). Sie nutzen zurzeit dafür hauptsächlich Erdgas und Mineralöl. An dritter Stelle folgt die Gruppe der erneuerbaren Energien, an vierter die Fernwärme. Zu geringen Anteilen werden auch Strom und Kohle eingesetzt. Mit großem Abstand zur Raumwärme folgen die Energieverbräuche für die Anwendungsbereiche Warmwasser sowie sonstige <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozesswrme#alphabar">Prozesswärme</a> (Kochen, Waschen etc.) bzw. <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozessklte#alphabar">Prozesskälte</a> (Kühlen, Gefrieren etc.).</p><p>Mehr Haushalte, größere Wohnflächen – Energieverbrauch pro Wohnfläche sinkt</p><p>Der Trend zu mehr Haushalten, größeren Wohnflächen und weniger Mitgliedern pro Haushalt (siehe „<a href="https://www.umweltbundesamt.de/daten/private-haushalte-konsum/strukturdaten-privater-haushalte/bevoelkerungsentwicklung-struktur-privater">Bevölkerungsentwicklung und Struktur privater Haushalte</a>“) führt tendenziell zu einem höheren Verbrauch. Diesem Trend wirken jedoch der immer bessere energetische Standard bei Neubauten und die Sanierung der Altbauten teilweise entgegen. So sank der spezifische <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> (Energieverbrauch pro Wohnfläche) für Raumwärme seit 2008 um 20 % (siehe Abb. „Endenergieverbrauch und -intensität für Raumwärme – Private Haushalte (witterungsbereinigt“)).</p><p>Stromverbrauch mit einem Anteil von rund einem Fünftel</p><p>Der Energieträger Strom hat einen Anteil von rund einem Fünftel am <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> der privaten Haushalte. Hauptanwendungsbereiche sind die <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozesswrme#alphabar">Prozesswärme</a> (Waschen, Kochen etc.) und die <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozessklte#alphabar">Prozesskälte</a> (Kühlen, Gefrieren etc.), die zusammen rund die Hälfte des Stromverbrauchs ausmachen. Mit jeweiligem Abstand folgen die Anwendungsbereiche Informations- und Kommunikationstechnik, Warmwasser und Beleuchtung (siehe Abb. „Anteile der Anwendungsbereiche am Netto-Stromverbrauch der privaten Haushalte 2008 und 2023“).</p><p>Direkte Treibhausgas-Emissionen privater Haushalte sinken</p><p>Der Energieträgermix verschob sich seit 1990 bis heute zugunsten von Brennstoffen mit geringeren Kohlendioxid-Emissionen und erneuerbaren Energien. Das verringerte auch die durch die privaten Haushalte verursachten direkten Kohlendioxid-Emissionen (d.h. ohne Strom und Fernwärme) (siehe Abb. „Direkte Kohlendioxid-Emissionen von Feuerungsanlagen der privaten Haushalte“).</p>
Seismische Stationen in Niedersachsen Seismische Stationen in Niedersachsen werden von verschiedenen Institutionen und zu unterschiedlichen Zwecken betrieben. Dazu gehören Stationen zur dauerhaften und unabhängigen Überwachung durch staatliche Erdbebendienste und Forschungsinstitutionen, Stationen zur Überwachung von Bergbauaktivitäten durch Industrieunternehmen und zeitweilig installierte Stationen zum Beispiel im Rahmen von Forschungsprojekten. Der Niedersächsische Erdbebendienst (NED) im LBEG betreibt seismische Stationen im Rahmen der folgenden Messnetze und Aufgaben. Stationen dieser Messnetze werden auf dem Kartenserver dargestellt: 1) Landesmessnetz Niedersachsen (LBEG): Unabhängige Erdbebenüberwachung in Niedersachsen Das Landesmessnetz Niedersachsen dient der systematischen Registrierung von natürlichen und anthropogen verursachten, induzierten Erdbeben in Niedersachsen. Es befindet sich zurzeit im Aufbau. Vorbereitet sind sechs Stationen, die vor allem in Gebieten Niedersachsens installiert werden, in denen bislang noch keine seismischen Stationen betrieben worden sind. Hochempfindliche Seismometer und Standorte an seismisch ruhigen Standorten sollen die flächendeckende Registrierung von Erdbeben auch deutlich unterhalb der Spürbarkeit des Menschen ermöglichen. 2) Kooperationsnetz Niedersachsen (LBEG, BGR): Unabhängige Erdbebenüberwachung im Gebiet der Erdgasförderregionen In den Erdgasförderregionen im zentralen Niedersachsen betreibt das LBEG ein Messnetz aus hochempfindlichen Seismometern in Kooperation mit der Bundesanstalt für Geowissenschaften und Rohstoffe (BGR). Es befindet sich zurzeit in der technischen Überarbeitung und Erweiterung. Vorbereitet werden sechs Stationen für das Gebiet zwischen Cloppenburg und Munster bzw. Nienburg (Weser) und Rotenburg (Wümme). Induzierte Erdbeben im Zusammenhang mit Erdgasförderung können durch dieses Messnetz noch besser bewertet werden. Zum Beispiel werden Lokalisierungen mit geringen Unsicherheiten von +/-2 km angestrebt, so dass schwache Erdbeben besser ausgewertet werden können. Weitere seismische Messnetze in Niedersachsen ohne Beteiligung des LBEG werden im Folgenden kurz beschrieben. Für detaillierte Informationen verweisen wir auf die Internetseiten der jeweiligen Betreiber. Stationen dieser Messnetze werden auf dem Kartenserver nicht dargestellt: 3) German Regional Seismic Network (GRSN) (Kooperation seismologischer Institute): Erdbebenüberwachung und Forschungsaufgaben Das Deutsche Seismologische Regionalnetz (German Regional Seismic Network, GRSN) wurde in den Neunzigerjahren aufgebaut mit dem Ziel, deutschlandweit hochwertige und einheitliche seismologische Daten zu erheben. Es wird durch die Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) koordiniert und in Zusammenarbeit mit deutschen Hochschul- und Forschungseinrichtungen sowie Landeserdbebendiensten betrieben. Seit seiner Errichtung wird es kontinuierlich ausgebaut. Neben den Stationsnetzen der Landeserdbebendienste liefert es einen wichtigen Beitrag zur Erdbebenüberwachung in Deutschland, in Europa und weltweit. Darüber hinaus liefert es wichtige Daten für Forschungsprojekte. Einige Stationen des GRSN befinden sich in Niedersachsen. Die Standorte der Messstationen sind zum Beispiel einsehbar unter https://www.bgr.bund.de. Eine Liste der wichtigsten Metadaten finden Sie in Textform unter https://eida.bgr.de/fdsnws/station/1/query?format=text&level=station&network=GR. Für weitere Informationen steht Ihnen die BGR als zentrale Ansprechpartnerin zur Verfügung. 4) Stationen der BGR für spezifische Beratungsaufgaben Im Rahmen ihrer spezifischen Beratungs- und Forschungsaufgaben betreibt die Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) seismische Stationen, von denen einige in Niedersachsen installiert sind. Die Standorte der Messstationen der BGR sind einsehbar unter https://www.bgr.bund.de. Eine Liste der wichtigsten Metadaten finden Sie in Textform unter https://eida.bgr.de/fdsnws/station/1/query?format=text&level=station&network=GR. Für weitere Informationen kontaktieren Sie bitte die BGR. 5) Messnetze SON und DEN des Bergschadenskundlichen Beweissicherungssystems (BBS), (BVEG) Zur Überwachung seismischer Ereignisse im Umfeld der Erdgasfördergebiete wird durch den Bundesverband Erdgas, Erdöl und Geoenergie e. V. (BVEG) ein seismisches Messnetz, das Bergschadenskundliche Beweissicherungssystem (BBS), betrieben. Die Überwachung dient zum einen der Bewertung der Auswirkungen von Erschütterungen auf Gebäude. Hierzu werden Erschütterungsmessstationen zur Bewertung entsprechend DIN 4150 betrieben (Messnetz DEN). Diese Stationen sind zumeist in öffentlichen Gebäuden in Ortszentren installiert. Zum anderen wird die Überwachung für weitergehende seismologische Auswertungen genutzt. Hierzu werden Bohrloch- und Oberflächenstationen an seismisch ruhigen Orten betrieben (Messnetz SON). Die Daten des BVEG werden dem NED für die Erdbebenüberwachung im Gebiet der Erdgasförderregionen zur Verfügung gestellt. Die Standorte der Messstationen des Bundesverbandes Erdöl, Erdgas und Geoenergie e.V. (BVEG). sind einsehbar unter http://www.bveg-maps.de/. Für weitere Informationen kontaktieren Sie bitte den BVEG. 6) Temporäre Forschungsprojekte (verschiedene Betreiber) In Forschungsprojekten werden seismologische Detailfragen untersucht. Projekte werden von Universitäten und anderen Forschungsinstituten durchgeführt, öffentlich gefördert, in Zusammenarbeit mit oder im Auftrag von Bergbauunternehmen. Stationen im Rahmen von Forschungsprojekten werden für eine begrenzte Zeit betrieben, je nach Fragestellung typischerweise für einige Wochen bis drei Jahre. Eine Übersicht über Forschungsprojekte seit 2013, in deren Rahmen seismische Stationen betrieben wurden, stellt der NED auf Anfrage zur Verfügung. Für Informationen des Beeinflussungsbereichs von Windenergieanlagen auf seismische Stationen verweisen wir auf die Erläuterungen in den Metadaten des Themas „Seismische Stationen – Beeinflussungsbereich Windenergieanlagen“.
Verpackungen von Lebensmitteln beispielsweise Tiefkühlprodukten sind längst ein Bestandteil unseres täglichen Lebens geworden. Gerade bei Tiefkühlprodukten begegnen dem Endverbraucher dabei aber immer wieder teils große Kunststoffbestandteile in den Verpackungen. Der stetige wachsende Hunger nach Tiefkühlpizza und generell nach Tiefkühlprodukten sowie sonstigen industriell verarbeiteten Lebensmitteln hat aber auch eine Schattenseite: Zur Verpackung der Tiefkühlpizza werden sogenannte Pizzafolien eingesetzt um die Tiefkühlpizza vor allem zur Vermeidung des direkten Kontakts fettiger Lebensmittel mit Recyclingkarton und somit gegen die Kontaktmigration von Mineralölbestandteilen in die Lebensmittel zu schützen. Zusätzlich wirken diese Folien als Wasserdampfsperre, um die Lebensmittel vor dem Austrocknen oder Aufweichen zu schützen. Dadurch entstehen alleine durch Tiefkühlpizzen in Deutschland mehr als 2.500 t Kunststoffabfälle pro Jahr - Tendenz steigend. Ziel des vorliegenden Projektes ist die Entwicklung eines neuartigen Verfahrens zur Beschichtung von Verpackungskarton-Material aus recyclingfähigen GD2-Kartonagen mit mehreren Schichten sogenannter Barrierelacke zur Verhinderung der Migration von Mineralölen aus Druckfarben in die Lebensmittel hinein. Die neuentwickelte Beschichtung fungiert erstmals gleichzeitig als Wasserdampfsperre. Durch die neuartige Beschichtung werden die Folienverpackungen daher bei gleicher Funktionalität der Verpackung obsolet, womit eine signifikante Reduzierung von Kunststoffabfällen einher gehen wird. Die Entwicklung beinhaltet: 1.) Die Entwicklung anwendungsspezifischer, funktional optimierter Rezepturen für die Barrierelacke. 2.) Die Entwicklung des Verfahrens zum Aufbringen der neuartigen Beschichtung. 3.) Die Entwicklung einer hochautomatisierten Beschichtungsanlage, die kurze Umrüstzeiten sowie den lokalen Einsatz direkt am Produktionsort der Verpackungen ermöglicht.
<p>Seit der Industrialisierung steigt die durchschnittliche globale Lufttemperatur in Bodennähe. Wissenschaftliche Forschungen belegen, dass wir Menschen für den raschen Temperaturanstieg der letzten 100 Jahre verantwortlich sind. Deshalb sprechen wir von einer anthropogenen – vom Menschen verursachten – Klimaänderung.</p><p>Durch das Verbrennen fossiler Energieträger (wie zum Beispiel Kohle, Erdöl und Erdgas) und durch großflächige Entwaldung wird Kohlendioxid (CO2) in der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> angereichert. Land- und Viehwirtschaft verursachen Emissionen von Gasen wie Methan (CH4) und Distickstoffmonoxid (Lachgas, N2O). Kohlendioxid, Methan und Lachgas gehören zu den treibhauswirksamen Gasen. Eine Ansammlung dieser Gase in der Atmosphäre führt in der Tendenz zu einer Erwärmung der unteren Luftschichten.</p><p>Informationen zu den Ursachen von Klimaänderungen, zur Zunahme von Treibhausgasen in der Atmosphäre und zum <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhauseffekt#alphabar">Treibhauseffekt</a> (natürlich und <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=anthropogen#alphabar">anthropogen</a>) finden Sie auf der Seite <strong><a href="https://www.umweltbundesamt.de/themen/klima-energie/klimawandel/klima-treibhauseffekt">Klima und Treibhauseffekt</a></strong>.</p><p>Wir stellen auf der Seite <strong><a href="https://www.umweltbundesamt.de/themen/klima-energie/klimawandel/weltklimarat-ipcc">Weltklimarat</a></strong> den Zwischenstaatlichen Ausschuss für Klimaänderungen – <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=IPCC#alphabar">IPCC</a> (Intergovernmental Panel on Climate Change) kurz vor. Zudem gibt es eine Übersicht zu den Erkenntnissen der letzten IPCC-Sachstandsberichte. Diese Berichte widmen sich den wissenschaftlichen Grundlagen der anthropogenen (durch den Menschen verursachten) <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimanderung#alphabar">Klimaänderung</a>, den beobachteten Klimaänderungen und -folgen, den Projektionen künftiger Klimaänderungen, den Maßnahmen zur Minderung der Emissionen treibhauswirksamer Gase sowie den Maßnahmen zur Anpassung an projizierte (für die Zukunft berechnete) Klimaänderungen.</p><p>Seit dem vergangenen Jahrhundert erwärmt sich das Klima, wie wir aus Beobachtungs- und Messdaten wissen. Das globale Mittel der bodennahen Lufttemperatur stieg deutlich an, Gebirgsgletscher und Schneebedeckung haben im Mittel weltweit abgenommen und Extremereignisse wie Starkniederschläge und Hitzewellen werden häufiger. Mehr zu beobachteten Klimaänderungen erfahren Sie auf der Seite <strong><a href="https://www.umweltbundesamt.de/themen/klima-energie/klimawandel/beobachteter-klimawandel">Beobachteter Klimawandel</a></strong>.</p><p>Die Ausmaße und Auswirkungen der zukünftigen Klimaänderungen können nur durch Modellrechnungen nachgebildet werden, da vielfältige und komplexe Wechselwirkungen berücksichtigt werden müssen. Durch die Modellierung verschiedener denkbarer Szenarien lassen sich mögliche zu erwartende Klimaänderungen für das 21. Jahrhunderts ableiten. Auf der Seite <strong><a href="https://www.umweltbundesamt.de/themen/klima-energie/klimawandel/zu-erwartende-klimaaenderungen-bis-2100">Zu erwartende Klimaänderungen bis 2100</a></strong> können Sie sich über mögliche Entwicklungen informieren.</p><p>Die Themen Klimawandel und Klimaänderung sind sehr komplex und uns erreichen daher regelmäßig Fragen zu grundsätzlichen Hintergründen des Klimawandels. Auf der Seite <strong><a href="https://www.umweltbundesamt.de/themen/klima-energie/klimawandel/haeufige-fragen-klimawandel">Häufige Fragen zum Klimawandel</a></strong> haben wir unsere Antworten auf häufig gestellt Fragen (FAQs) für Sie zusammengestellt.</p><p>Obwohl ein breiter wissenschaftlicher Konsens über die anthropogene Klimaänderung besteht, werden in der öffentlichen Diskussion immer wieder Zweifel gestreut. Über Bücher, Zeitschriften, Fernsehsendungen, das Internet und die sozialen Medien werden Informationen verbreitet, die veraltet, unvollständig, aus dem Zusammenhang gegriffen und/oder falsch sind. Auf der Seite <strong><a href="https://www.umweltbundesamt.de/themen/klima-energie/klimawandel/klimawandel-skeptiker">Klimawandel-Skeptiker</a></strong> setzen wir uns zunächste grundsätzlich mit Klimawandel-Skepsis auseinander und nehmen auf der Unterseite <strong><a href="https://www.umweltbundesamt.de/themen/klima-energie/klimawandel/klimawandel-skeptiker/antworten-des-uba-auf-populaere-skeptische">Antworten des UBA auf populäre skeptische Argumente</a> </strong>skeptische Thesen genauer unter die Lupe.</p><p>Die meisten Menschen denken an eine allmähliche Erwärmung des Klimas, wenn sie den Begriff „anthropogene Klimaänderung” hören. Es ist jedoch auch möglich, dass besonders starke oder sogar abrupte Klimaänderungen einsetzen. Derartige Prozesse sind mit kritischen Schwellen im <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimasystem#alphabar">Klimasystem</a>, sogenannten Kipp-Punkten, verbunden. Bereits geringe Änderungen im Klimasystem können bewirken, dass Kipp-Punkte erreicht werden, in deren Folge sich das Klima stark ändert. In unserem Hintergrundpapier <strong><a href="https://www.umweltbundesamt.de/publikationen/kipppunkte-kaskadische-kippdynamiken-im-klimasystem">Kipp-Punkte im Klimasystem</a></strong> erhalten Sie dazu ausführliche Informationen.</p>
Organische Schwefelkomponenten sind abundant in marinen Sedimenten. Diese Verbindungen werden v.a. durch die abiotische Reaktion anorganischer Schwefelverbindungen mit Biomolekülen gebildet. Wegen seiner Bedeutung für globale Stoffkreisläufe, für die Nutzung von Erdöllagerstätten und für die Erhaltung des Paleorecords, gibt es eine Vielzahl von Studien zum Thema. Sehr wenig Aufmerksamkeit wurde allerdings wasserlöslichen Komponenten geschenkt, die beim Prozess der Sulfurisierung entstehen und als gelöster organischer Schwefel (DOS) in die Meere gelangen können. Anhand der wenigen verfügbaren Informationen ist Schwefel vermutlich das dritthäufigste Heteroelement im gelösten organischen Material (DOM) der Meere, nach Sauerstoff und Stickstoff. Einige Schwefelverbindungen, insbesondere Thiole, sind für die Verbreitung von Schadstoffen aber auch essenzieller Spurenstoffe verantwortlich. Wichtige klimarelevante Schwefelverbindungen entstehen aus DOS. Daher spielt der marine DOS-Kreislauf eine Rolle für die Meere und Atmosphäre. Trotz seiner Bedeutung sind die Quellen marinen DOS, seine Umsetzung im Meer und Funktion für Meeresbewohner unbestimmt. Auch ist die molekulare Zusammensetzung von DOS unbekannt. In diesem Projekt werden wir Pionierarbeit in einem neuen Forschungsfeld der marinen Biogeochemie leisten. Wir wollen grundlegende Fragen bzgl. der Bildung und Verteilung von nicht-flüchtigem DOS im Meer beantworten. Unsere wichtigsten Hypothesen:* Bildung von DOS:(1) Sulfatreduzierende Sedimente sind wesentlich für die Bildung von DOS.(2) Reduzierte Schwefelverbindungen (v.a. Thiole) dominieren in Zonen der DOS-Entstehung.(3) DOS wird v.a. über abiotische Sulfurisierung in der Frühdiagenese gebildet.* Transport und Schicksal von DOS im Ozean:(4) DOS wird von sulfat-reduzierenden intertidalen Grundwässern an das Meer abgeben.(5) In der Wassersäule oxidiert DOS schnell (z.B. zu Sulfonsäuren).(6) DOS aus intertidalen Sedimenten ist in oxidierter Form auf den Kontintentalschelfen stabil.Neben dem wissenschaftlichen Ziel der Beantwortung dieser Hypothesen, wird das Projekt drei Promovierenden (eine in Deutschland und zwei in Brasilien) die außergewöhnliche Gelegenheit bieten, ihre Doktorarbeiten im Rahmen eines internationalen Projektes durchzuführen. Wir werden die Stärken beider Partner in Feld- und Laborstudien und Elementar-, Isotopen- und molekularen Analysen kombinieren. Wir werden unterschiedliche Regionen im deutschen Wattenmeer und in brasilianischen Mangroven (Rio de Janeiro and Amazonien) beproben, sowie die benachbarten Schelfmeere. Sulfurisierungsexperimente werden die Feldstudien ergänzen. Zur quantitativen Bestimmung und molekularen Charakterisierung von DOS werden wir neue Ansätze anwenden, die von den beiden Arbeitsgruppen entwickelt wurden. Dabei kommen u.a. ultrahochauflösende Massenspektrometrie (FT-ICR-MS), und andere massenspektrometrischen und chromatographischen Methoden zu Anwendung.
An Oelschadensfaellen wird untersucht: Ausbreitung/Loesung/Verduennung/Abbau von Mineraloelprodukten in Untergrund und Grundwasser.
Zielsetzung und Anlass des Vorhabens: Sinnvolle Konzepte zur Regenwasserbewirtschaftung trennen die Regenabflüsse von gering und stark verschmutzten Flächen. Abflüsse von stärker verschmutzten Flächen bedürfen einer Behandlung, die den örtlichen Anforderungen an den Gewässerschutz entspricht. Die bestmögliche Reinigung und Zwischenspeicherung stärker verschmutzter Niederschlagsabflüsse ist die wesentliche Aufgabe eines Retentionsbodenfilters. Im Forschungsvorhaben sollte ein semizentraler Bodenfilter entwickelt werden, der mit geringem Flächenbedarf eine bestmögliche Reinigung stark verschmutzter Regenabflüsse von Verkehrsflächen leistet. Darstellung der Arbeitsschritte und der angewandten Methoden: Nach dem bisherigen Forschungsstand kommt bei der Adsorption von Inhaltsstoffen dem Bodensubstrat in den Bodenfilteranlagen eine entscheidende Rolle zu. Die Auswahl und Entwicklung eines geeigneten Substrates erfolgte in einem dreistufigen Vorgehen. Über einer Literaturrecherche wurden Anforderungen an Bodensubstrate zur Regenwasserreinigung formuliert. Daraufhin wurden in Schüttelversuchen verschiedene Substrate ausgewählt und ihre Adsorptionseigenschaften gegenüber Schwermetallen, PAKs und Mineralölen ermittelt. Ausgehend von diesen Vorversuchen wurden verschiedene Bodenfilteraufbauten entwickelt und in halbtechnischen Lysimetern untersucht. Dazu wurden die Lysimeter in einem einjährigen Messprogramm mit stark verunreinigten Straßenabflüssen belastet. Die Gesamtfrachten an Inhaltsstoffen im Zulauf zu den Lysimetern wurden ermittelt. An Einzelereignissen wurde die Reinigungsleistung der verschiedenen Bodenfilteraufbauten ermittelt. Die Lysimeter wurden mit einer hohen hydraulischen und somit auch stofflichen Belastung beaufschlagt, die über den bisher bei der Bemessung von Bodenfilteranlagen üblichen Belastungen lagen. Aus den Messergebnissen wurden Rückschlüsse für den Einsatz von Bodenfiltern mit hoher hydraulischer Belastung bei beengten Platzverhältnissen gezogen und Empfehlungen für die Bemessung gegeben. Über die Messung der aufgebrachten Feststoffbelastung und der Durchlässigkeit der Lysimeter wurde eine eventuell eintretende Kolmation der Bodensubstrate erfasst. Fazit: Die untersuchten halbtechnischen Bodenfilter (Lysimeter) führten im Untersuchungszeitraum zu einer deutlichen Reduzierung der straßenspezifischen Schmutzstoffe geführt. Aussagen über den Langzeitbetrieb können auch mit einem Stofftransportmodell nicht gemacht werden. Insgesamt führen adsorptionsstarke Substrate zu einem höheren Rückhalt gelöster Inhaltsstoffe (Schwermetalle). Die Empfehlung des ATV-DVWK-Merkblatt 153 zum Einsatz der Bodenfilter zur Straßenentwässerung kann nach den bisherigen Untersuchungen bestätigt werden. Weiterer Forschungsbedarf besteht hinsichtlich der Belastbarkeit der eingebauten Substrate gegenüber der Chloridbelastung, die bei der Straßenentwässerung als Regelfall anzusehen ist. ...
Sanierungsrahmenpläne sind eine besondere Form der Braunkohlenpläne im Freistaat Sachsen, welche für jeden stillgelegten oder noch stillzulegenden Tagebau aufzustellen sind. Der Sanierungsrahmenplan enthält Festlegungen zu den Grundzügen der Wiedernutzbarmachung der Oberfläche, zu der anzustrebenden Landschaftsentwicklung sowie zur Wiederherstellung der Infrastruktur. Mit der deutschen Einheit am 3. Oktober 1990 änderten sich die politischen und wirtschaftlichen Rahmenbedingungen für die ostdeutsche Braunkohlenindustrie grundlegend. Der Zusammenbruch der DDR-Wirtschaft, die Modernisierung aller Haushalte und die allgemeine Verfügbarkeit anderer Energieträger (insbesondere Erdöl und Erdgas) führten zu einem starken Absatzrückgang der heimischen Braunkohle. Kraftwerke, Veredlungsanlagen und Tagebaubetriebe erfüllten zudem nicht die bundesdeutschen Umweltstandards. Zahlreiche Tagebaue mussten stillgelegt werden. Die forcierte Entwicklung der Braunkohlenindustrie in der DDR war mit der Zerstörung des Lebensraumes der Menschen und mit erheblichen Eingriffen in Natur und Landschaft verbunden. Ökologische und soziale Belange spielten eine untergeordnete Rolle. Beträchtliche, in einzelnen Tagebauen auf bis zu 20 Jahre geschätzte Rekultivierungsrückstände, Sand-und Staubauswehungen, ein gestörter Wasserhaushalt und Altlasten waren die Hinterlassenschaften des Braunkohlenbergbaus in der Lausitz. Hinzu kamen kilometerlange ungesicherte Tagebauböschungen sowie riesige ungesicherte Tagebaukippen, die eine Gefahr für die öffentliche Sicherheit darstellten. In dieser besonderen Situation und angesichts des Umfangs der notwendigen Sanierungsarbeiten und des allgemeinen öffentlichen Interesses mussten in transparenten, förmlichen Verfahren Braunkohlenpläne mit inhaltlichen Vorgaben für eine geordnete Sanierung erarbeitet und Konflikte aufgelöst werden. Dies wird in der Regional- und Sanierungsrahmenplanung im Freistaat Sachsen insbesondere über die kommunale Mitwirkung sichergestellt.
| Origin | Count |
|---|---|
| Bund | 2187 |
| Land | 628 |
| Wissenschaft | 9 |
| Zivilgesellschaft | 9 |
| Type | Count |
|---|---|
| Chemische Verbindung | 1171 |
| Daten und Messstellen | 490 |
| Ereignis | 58 |
| Förderprogramm | 634 |
| Gesetzestext | 1080 |
| Kartendienst | 1 |
| Lehrmaterial | 1 |
| Text | 318 |
| Umweltprüfung | 33 |
| unbekannt | 91 |
| License | Count |
|---|---|
| geschlossen | 1418 |
| offen | 739 |
| unbekannt | 642 |
| Language | Count |
|---|---|
| Deutsch | 2718 |
| Englisch | 608 |
| Resource type | Count |
|---|---|
| Archiv | 160 |
| Bild | 7 |
| Datei | 496 |
| Dokument | 277 |
| Keine | 1957 |
| Unbekannt | 1 |
| Webdienst | 35 |
| Webseite | 341 |
| Topic | Count |
|---|---|
| Boden | 2799 |
| Lebewesen und Lebensräume | 1375 |
| Luft | 1252 |
| Mensch und Umwelt | 2799 |
| Wasser | 1240 |
| Weitere | 2046 |