<p>Die privaten Haushalte benötigten im Jahr 2023 etwa gleich viel Energie wie im Jahr 1990 und damit gut ein Viertel des gesamten Endenergieverbrauchs in Deutschland. Sie verwendeten mehr als zwei Drittel ihres Endenergieverbrauchs, um Räume zu heizen.</p><p>Endenergieverbrauch der privaten Haushalte</p><p>Private Haushalte verbrauchten im Jahr 2023 632 Terawattstunden (<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>) Energie, das sind 632 Milliarden Kilowattstunden (Mrd. kWh). Dies entsprach einem Anteil von gut einem Viertel am gesamten <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a>.</p><p>Im Zeitraum von 1990 bis 2023 fiel der Endenergieverbrauch in den Haushalten – ohne Kraftstoffverbrauch, da dieser dem Sektor Verkehr zugeordnet ist – um 3,5 % (siehe Abb. „Entwicklung des Endenergieverbrauchs der privaten Haushalte“). Dabei herrschten in den Jahren 1996, 2001 und 2010 sehr kalte Winter, die zu einem erhöhten Brennstoffverbrauch für Raumwärme führten. So lag der Energieverbrauch im sehr kalten Jahr 2010 etwa 12 % über dem Wert des eher warmen Jahres 1990.</p><p>Höchster Anteil am Energieverbrauch zum Heizen</p><p>Die privaten Haushalte benötigen mehr als zwei Drittel ihres Endenergieverbrauchs, um Räume zu heizen (siehe Abb. „Anteile der Anwendungsbereiche am <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> der privaten Haushalte 2008 und 2023“). Sie nutzen zurzeit dafür hauptsächlich Erdgas und Mineralöl. An dritter Stelle folgt die Gruppe der erneuerbaren Energien, an vierter die Fernwärme. Zu geringen Anteilen werden auch Strom und Kohle eingesetzt. Mit großem Abstand zur Raumwärme folgen die Energieverbräuche für die Anwendungsbereiche Warmwasser sowie sonstige <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozesswrme#alphabar">Prozesswärme</a> (Kochen, Waschen etc.) bzw. <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozessklte#alphabar">Prozesskälte</a> (Kühlen, Gefrieren etc.).</p><p>Mehr Haushalte, größere Wohnflächen – Energieverbrauch pro Wohnfläche sinkt</p><p>Der Trend zu mehr Haushalten, größeren Wohnflächen und weniger Mitgliedern pro Haushalt (siehe „<a href="https://www.umweltbundesamt.de/daten/private-haushalte-konsum/strukturdaten-privater-haushalte/bevoelkerungsentwicklung-struktur-privater">Bevölkerungsentwicklung und Struktur privater Haushalte</a>“) führt tendenziell zu einem höheren Verbrauch. Diesem Trend wirken jedoch der immer bessere energetische Standard bei Neubauten und die Sanierung der Altbauten teilweise entgegen. So sank der spezifische <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> (Energieverbrauch pro Wohnfläche) für Raumwärme seit 2008 um 20 % (siehe Abb. „Endenergieverbrauch und -intensität für Raumwärme – Private Haushalte (witterungsbereinigt“)).</p><p>Stromverbrauch mit einem Anteil von rund einem Fünftel</p><p>Der Energieträger Strom hat einen Anteil von rund einem Fünftel am <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> der privaten Haushalte. Hauptanwendungsbereiche sind die <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozesswrme#alphabar">Prozesswärme</a> (Waschen, Kochen etc.) und die <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozessklte#alphabar">Prozesskälte</a> (Kühlen, Gefrieren etc.), die zusammen rund die Hälfte des Stromverbrauchs ausmachen. Mit jeweiligem Abstand folgen die Anwendungsbereiche Informations- und Kommunikationstechnik, Warmwasser und Beleuchtung (siehe Abb. „Anteile der Anwendungsbereiche am Netto-Stromverbrauch der privaten Haushalte 2008 und 2023“).</p><p>Direkte Treibhausgas-Emissionen privater Haushalte sinken</p><p>Der Energieträgermix verschob sich seit 1990 bis heute zugunsten von Brennstoffen mit geringeren Kohlendioxid-Emissionen und erneuerbaren Energien. Das verringerte auch die durch die privaten Haushalte verursachten direkten Kohlendioxid-Emissionen (d.h. ohne Strom und Fernwärme) (siehe Abb. „Direkte Kohlendioxid-Emissionen von Feuerungsanlagen der privaten Haushalte“).</p>
Das Landesamt für Natur, Umwelt und Klima Nordrhein-Westfalen (LANUK) stellt im Energieatlas NRW (www.energieatlas.nrw.de) die Standorte der Erneuerbaren Energien, der fossilen Kraftwerke und der Elektrotankstellen in NRW dar. Folgende Energieträger werden dargestellt: Biomasse/Bioenergie, Deponiegas, Grubengas, Klärgas, Photovoltaik Freifläche, Wasserkraft, Windenergie, Windenergieanlagen in Planung, stillgelegte Windenergieanlagen, E-Tankstellen, Braunkohle, Steinkohle, Erdgas, Mineralöl, Müllverbrennungsanlagen, Grubenwasser, Industrielle Abwärme und KWK-relevante Industriestandorte. Die Excel-Tabelle fasst die Standorte aller Energieträger zusammen
Kohlenstoff aus Erdoel und Erdoelderivaten unterscheidet sich in seiner Isotopenzusammensetzung von natuerlichen Kohlenstoffverbindungen im Meer und muesste, auch wenn er biologisch aufgearbeitet worden ist, bei hinreichender Konzentration nachweisbar sein. Messungen an jetzt geborgenen Proben sollen Bezugswerte liefern fuer Vergleiche in einigen Jahren, wenn die Erdoelfoerderung moeglicherweise zu staerkeren Verschmutzungen gefuehrt hat. An Proben, die vor den Raffinerien von Southampton entnommen wurden, deutet sich eine derartige Verschmutzung evtl. bereits an.
<p>Bedingt durch seine hohe atmosphärische Konzentration ist Kohlendioxid nach Wasserdampf das wichtigste Klimagas. Die globale Konzentration von Kohlendioxid ist seit Beginn der Industrialisierung um gut 50 % gestiegen. Demgegenüber war die Kohlendioxid-Konzentration in den vorangegangenen 10.000 Jahren annähernd konstant. Konzentrationen weiterer Treibhausgase tragen ebenfalls zum Klimawandel bei.</p><p>Kohlendioxid</p><p>Durch das Verbrennen fossiler Energieträger (wie zum Beispiel Kohle und Erdöl) und durch großflächige Entwaldung wird Kohlendioxid (CO2) in der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> angereichert. Diese Anreicherung wurde durch die Wissenschaft unzweifelhaft nachgewiesen.</p><p>Die weltweite Kohlendioxid-Konzentration lag im Jahr 2024 bei 422,79 (<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=ppm#alphabar">ppm</a>) Kohlendioxid (<a href="https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_annmean_gl.txt">NOAA 2024</a>). Hinzu kommen Konzentrationen weiterer Treibhausgase, die ebenfalls zum weltweiten <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a> beitragen.</p><p>Die<a href="https://www.umweltbundesamt.de/presse/pressemitteilungen/uba-misst-neue-rekordwerte-fuer-kohlendioxid">Auswertung von Messungen</a>der atmosphärischen Kohlendioxid-Konzentration für das Jahr 2015 an den Messstationen des Umweltbundesamtes Schauinsland (Südschwarzwald) und auf der Zugspitze hat gezeigt, dass in diesem Jahr die Konzentration an beiden Stationen im Jahresdurchschnitt erstmals über 400 µmol/mol (ppm) lag. Zum Vergleich: Die Kohlendioxid-Konzentration aus vorindustrieller Zeit lag bei etwa 280 µmol/mol (ppm).</p><p>Auf Deutschlands höchstem Gipfel sind die Messwerte besonders repräsentativ für die Hintergrundbelastung der Atmosphäre, da die Zuspitze häufig in der unteren freien <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Troposphre#alphabar">Troposphäre</a> liegt und somit weitestgehend unbeeinflusst von lokalen Quellen ist. Im Jahr 2024 stieg der Jahresmittelwert auf der Zugspitze auf 424,2 µmol/mol (ppm) (siehe Abb. „Kohlendioxid-Konzentration in der Atmosphäre (Monatsmittel)“).</p><p>Lange Messreihen ergeben ein zuverlässiges Maß für den globalen Anstieg der Kohlendioxid-Konzentration. Dank ihrer Genauigkeit ermöglichen sie es, den Effekt der Verbrennung fossiler Brennstoffe von natürlichen Konzentrations-Schwankungen zu unterscheiden. Auf dieser Grundlage kann die langfristige Veränderung des Kohlendioxid-Vorrats in der Atmosphäre mit Klimamodellen genauer analysiert werden.</p><p>Die Auswertung der Messreihe vom aktiven Vulkan Mauna Loa auf Hawaii werden zur Bestimmung des globalen Kohlendioxid-Anstiegs genutzt, da sich die Messstation in größer Höhe und weit entfernt von störenden Kohlendioxidquellen befindet. Während in den 1960er-Jahren der jährliche Anstieg auf Mauna Loa (aktiver Vulkan auf Hawaii, wo) im Mittel noch bei 0,86 µmol/mol (ppm) Kohlendioxid lag, stieg der Welttrend in den vergangenen 15 Jahren im Mittel auf 2,47 µmol/mol (ppm) pro Jahr, in Mauna Loa auf 2,5 µmol/mol (ppm) pro Jahr. Gegenüber den 1950er-Jahren wurde damit der globale Kohlendioxid-Anstieg annähernd verdreifacht.</p><p>Methan</p><p>Bis 2024 stieg die weltweite Methan-Konzentration bis etwas über 1929,7 nmol/mol (<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=ppb#alphabar">ppb</a>).</p><p>An der Messstation Zugspitze wurde für 2024 ein Jahresmittelwert von 2003 nmol/mol (ppb) gemessen (siehe Abb. „Methan-Konzentration in der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> (Monats- und Jahresmittelwerte)“).</p><p>Lachgas</p><p>Weltweit lag die Lachgas-Konzentration im Jahr 2024 bei über 337,7 nmol/mol (<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=ppb#alphabar">ppb</a>).</p><p>An der Messstation Zugspitze wurde für 2024 ein Jahresmittelwert von 338,5 nmol/mol (ppb) gemessen (siehe Abb. „Lachgas-Konzentration in der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> (Monatsmittelwerte)“).</p><p>Beitrag langlebiger Treibhausgase zum Treibhauseffekt</p><p>In der Summe bilden Kohlendioxid (CO2), Methan, Lachgas und die halogenierten Treibhausgase den sogenannten <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhauseffekt#alphabar">Treibhauseffekt</a>: Die langlebigen Treibhausgase leisteten 2023 einen Beitrag zur globalen Erwärmung<a href="http://www.esrl.noaa.gov/gmd/aggi/aggi.html">(NOAA 2024)</a>von insgesamt 3,485 W/m² (Watt pro Quadratmeter). Verglichen mit dem Stand von 1990 ergibt dies eine Zunahme von fast 52 %. Dabei leistet atmosphärisches CO2den vom Menschen in erheblichem Umfang mit verursachten Hauptbeitrag zur Erwärmung des Erdklimas. In Folge dieser Klimaerwärmung nimmt auch der sehr mobile und wechselnd wirkende Wasserdampf in der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> zu. Im Vergleich zu CO2ist dieser zwar deutlich maßgebender für die Erwärmung, atmosphärisches CO2bleibt aber der vom Menschen verursachte Hauptantrieb.</p><p>Wie stark die verschiedenen langlebigen Klimagase im Einzelnen zur Erwärmung beitragen, ist in der Abbildung „Beitrag zum Treibhauseffekt durch Kohlendioxid und langlebige Treibhausgase 2023“ zu sehen. Der größte Anteil dabei entfällt auf Kohlendioxid mit etwa 66 %, gefolgt von Methan mit 16 %, Lachgas mit 6%, und den halogenierten Treibhausgasen insgesamt mit 12 %.</p><p>Obergrenze für die Treibhausgas-Konzentration</p><p>Um die angestrebte Zwei-Grad-Obergrenze der atmosphärischen Temperaturerhöhung mit einer Wahrscheinlichkeit von mindestens 66 % zu unterschreiten, müsste die gesamte <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>-Konzentration (Kohlendioxid, Methan, Lachgas und F-Gase) in der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> bis zum Jahrhundertende bei rund 450 <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=ppm#alphabar">ppm</a> Kohlendioxid-Äquivalenten stabilisiert werden. Dabei ist eine kurzfristige Überschreitung dieses Konzentrationsniveaus möglich (<a href="https://www.de-ipcc.de/270.php">IPCC-Synthesebericht</a>).</p><p>2023 lag die gesamte Treibhausgas-Konzentration bei 534 ppm Kohlendioxid-Äquivalenten (siehe Abb. „Treibhausgas-Konzentration in der Atmosphäre“). Um die angestrebte Stabilisierung zu erreichen, müssen die globalen Treibhausgas-Emissionen gesenkt werden. In den meisten Szenarien des Welt-Klimarates (IPCC) entspricht dies einer Menge von weltweiten Treibhausgas-Emissionen zwischen 30 und 50 Milliarden Tonnen (Mrd. t) Kohlendioxid-Äquivalenten im Jahr 2030. Im weiteren Verlauf bis 2050 müssten die Emissionen weltweit zwischen 40 % und 70 % unter das Niveau von 2010 gesenkt werden und bis Ende des Jahrhunderts auf nahezu null sinken. Dazu sind verbindliche Zielsetzungen im Rahmen einer globalen Klimaschutzvereinbarung erforderlich.</p><p>Im Dezember 2015 vereinbarte die Staatengemeinschaft auf der 21. Vertragsstaatenkonferenz unter der<a href="https://www.umweltbundesamt.de/daten/klima/klimarahmenkonvention">Klimarahmenkonvention</a>(COP21) das <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimaschutz#alphabar">Klimaschutz</a>-Übereinkommen von Paris. Darin ist zum ersten Mal in einem völkerrechtlichen Abkommen verankert, dass die durchschnittliche globale Erwärmung auf deutlich unter zwei Grad begrenzt werden soll. Darüber hinaus sollen sich die Vertragsstaaten bemühen, den globalen Temperaturanstieg möglichst unter 1,5 Grad zu halten. Um dieses Ziel zu erreichen, müssen die Treibhausgas-Emissionen sobald wie möglich abgesenkt werden. In der zweiten Hälfte des Jahrhunderts soll eine globale Balance der Quellen und das Senken von Treibhausgas-Emissionen (Netto-Null-Emissionen) erreicht werden. Das bedeutet die Dekarbonisierung der Weltwirtschaft und damit einen Ausstieg aus der Nutzung fossiler Energieträger. Enorme Anstrengungen sind notwendig, um dieses Ziel zu erreichen, und zwar nicht nur in Deutschland, sondern in allen Staaten, insbesondere den Industrienationen. Zur Erreichung der Klimaziele hat Deutschland das<a href="https://www.bundesregierung.de/resource/blob/974430/1679914/e01d6bd855f09bf05cf7498e06d0a3ff/2019-10-09-klima-massnahmen-data.pdf?download=1">Klimaschutzprogramm 2030</a>verabschiedet.</p><p>Weiterführende Informationen</p><p>Auf den folgenden Seiten finden Sie weiterführende Informationen zu internationalen Klimabeobachtungssystemen:</p><p><em>Wir danken der Nationalen Administration für die Ozeane und die Atmosphäre (NOAA Global <a href="https://www.umweltbundesamt.de/service/glossar/m?tag=Monitoring#alphabar">Monitoring</a> Division) in Boulder, USA und dem Scripps Institut für Ozeanography, La Jolla, USA für die CO2-Daten des GAW Globalobservatoriums von Mauna Loa, Hawaii, sowie dem Mace Head GAW Globalobservatorium, Irland und dem AGAGE Projekt für die Lachgasdaten.</em></p>
<p>Der Endenergieverbrauch in Deutschland ist seit Beginn der 1990er Jahre bis zum Jahr 2019 kaum gesunken. Im langjährigen Trend war nur der Wärmeverbrauch rückläufig, während der Verbrauch von Kraftstoff und Strom nahezu konstant blieben. Seit 2020 ist der Endenergieverbrauch auf Grund der „Coronakrise“ als auch in Folge des Krieges gegen die Ukraine rückläufig.</p><p>Allgemeine Entwicklung und Einflussfaktoren</p><p>Der <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> (EEV) in Deutschland ist seit Beginn der 1990er Jahre nur in geringem Umfang gesunken (siehe Abb. „Endenergieverbrauch nach Sektoren“). Energie wird zwar immer effizienter genutzt und teilweise eingespart, doch Wirtschaftswachstum und Konsumsteigerungen verhindern einen deutlicheren Rückgang des absoluten Endenergieverbrauchs (siehe auch Artikel<a href="https://www.umweltbundesamt.de/daten/energie/energieproduktivitaet">"Energieproduktivität"</a>). Im kurzfristigen Zeitraum eines Jahres betrachtet hat die <a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Witterung#alphabar">Witterung</a>, die sich auf den Bedarf an Wärmeenergie auswirkt, großen Einfluss auf die Verbrauchsentwicklung. Auch die Corona-Pandemie verursachte im Jahr 2020 einen Sondereffekt, der Endenergieverbrauch sank auf den bis dato niedrigsten Wert seit 1990. Zwar stieg der Verbrauch in 2021 in Folge der wirtschaftlichen Erholung nach der Pandemie wieder an. Doch seit dem russischen Angriffskrieg auf die Ukraine reduzierte sich der EEV zwei Jahre hintereinander. Somit lag der Verbrauch des Jahres 2023 auf einem historischen Tiefstand seit der Wiedervereinigung.</p><p>Der Gesetzgeber hat im Herbst 2023 das „Energieeffizienzgesetz“ (EnEfG) beschlossen. Dieses sieht vor, dass der Endenergieverbrauch gegenüber dem Wert des Jahres 2008 bis 2030 um etwa 26,5 % sinken soll (1.867 <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>) und bis 2045 um 45 % (1.400 TWh). Dabei legt das EnEfG für die Ziele eine von der in der deutschen Energiestatistik verwendeten Definition der AG Energiebilanzen leicht abweichende Definition zugrunde. Diese Abweichungen betreffen insbesondere die Umweltwärme und oberflächennahe Geothermie, die bei der Berechnung des Indikators nicht einbezogen werden. Damit wird eine Konvention der europäischen Energieeffizienz-Richtlinie übernommen. Der so ermittelte EEV (also ohne Umweltwärme und Geothermie) lag 2022 etwa 1 % unter dem von der AG Energiebilanzen ermittelten Wert. Durch den Ausbau der Wärmepumpentechnik wird der aus Umweltwärme bereitgestellte EEV künftig voraussichtlich wachsen.</p><p>Entwicklung des Endenergieverbrauchs nach Sektoren und Energieträgern</p><p>Im Sektor<strong>Industrie</strong>ist der <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> (EEV) abgesehen von Jahren mit Konjunktureinbrüchen (2009, 2020 sowie 2022/23) in den letzten drei Jahrzehnten nahezu konstant geblieben. Fortschritte bei der Energieeffizienz wurden durch das Wirtschaftswachstum kompensiert (siehe Abb. „Endenergieverbrauch nach Energieträgern“). Etwa zwei Drittel des Endenergieverbrauchs werden in der Industrie für <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozesswrme#alphabar">Prozesswärme</a> benötigt. <a href="https://www.umweltbundesamt.de/service/glossar/m?tag=Mechanische_Energie#alphabar">Mechanische Energie</a> zum Beispiel zum Betrieb von Motoren oder Maschinen sorgt für circa ein Viertel des Verbrauchs, Raumwärme hat nur einen kleinen Anteil (siehe auch Artikel „<a href="https://www.umweltbundesamt.de/daten/energie/energieverbrauch-fuer-fossile-erneuerbare-waerme">Energieverbrauch für fossile und erneuerbare Wärme</a>“).</p><p>Der Kraftstoffverbrauch im<strong>Verkehrssektor</strong>war lange weitgehend unverändert, stieg dann in den Jahren bis 2018 aber auf einen neuen Höchstwert. Im Zuge der Verkehrseinschränkungen durch die Corona-Krise im Jahr 2020 fiel der Verbrauch auf den niedrigsten Wert seit 1990. Auch im Jahr 2021 lag der Energieverbrauch noch auf einem verhältnismäßig niedrigen Niveau, bevor er im Jahr 2022 wieder leicht anstieg. 2023 reduzierte sich der EEV des Sektors erneut leicht aufgrund des geringeren Energiebedarfs im Straßenverkehr – der Energieverbrauch der Luftfahrt stieg dagegen innerhalb von zwölf Monaten leicht an. Insgesamt liegt der EEV des gesamten Verkehrssektors noch deutlich unter dem Niveau vor der Corona-Pandemie (siehe Abb. „Endenergieverbrauch nach Energieträgern und Sektoren im Jahr 2023“).</p><p>Im Verkehrssektor werden zu über 90 % Kraftstoffe aus Mineralöl eingesetzt, Biokraftstoffe und Strom spielen bislang nur eine geringfügige Rolle. Fast die gesamte im Verkehr eingesetzte Energie wird zur Erzeugung von mechanischer Energie verwendet, wovon bei Verbrennungsmotoren durchschnittlich jedoch nur weniger als die Hälfte für den Antrieb umgewandelt wird. Ein großer Anteil geht als Abwärme verloren. Der Anteil des Stroms am Endenergieverbrauch im Verkehr beträgt etwas mehr als 2 %, stieg in den letzten Jahren jedoch.</p><p>Der Endenergieverbrauch der<strong>privaten Haushalte</strong>wird zu etwa 70 % von dem Energieverbrauch für Raumwärme bestimmt. Zwar wurden viele Wohngebäude in den letzten Jahrzehnten gedämmt, gleichzeitig hat die zu beheizende Wohnfläche zugenommen. Da die hier dargestellten Daten nicht temperaturbereinigt sind, wird der Energieverbrauch der Haushalte eines Jahres sehr von der <a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Witterung#alphabar">Witterung</a> des jeweiligen Jahres beeinflusst, insbesondere von den Temperaturen in den Wintermonaten. Dadurch schwankt der EEV der privaten Haushalte deutlich. Langfristig sinkt der EEV der Haushalte zwar, seit 2014 zeigt der <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> jedoch wieder einen Aufwärts-Trend.</p><p>Erdgas und Heizöl weisen beim EEV der Haushalte die höchsten Anteile auf, auch erneuerbare Wärme wird verstärkt in diesem Sektor eingesetzt. Zunehmende Bedeutung kommt auch der Fernwärme aus fossilen und erneuerbaren Energieträgern zu (siehe auch Artikel<a href="https://www.umweltbundesamt.de/daten/private-haushalte-konsum/wohnen/energieverbrauch-privater-haushalte">"Energieverbrauch der privaten Haushalte"</a>).</p><p>Der Endenergieverbrauch des Sektors<strong>Gewerbe, Handel und Dienstleistungen</strong>(GHD) ist in den letzten Jahrzehnten ebenfalls deutlich zurück gegangen: Er lag 2023 etwa 25 % niedriger als im Jahr 2008. Der Energieverbrauch des Sektors ist dabei stark von der Witterung abhängig. Raumwärme macht hier immerhin fast die Hälfte des Endenergieverbrauchs aus. Da im GHD-Sektor viele Gebäude in den letzten Jahrzehnten energetisch ertüchtigt und gedämmt wurden, ist aber der absolute Bedarf an Raumwärme deutlich zurückgegangen. Gleichzeitig ist im GHD-Sektor der relative Stromanteil von allen Endenergiesektoren am höchsten, was auf den Stromeinsatz für mechanische Energie, Informations- und Kommunikationstechnik sowie Beleuchtung zurückzuführen ist. Die Umstellung auf sparsame LED-Beleuchtung hat aber in den letzten Jahren zu Energieeinsparungen geführt.</p><p>Anteil erneuerbarer Energien am gesamten Bruttoendenergieverbrauch</p><p>Ein immer größerer Anteil des Bruttoendenergieverbrauchs wird in Deutschland durch erneuerbare Energien gedeckt. Anders als der <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> umfasst der <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Bruttoendenergieverbrauch#alphabar">Bruttoendenergieverbrauch</a> (BEEV) neben dem Endenergieverbrauch der Letztverbraucher (private Haushalte, GHD, Industrie und Verkehr) auch die Eigenverbräuche der Erzeugungsanlagen und die Leitungsverluste.</p><p>In seinem „Nationalen Energie- und Klimaplan“ (NECP) hat sich Deutschland verpflichtet, den Anteil der Erneuerbaren am BEEV bis zum Jahr 2030 auf 41 % zu steigern. Die NECPs der EU-Mitgliedsstaaten beschreiben die unterschiedlichen nationalen Beiträge zur Erreichung der europäischen Erneuerbaren- und Klimaziele. Um das deutsche Ziel zu erreichen, wird in den nächsten Jahren eine deutliche Beschleunigung des Ausbaus der erneuerbaren Energien sowie der Elektrifizierung der Wärmeversorgung (durch Wärmepumpen) und der E-Mobilität nötig werden.</p><p>Bei den Werten des Anteils der erneuerbaren Energien ist zu berücksichtigen, dass bei der Berechnung des erneuerbaren Anteils gemäß der EU-Richtlinie 2018/2001 verschiedene spezielle Rechenregeln angewandt werden müssen. Beispielsweise wird über eine „Normalisierung“ der Einfluss ungewöhnlich guter oder schlechter <a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Witterung#alphabar">Witterung</a> korrigiert.</p>
Belasteter Boden wird in der Regel verbrannt oder deponiert. Durch spezielle Bakterien und Hefen koennen die Belastungen zum Teil sehr erheblich abgebaut werden. Im Vordergrund dieses Projektes steht die Analyse der Boeden. Eine Pilotanlage ist in Planung. Der erste Abschnitt der Forschungsarbeit umfasst die Analyse von Boeden auf Mineraloelkohlenwasserstoffen in ihrer Konzentration und Zusammensetzung. Die Sanierung der Bodenproben stellte sich je nach Art der Kohlenwasserstoffe unterschiedlich dar. Der zweite Schritt der Forschungsarbeit umfasst die Analyse von Boeden auf Ruestungs- und Sprengstoffrueckstaende. Erste Erkenntnisse der Sanierungserfolge sind fruehestens Ende 1996 zu erwarten.
Um das Beratergremium Umweltrelevanter Altstoffe (BUA) bei der Erstellung von Stoffberichten zu unterstützen, wurden die Konzentrationen ausgewählter Verbindungen in Mineralöl-Prozentprodukten ermittelt. Für die Untersuchungen wurden Proben der 3 Ottokraftstoffsorten (Normal, Super und SuperPlus) sowie von Dieselkraftstoff, Jet A 1 und Heizöl EL im Dezember 2001 (Winterware) und im Februar 2002 (Übergangsware) durch 10 deutsche Raffinerien zur Verfügung gestellt. Für jedes Produkt wurden diese Proben zu einer Durchschnittsprobe zusammengeführt, wobei der Produktausstoß der jeweiligen Raffinerie für das Mischungsverhältnis zugrunde gelegt wurde. Die so gebildeten 12 Durchschnittsproben (6 Produkte, 2 Jahreszeiten) wurden in drei Laboratorien auf die durch das BUA namentlich genannten Verbindungen untersucht. Zusätzlich zu den Konzentrationen der Verbindungen in der Flüssigphase wurde die Gleichgewichtskonzentration in der Gasphase für zwei Temperaturen mit einer rechnerischen Methode ermittelt..
Mit der industriellen Entwicklung und Gründung von zahlreichen Industriebetrieben in Berlin-Oberschöneweide erfolgte auch die Errichtung und Inbetriebnahme des Wasserwerks Wuhlheide (1916). Als Folge von Kriegseinwirkungen, Handhabungsverlusten, anderen Schadensereignissen und mangelndem Umweltbewusstsein erfolgte über Jahrzehnte hinweg der Eintrag von Schadstoffen in die Umweltkompartimente Boden und Grundwasser, die sich, ausgehend von den industriell genutzten Flächen im sogenannten „Spreeknie“, in Richtung der Förderanlagen des Wasserwerks verlagerten. Zu den am häufigsten nachgewiesenen Schadstoffklassen gehören die leichtflüchtigen halogenierten Kohlenwasserstoffe (LCKW und FCKW), die aromatischen und polyaromatischen Kohlenwasserstoffe (BTEX und PAK), Mineralöle (MKW) und untergeordnet Phenole, Cyanide und Aniline. Insbesondere LCKW, FCKW, BTEX und Aniline stellen aufgrund ihrer hohen Mobilität im Grundwasser eine Gefahr für die Trinkwassergewinnung dar. Bereits 1920 musste eine Brunnengruppe der Westgalerie aufgrund starker Verunreinigungen mit hauptsächlich Phenolen, die vom nahegelegenen Gaskokereistandort am Blockdammweg stammten, außer Betrieb genommen und zurückgebaut werden. In den 1980er Jahren wurden weitere Brunnen der Gruppe 2 bis 4 des Wasserwerks Wuhlheide wegen organischer Schadstoffbelastung stillgelegt. In einzelnen Förderbrunnen der Brunnengruppe 10 der Westgalerie wurden in den 1990er Jahren Belastungen des Grundwassers durch LCKW nachgewiesen. Durch die Einleitung von hydraulischen Sofortmaßnahmen im Anstrom konnte hier jedoch eine Stilllegung abgewehrt werden. Im Bereich der Ostgalerie wurde die ehemalige Brunnengruppe 9 zudem durch eine Verunreinigung mit den Pflanzenschutzmitteln Meco- und Dichlorprop gefährdet. Die Transferpfade (Schadstofffahnen) der verschiedenen Kontaminanten von den Eintragsbereichen zu den Förderbrunnen des Wasserwerks Wuhlheide befinden sich überwiegend in Siedlungs- bzw. Wohnbereichen von Oberschöneweide sowie den Gewerbegebieten in Rummelsburg. Seit 1991 wurden in einzelnen Förderbrunnen der Westgalerie des Wasserwerks Wuhlheide – primär in der ehemaligen Brunnengruppe 10 – Belastungen des Grundwassers durch leichtflüchtige chlorierte Kohlenwasserstoffe (LCKW) nachgewiesen. Die Quellbereiche der Fahne wurden auf den ca. 1 km südwestlich von der Brunnengalerie gelegenen Industriegrundstücken im sogenannten „Spreeknie“ lokalisiert. Dazu gehörten: WF Werk für Fernsehelektronik Betriebsteil Nord, später Bildschirmproduktion durch Samsung SDI Germany GmbH, heute Handwerk und Mischgewerbe. Betriebsteil Süd, heute TGS Technologie und Gründerzentrum Spreeknie. Kabelwerke Oberspree (KWO), heute u. a. Standort der HTW Hochschule für Technik und Wirtschaft Berlin, Campus Wilhelminenhof AE Berliner Batterie und Akkumulatorenfabrik, heute fortgesetzt Batterieproduktion Bis zur Aufnahme grundstücksbezogener Sanierungsmaßnamen zur Beseitigung der Schadstoffquellen in den Eintragsbereichen sowie der Umsetzung hydraulischer Sicherungsmaßnahmen in 1994 / 1995 erfolgte im unbedeckten 1. Grundwasserleiter vor allem für die Kontaminanten LCKW und FCKW ein weitgehend ungehinderter Abstrom in Richtung der Wasserfassungen (Förderbrunnen) der Westgalerie des Wasserwerkes Wuhlheide. Im Rahmen verschiedener Erkundungskampagnen seit 1991 konnte zunächst eine großflächige Schadstofffahne (LCKW) ermittelt werden, welche sich im ersten Grundwasserleiter, ausgehend von den o.g. ehem. Industriegrundstücken (v. a. WF Nord und Süd) unter dem Wohngebiet Oberschöneweide bis in die Wuhlheide, dem nahen Zustrombereich der Förderbrunnen der Westgalerie (Brunnengruppe 9, 10 und 11) erstreckte. Später wurden, teilweise überlagernd bzw. leicht nördlich versetzt zur Schadstofffahne LCKW, wenn auch in geringerer Breite, den Wasserfassungen zuströmende Verunreinigungen des Grundwassers durch FCKW festgestellt. Als Eintragszentrum der FCKW-Belastungen wurden ebenfalls Teilflächen des ehem. WF Nord und Süd identifiziert. Während sich die Kontaminationen durch FCKW auf den 1. unbedeckten Grundwasserleiter beschränkten, wurde für LCKW lokal auch ein Übergang in den 2. Aquifer, verbunden mit einem Abstrom geringer Frachten zu den Wasserwerksfassungen nachgewiesen. Ziel von Gefahrenabwehrmaßnahmen in dem Transferpfad bzw. im unmittelbaren Wasserwerksbereich ist zum einen die Verhinderung einer weiteren Verlagerung der Schadstofffahnen in Richtung der Wasserfassungen des Wasserwerks Wuhlheide (Sicherung), zum anderen wurden und werden in den Belastungsschwerpunkten der Fahnen Sanierungsmaßnahmen zur Verkürzung der Sicherungslaufzeiten durchgeführt. Auf Grundlage hydraulischer Modellrechnungen erfolgte in einem ersten Schritt die Umsetzung des hydraulischen Sicherungs- und Sanierungskonzeptes, infolgedessen seit 1995 die Grundwasserförderung auf den vier Eintragsgrundstücken stattfand. Seit 1997 wurde das Messstellennetz schrittweise erweitert, um die FCKW/LCKW-Schadstofffahnen abzugrenzen und weitere Sanierungsmaßnahmen im Transferpfad zu planen. Seit 2000 wurden auf dem Transferpfad an 5 Standorten Grundwasserreinigungsanlagen betrieben, von denen heute nur noch eine Anlage an der Christuskirche in Betrieb ist. Die hydraulischen Sicherungs- und Sanierungsmaßnahmen im Transferpfad konnten die Belastungssituation im LHKW-Fahnenbereich deutlich verbessern. Als Folge konnten die im Transferpfad betriebenen Grundwasserreinigungsanlagen im Verlauf der 2000er Jahre sukzessive zurückgebaut werden. Seit Beginn 2017 erfolgt die alleinige Abstromsicherung über die Sicherungs-/ Sanierungsmaßnahme „Christuskirche“, deren Anlage zur Zeit mit zwei Brunnen betrieben wird. Am nördlichsten Sicherungsbrunnen sind die LHKW-Belastungen seitdem so weit zurückgegangen, dass die Anforderungen zur Direkteinleitung des Rohwassers in den Regenwasser-Kanal erfüllt werden. Die Fortführung der Abstromsicherung zur Gefahrenabwehr und Sanierung des LHKW-Transferpfades ist mittelfristig weiterhin erforderlich. Der Fokus der Sicherung und Sanierung liegt aus Toxizitätsgründen auf den LCKW Einzelparameter Vinylchlorid, der weiterhin die geltenden Prüfwerte um ein Vielfaches überschreitet. Zur Unterstützung der hydraulischen Sanierungsmaßnahme auf dem Transferpfad wird seit 2012 durch in-situ-Verfahren mittels O2-Direktgasinjektion der vollständige mikrobiologische LCKW-Abbau (Umsetzung von Vinylchlorid zu Ethen) in Feldversuchen geprüft und mit Isotopenanalysen abgeglichen. Zur weiteren Steuerung und Optimierung der laufenden hydraulischen Maßnahme wird das Grundwassermonitoring fortgeführt. Besonderes Augenmerk gilt der Entwicklung der Belastungssituation im unmittelbaren Anstrom an die Westgalerie des Wasserwerks Wuhlheide, um die erreichte Qualität der Grundwasserbeschaffenheit weiter zu überprüfen und im Bedarfsfall die Maßnahmen zur Transferpfadsicherung weiter zu optimieren. Der Gesamtschadstoffaustrag von 2002 bis Ende 2018 beläuft sich auf insgesamt 1.212 kg LCKW sowie 1.550 kg FCKW. Zur Unterstützung der hydraulischen Sanierungsmaßnahmen auf dem Transferpfad soll weiterhin auch die Anwendbarkeit von in-situ-Verfahren zum vollständigen mikrobiologischen LCKW-Abbau (Umsetzung von Vinylchlorid zu Ethen) geprüft werden. Erste Versuche zur passiven Einbringung von Sauerstoff in den Aquifer (iSOC-Verfahren) wurden bereits im Zeitraum April 2012 bis Mai 2013 durchgeführt. Im Jahr 2015 ist die Fortsetzung der Einsatzprüfung von in-situ-Sanierungsverfahren im Rahmen eines Feldversuchs zur Direktgasinjektion vorgesehen. Die Gesamtkosten für die Sicherungsmaßnahmen, die direkt den Transferbereichen zuzurechnen sind, beliefen sich bis Ende 2018 auf ca. 8,8 Mio. €. In 2008 wurde durch die Berliner Wasserbetriebe (BWB) der Nachweis von Anilinverbindungen (Aniline, Chloraniline) und Chlorbenzolen in der Brunnengruppe 5 der Westgalerie des Wasserwerks Wuhlheide erbracht. In der Folge wurden die ehemaligen Brunnengruppen 5 und 6 außer Betrieb genommen. Als möglicher Quellbereich der Verunreinigungen wurde auch anhand von Modellrechnungen ein nördlich gelegener ehem. Industriestandort identifiziert. Dort ist in dem Zeitraum 1895 bis 1945 mit der Herstellung von Farben auch die Verwendung von Anilinen ((Di-)Chlor-/ (Di-)Methylaniline), Chlorbenzolen, Chlornitrobenzolen und anderen produktionsspezifischen Stoffen erfolgt. Bedingt durch die hohen Förderleistungen aus der früheren Betriebszeit des Wasserwerks (um 1980), ist eine Verlagerung der Kontaminanten in Richtung der Wasserwerksbrunnen erfolgt, wobei die Schadstoffe dabei auch den 3 Aquifer (ca. 70 – 100 m Tiefe) erreicht haben. Die große Tiefenlage der Belastungen sowie der komplex aufgebaute Grundwasserleiter sind verantwortlich für die hohen Aufwendungen zur Erkundung und Sanierung des Grundwasserschadens in dem Transferbereich zu den Wasserwerksbrunnen. Als sofortige Gefahrenabwehrmaßnahme für die aktiven Wasserfassungen des Wasserwerks Wuhlheide wurden 3 Brunnen der ehem. Hebergruppe 5 in 2010 zu eigenbewirtschafteten Sicherungsbrunnen umgebaut. Die Reinigung des geförderten Grundwassers (jeweils 25 m³/h) erfolgt mittels Aktivkohle über eine Grundwasserreinigungsanlage. Dabei wurde der Nachweis über die hohe Wirksamkeit des mikrobiologischen Abbaus in dem Reaktor erbracht. Seit 2003 bis 2015 wurden mehrere Quell-/ Eintragsbereiche mittels Bodenaustausch durch Großlochbohrungen, Wabenverfahren und gespundete Gruben saniert. In 2010 wurde auch dort der Förderbetrieb aus sechs Brunnen als hydraulische Sicherungs-/ Sanierungsmaßnahme aufgenommen, um eine fortgesetzte Verfrachtung der Kontaminanten zu den Wasserfassungen sowie in die nahe gelegene Spree (Vorfluter) zu verhindern. Zur Erkundung der Verbreitung sowie der Fließwege der Verunreinigungen durch Anilinverbindungen und Chlorbenzole als Basis für die Planung weiterer möglicher Gefahrenabwehrmaßnahmen wurden in 2011/2012 insgesamt acht mehrfach ausgebaute Grundwassermessstellen mit Endtiefen von 80 bis 100 m unter Geländeoberkante errichtet. Die Festlegung der Filterstrecken erfolgte entsprechend den Ergebnissen von vorlaufender tiefenorientierter Beprobungen des Grundwassers. Zur Verifizierung der Verunreinigungen durch die Kontaminanten wurden in 2014 an einer Auswahl der neu errichteten Pegel Immissionspumpversuche durchgeführt. Die Reinigung des anfallenden Wassers erfolgte über mobile Grundwasserreinigungsanlagen. Daneben wurde anhand kontinuierlicher Beobachtung der Grundwasserstände (Drucksonden mit Datenloggern) die hydraulische Kommunikation zwischen den Grundwasserleiten untersucht. Im Rahmen eines Pumpversuches an einer hoch belasteten Grundwassermessstelle wurde in 2010/2011 eine große Schadstoffnachlieferung festgestellt, die, zumindest für lokale Bereiche, ein ergiebiges Schadstoffpotential belegt. Zur Beobachtung der Belastungssituation ist zunächst die Fortführung des halbjährlichen Grundwassermonitorings vorgesehen. Daneben werden die hydraulischen Sicherungsmaßnahmen sowohl in dem Quellbereich als auch im nahen Anstrom der Wasserfassungen des Wasserwerks Wuhlheide weiter betrieben. Zur weiteren Überprüfung der hydrodynamischen Situation sowie der Verlagerungen der Belastungen in den Grundwasserleitern 1 und 2 (Fließwege) ist in 2015 die Errichtung zusätzlicher Messstellen mit vorlaufender teufenorientierter Beprobung des Grundwassers geplant. Ggf. ist auch eine Sanierung nachgewiesener Belastungsschwerpunkte innerhalb der Schadstofffahne erforderlich. Die Kosten für die Durchführung vorstehender Arbeiten zur Erkundung sowie Sicherung der Wasserfassungen des Wasserwerks Wuhlheide beliefen sich bis Ende 2015 auf ca. 1,4 Mio. €. Ende 2000 wurden durch die Berliner Wasserbetrieb anhand routinemäßiger Überprüfungen der Grundwasserqualität in Proben aus den Brunnen der Gruppe 9 Belastungen durch das Pflanzenschutzmittel Mecoprop, untergeordnet Dichlorprop festgestellt. Als Folge war eine weitere Nutzung der Fassungen zur Trinkwassergewinnung nicht möglich und die Umsetzung von Maßnahmen zur Gefahrenabwehr notwendig. Die Ursache für die Grundwasserbelastungen (Quell-/ Eintragsbereich) konnte auch als Ergebnis der nachfolgend genannten Erkundungsmaßnahmen nur vermutet werden. In 2002 bis 2008 sind mit der teufenorientierten Beprobung des Grundwassers an 72 Standorten zunächst umfangreiche Erkundungen zur vertikalen sowie lateralen Verbreitung der Verunreinigungen vorgenommen worden. Als Ergebnis der Arbeiten wurden in 2004 und 2010 / 2011 sechs mehrfach ausgebaute Grundwassermessstellen errichtet. Zur Verhinderung eines weiteren Abstroms der Kontaminanten wurden zunächst die Heberbrunnen der Gruppe 9 (BWB) zu eigenbewirtschafteten Brunnen umgebaut und der Förderbetrieb als hydraulische Sicherungsmaßnahme in 2003 aufgenommen. Als Ergebnis von Modellrechnungen zur Optimierung der Maßnahme und mangels Regenerierbarkeit der Heberbrunnen wurden in 2012 zwei neue Sicherungsbrunnen im Anstrom der Brunnengruppe in Betrieb genommen. In 2013 wurde mit dem Förderbetrieb bei einer Entnahmerate von jeweils 40 m³/h begonnen. Die Reinigung des anfallenden Grundwassers erfolgt mittels Wasser-Aktivkohle. Durch das begleitende Monitoring wird die Wirksamkeit der Sicherung überprüft. Zur weiteren Beobachtung der Grundwasserbeschaffenheit ist die Fortführung der periodischen Beprobungen (Monitoring) vorgesehen. Zur Überprüfung einer sicheren Erfassung der Belastungen durch Meco- und Dichlorprop durch die hydraulische Maßnahme ist für 2015 die Errichtung von 3 zusätzlichen Messstellengruppen (Ausbau 2-fach) und ggf. eines weiteren Sicherungsbrunnens geplant. Die Kosten für die Erkundungsarbeiten sowie die Umsetzung und den Betrieb der hydraulischen Sicherungsmaßnahme belaufen sich bis heute auf ca. 1,7 Mio. €.
Klimawandel bezeichnet eine längerfristige Temperaturänderung der Erdatmosphäre. In den vergangenen zwei bis drei Millionen Jahre gab es auf der Erde einen zyklischen Wechsel von Warm- und Kaltphasen. Das ist im Wesentlichen auf die Neigung der Erdachse und die elliptische Umlaufbahn der Erde um die Sonne und dem daraus resultierenden Abstand der Erde zur Sonne sowie dem Einstrahlungswinkel der Sonnenstrahlen auf die Erde zurückzuführen. Auch die ebenfalls zyklischen Veränderungen unterliegende Aktivität der Sonne hat Einfluss auf das Erdklima. Darüber hinaus gibt es weitere natürliche Faktoren wie beispielsweise Vulkanismus und durch Rückkopplungseffekte verursachte Veränderungen der Meeresströmungen, die das Klima beeinflussen. In den letzten 150 Jahren hat jedoch der Mensch entschieden dazu beigetragen, die Konzentration von Treibhausgasen in der Atmosphäre zu erhöhen und so eine globale Erwärmung voranzutreiben. Das ist auf die massive Nutzung fossiler Energieträger (Kohle, Erdöl und Erdgas) und eine veränderte Landnutzung, wie die Rodung von Wäldern und die Trockenlegung von Mooren zurückzuführen. Laut aktuellem IPCC-Bericht ist die globale atmosphärische Konzentration von CO 2 seit vorindustrieller Zeit um 40 % angestiegen. Die atmosphärischen Konzentrationen von CO 2 , Methan und Stickstoffoxiden sind mittlerweile so hoch wie nie zuvor innerhalb der letzten 800.000 Jahre. In jeder der letzten drei Dekaden fand eine zunehmende Erwärmung der Erdoberfläche statt, die stärker war als in jeder zurückliegenden Dekade seit 1850. Die Folgen sind bereits deutlich erkennbar. Global findet eine Erwärmung der Atmosphäre und der Ozeane statt, Permafrostböden tauen auf und setzen Methan frei, das Meereis schmilzt, ebenso die Eisschilde des Festlandes, der Meeresspiegel steigt, und zwar schneller, als bisherige Modelle dies erwarten ließen. Regional kommt es vermehrt zu Extremwetterereignissen wie Hitzeperioden, Stürmen, Starkregenereignissen und Hagel. Im Juli 2016 hat das Potsdam-Institut für Klimafolgenforschung (PIK) eine durch die vormalige Senatsverwaltung für Stadtentwicklung und Umwelt in Auftrag gegebene Konzeptstudie zur Anpassung an die Folgen des Klimawandels in Berlin (AFOK) vorgelegt. Die Studie beschreibt auf Basis aktueller wissenschaftlicher Erkenntnisse die Klimazukunft Berlins bis zum Ende des Jahrhunderts und benennt Handlungsoptionen zur Anpassung an die Auswirkungen der klimatischen Veränderungen. Sie bildet die Grundlage für das Berliner Anpassungsprogramm als Teil des Berliner Energie- und Klimaschutzprogramms (BEK). Mit Hilfe eines Indikatoren basierten Klimafolgenmonitorings wird die Entwicklung klimatischer Parameter in der Vergangenheit und Gegenwart hinsichtlich erkennbarer Trends überwacht. Darüber hinaus sollen damit die eintretenden Klimafolgen frühzeitig erkannt werden, um Anpassungsmaßnahmen zielgerichtet planen und durchzuführen zu können. Auswirkungen des Klimawandels Weitere Informationen Klimafolgenmonitoring Weitere Informationen Programm zur Anpassung an die Folgen des Klimawandels in Berlin Weitere Informationen Berliner Energie- und Klimaschutzprogramm 2030 (BEK 2030) Stadtentwicklungsplan (StEP) Klima Zentrum KlimaAnpassung IPCC-Berichte Global Change Institute
Seismische Stationen in Niedersachsen Seismische Stationen in Niedersachsen werden von verschiedenen Institutionen und zu unterschiedlichen Zwecken betrieben. Dazu gehören Stationen zur dauerhaften und unabhängigen Überwachung durch staatliche Erdbebendienste und Forschungsinstitutionen, Stationen zur Überwachung von Bergbauaktivitäten durch Industrieunternehmen und zeitweilig installierte Stationen zum Beispiel im Rahmen von Forschungsprojekten. Der Niedersächsische Erdbebendienst (NED) im LBEG betreibt seismische Stationen im Rahmen der folgenden Messnetze und Aufgaben. Stationen dieser Messnetze werden auf dem Kartenserver dargestellt: 1) Landesmessnetz Niedersachsen (LBEG): Unabhängige Erdbebenüberwachung in Niedersachsen Das Landesmessnetz Niedersachsen dient der systematischen Registrierung von natürlichen und anthropogen verursachten, induzierten Erdbeben in Niedersachsen. Es befindet sich zurzeit im Aufbau. Vorbereitet sind sechs Stationen, die vor allem in Gebieten Niedersachsens installiert werden, in denen bislang noch keine seismischen Stationen betrieben worden sind. Hochempfindliche Seismometer und Standorte an seismisch ruhigen Standorten sollen die flächendeckende Registrierung von Erdbeben auch deutlich unterhalb der Spürbarkeit des Menschen ermöglichen. 2) Kooperationsnetz Niedersachsen (LBEG, BGR): Unabhängige Erdbebenüberwachung im Gebiet der Erdgasförderregionen In den Erdgasförderregionen im zentralen Niedersachsen betreibt das LBEG ein Messnetz aus hochempfindlichen Seismometern in Kooperation mit der Bundesanstalt für Geowissenschaften und Rohstoffe (BGR). Es befindet sich zurzeit in der technischen Überarbeitung und Erweiterung. Vorbereitet werden sechs Stationen für das Gebiet zwischen Cloppenburg und Munster bzw. Nienburg (Weser) und Rotenburg (Wümme). Induzierte Erdbeben im Zusammenhang mit Erdgasförderung können durch dieses Messnetz noch besser bewertet werden. Zum Beispiel werden Lokalisierungen mit geringen Unsicherheiten von +/-2 km angestrebt, so dass schwache Erdbeben besser ausgewertet werden können. Weitere seismische Messnetze in Niedersachsen ohne Beteiligung des LBEG werden im Folgenden kurz beschrieben. Für detaillierte Informationen verweisen wir auf die Internetseiten der jeweiligen Betreiber. Stationen dieser Messnetze werden auf dem Kartenserver nicht dargestellt: 3) German Regional Seismic Network (GRSN) (Kooperation seismologischer Institute): Erdbebenüberwachung und Forschungsaufgaben Das Deutsche Seismologische Regionalnetz (German Regional Seismic Network, GRSN) wurde in den Neunzigerjahren aufgebaut mit dem Ziel, deutschlandweit hochwertige und einheitliche seismologische Daten zu erheben. Es wird durch die Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) koordiniert und in Zusammenarbeit mit deutschen Hochschul- und Forschungseinrichtungen sowie Landeserdbebendiensten betrieben. Seit seiner Errichtung wird es kontinuierlich ausgebaut. Neben den Stationsnetzen der Landeserdbebendienste liefert es einen wichtigen Beitrag zur Erdbebenüberwachung in Deutschland, in Europa und weltweit. Darüber hinaus liefert es wichtige Daten für Forschungsprojekte. Einige Stationen des GRSN befinden sich in Niedersachsen. Die Standorte der Messstationen sind zum Beispiel einsehbar unter https://www.bgr.bund.de. Eine Liste der wichtigsten Metadaten finden Sie in Textform unter https://eida.bgr.de/fdsnws/station/1/query?format=text&level=station&network=GR. Für weitere Informationen steht Ihnen die BGR als zentrale Ansprechpartnerin zur Verfügung. 4) Stationen der BGR für spezifische Beratungsaufgaben Im Rahmen ihrer spezifischen Beratungs- und Forschungsaufgaben betreibt die Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) seismische Stationen, von denen einige in Niedersachsen installiert sind. Die Standorte der Messstationen der BGR sind einsehbar unter https://www.bgr.bund.de. Eine Liste der wichtigsten Metadaten finden Sie in Textform unter https://eida.bgr.de/fdsnws/station/1/query?format=text&level=station&network=GR. Für weitere Informationen kontaktieren Sie bitte die BGR. 5) Messnetze SON und DEN des Bergschadenskundlichen Beweissicherungssystems (BBS), (BVEG) Zur Überwachung seismischer Ereignisse im Umfeld der Erdgasfördergebiete wird durch den Bundesverband Erdgas, Erdöl und Geoenergie e. V. (BVEG) ein seismisches Messnetz, das Bergschadenskundliche Beweissicherungssystem (BBS), betrieben. Die Überwachung dient zum einen der Bewertung der Auswirkungen von Erschütterungen auf Gebäude. Hierzu werden Erschütterungsmessstationen zur Bewertung entsprechend DIN 4150 betrieben (Messnetz DEN). Diese Stationen sind zumeist in öffentlichen Gebäuden in Ortszentren installiert. Zum anderen wird die Überwachung für weitergehende seismologische Auswertungen genutzt. Hierzu werden Bohrloch- und Oberflächenstationen an seismisch ruhigen Orten betrieben (Messnetz SON). Die Daten des BVEG werden dem NED für die Erdbebenüberwachung im Gebiet der Erdgasförderregionen zur Verfügung gestellt. Die Standorte der Messstationen des Bundesverbandes Erdöl, Erdgas und Geoenergie e.V. (BVEG). sind einsehbar unter http://www.bveg-maps.de/. Für weitere Informationen kontaktieren Sie bitte den BVEG. 6) Temporäre Forschungsprojekte (verschiedene Betreiber) In Forschungsprojekten werden seismologische Detailfragen untersucht. Projekte werden von Universitäten und anderen Forschungsinstituten durchgeführt, öffentlich gefördert, in Zusammenarbeit mit oder im Auftrag von Bergbauunternehmen. Stationen im Rahmen von Forschungsprojekten werden für eine begrenzte Zeit betrieben, je nach Fragestellung typischerweise für einige Wochen bis drei Jahre. Eine Übersicht über Forschungsprojekte seit 2013, in deren Rahmen seismische Stationen betrieben wurden, stellt der NED auf Anfrage zur Verfügung. Für Informationen des Beeinflussungsbereichs von Windenergieanlagen auf seismische Stationen verweisen wir auf die Erläuterungen in den Metadaten des Themas „Seismische Stationen – Beeinflussungsbereich Windenergieanlagen“.
| Origin | Count |
|---|---|
| Bund | 2191 |
| Land | 648 |
| Wissenschaft | 9 |
| Zivilgesellschaft | 5 |
| Type | Count |
|---|---|
| Chemische Verbindung | 1171 |
| Daten und Messstellen | 489 |
| Ereignis | 58 |
| Förderprogramm | 634 |
| Gesetzestext | 1080 |
| Kartendienst | 1 |
| Lehrmaterial | 1 |
| Text | 333 |
| Umweltprüfung | 31 |
| unbekannt | 95 |
| License | Count |
|---|---|
| geschlossen | 1431 |
| offen | 741 |
| unbekannt | 643 |
| Language | Count |
|---|---|
| Deutsch | 2734 |
| Englisch | 608 |
| Resource type | Count |
|---|---|
| Archiv | 161 |
| Bild | 7 |
| Datei | 492 |
| Dokument | 274 |
| Keine | 1975 |
| Unbekannt | 1 |
| Webdienst | 34 |
| Webseite | 345 |
| Topic | Count |
|---|---|
| Boden | 2815 |
| Lebewesen und Lebensräume | 1432 |
| Luft | 1267 |
| Mensch und Umwelt | 2815 |
| Wasser | 1258 |
| Weitere | 2127 |