An Oelschadensfaellen wird untersucht: Ausbreitung/Loesung/Verduennung/Abbau von Mineraloelprodukten in Untergrund und Grundwasser.
Sanierungsrahmenpläne sind eine besondere Form der Braunkohlenpläne im Freistaat Sachsen, welche für jeden stillgelegten oder noch stillzulegenden Tagebau aufzustellen sind. Der Sanierungsrahmenplan enthält Festlegungen zu den Grundzügen der Wiedernutzbarmachung der Oberfläche, zu der anzustrebenden Landschaftsentwicklung sowie zur Wiederherstellung der Infrastruktur. Mit der deutschen Einheit am 3. Oktober 1990 änderten sich die politischen und wirtschaftlichen Rahmenbedingungen für die ostdeutsche Braunkohlenindustrie grundlegend. Der Zusammenbruch der DDR-Wirtschaft, die Modernisierung aller Haushalte und die allgemeine Verfügbarkeit anderer Energieträger (insbesondere Erdöl und Erdgas) führten zu einem starken Absatzrückgang der heimischen Braunkohle. Kraftwerke, Veredlungsanlagen und Tagebaubetriebe erfüllten zudem nicht die bundesdeutschen Umweltstandards. Zahlreiche Tagebaue mussten stillgelegt werden. Die forcierte Entwicklung der Braunkohlenindustrie in der DDR war mit der Zerstörung des Lebensraumes der Menschen und mit erheblichen Eingriffen in Natur und Landschaft verbunden. Ökologische und soziale Belange spielten eine untergeordnete Rolle. Beträchtliche, in einzelnen Tagebauen auf bis zu 20 Jahre geschätzte Rekultivierungsrückstände, Sand-und Staubauswehungen, ein gestörter Wasserhaushalt und Altlasten waren die Hinterlassenschaften des Braunkohlenbergbaus in der Lausitz. Hinzu kamen kilometerlange ungesicherte Tagebauböschungen sowie riesige ungesicherte Tagebaukippen, die eine Gefahr für die öffentliche Sicherheit darstellten. In dieser besonderen Situation und angesichts des Umfangs der notwendigen Sanierungsarbeiten und des allgemeinen öffentlichen Interesses mussten in transparenten, förmlichen Verfahren Braunkohlenpläne mit inhaltlichen Vorgaben für eine geordnete Sanierung erarbeitet und Konflikte aufgelöst werden. Dies wird in der Regional- und Sanierungsrahmenplanung im Freistaat Sachsen insbesondere über die kommunale Mitwirkung sichergestellt.
Die Mineralölverbundleitung GmbH Schwedt, Lange Straße 1, 16303 Schwedt/Oder beantragt für die Erhöhung der Versorgungssicherheit der PCK Raffinerie GmbH aus dem Tanklager Heinersdorf über den Rückwärtsbetrieb der Rohölpipeline Freundschaft drei in die Rohölpipeline Freundschaft eins, im Landkreis Uckermark, die erste Planänderung zur Plangenehmigung nach § 65 des Gesetzes über die Umweltverträglichkeitsprüfung (UVPG). Das Projekt sieht vor, den Förderweg des Rohöls für diese Sonderfahrweise durch die Armaturenstellungen im Tanklager Heinersdorf, in der Trassenstation DS III und in der Trassenstation Gellmersdorf zu ändern. Es werden keine zusätzlichen Bauarbeiten vorgenommen.
Um das Beratergremium Umweltrelevanter Altstoffe (BUA) bei der Erstellung von Stoffberichten zu unterstützen, wurden die Konzentrationen ausgewählter Verbindungen in Mineralöl-Prozentprodukten ermittelt. Für die Untersuchungen wurden Proben der 3 Ottokraftstoffsorten (Normal, Super und SuperPlus) sowie von Dieselkraftstoff, Jet A 1 und Heizöl EL im Dezember 2001 (Winterware) und im Februar 2002 (Übergangsware) durch 10 deutsche Raffinerien zur Verfügung gestellt. Für jedes Produkt wurden diese Proben zu einer Durchschnittsprobe zusammengeführt, wobei der Produktausstoß der jeweiligen Raffinerie für das Mischungsverhältnis zugrunde gelegt wurde. Die so gebildeten 12 Durchschnittsproben (6 Produkte, 2 Jahreszeiten) wurden in drei Laboratorien auf die durch das BUA namentlich genannten Verbindungen untersucht. Zusätzlich zu den Konzentrationen der Verbindungen in der Flüssigphase wurde die Gleichgewichtskonzentration in der Gasphase für zwei Temperaturen mit einer rechnerischen Methode ermittelt..
Biologie und Chemie des mikrobiellen Oelabbaues. Verbreitung von Oelen und oelabbauenden Mikroorganismen im Meer in verunreinigten und nicht verunreinigten Gebieten. Abbaupotenzen und Abhaengigkeit von ozeanographischen und hydrochemischen Faktoren unter Verwendung von markierten Substanzen. Bearbeitung von Oelunfaellen. Teilnahme an Grossexperimenten zur Veroelung in Westschottland. Experimentelle Untersuchungen zu begrenzenden Faktoren des Oelabbaues. Entwicklung analytischer Methoden zur chemischen Unterscheidung von biogenen-Rezenten von fossilen Kohlenwasserstoffen. Fraktionierung stabiler Isotopen (der Kohlenwasserstoffe) durch oelabbauende Bakterien.
<p>CDs und DVDs auf den Wertstoffhof statt in die Tonne</p><p>So gelingt ein umweltbewusster Umgang mit CDs und DVDs </p><p><ul><li>CDs,DVDs und Blu-Rays sind zu wertvoll für die Mülltonne: Entsorgen Sie die wertvollen Scheiben am besten über Rücknahmesysteme oder in der Wertstofftonne.</li><li>Für CDs, DVDs oder Blu-Rays mit Musik, Hörbüchern oder Filmen ist ein Verkauf, Tausch oder Verschenken eine sinnvolle Option.</li><li>Kaufen Sie größere Rohling-Stückzahlen erst, wenn Sie sicher sind, dass Brenner und Abspielgerät damit harmonieren.</li><li>Nutzen Sie mehrfach beschreibbare CDs.</li></ul></p><p>Gewusst wie</p><p>CDs und DVDs bestehen überwiegend aus Polycarbonat, einem hochwertigen und verhältnismäßig teuren Kunststoff. CDs und DVDs lassen sich mit geringem Aufwand recyceln. Aus dem aufbereiteten Polycarbonat können zum Beispiel Produkte für die Medizintechnik, die Automobil- und die Computerindustrie, aber auch wieder CDs und DVDs hergestellt werden. Eine Verwertung ist nicht nur wirtschaftlich sinnvoll, sondern hilft auch Erdöl und CO2-Emissionen zu sparen.</p><p><strong>Richtig entsorgen:</strong></p><p>Bei sensiblen Daten empfiehlt es sich, die Scheiben durch mehrere Kratzer über die Breite der lesbaren Seite unbrauchbar zu machen. Bei hochsensiblen Daten besteht die Möglichkeit, diese mit Hilfe eines geeigneten Aktenvernichters zu zerkleinern.</p><p><strong>Achtung:</strong> Angesichts der geringen Menge an Kunststoff ist es nicht sinnvoll, extra mit dem Auto irgendwo hinzufahren, um CDs und DVDs zu entsorgen. Auf diese Weise würde man mit dem Auto mehr Erdöl verbrauchen, als man durch die Wiederverwertung der CDs/DVDs einsparen kann.</p><p><strong>Pfleglich behandeln:</strong> CDs und DVDs sind empfindliche Scheiben. Bei pfleglicher Behandlung können Sie die Lebenszeit der Scheiben verlängern und damit auch Ihre Daten länger sichern:</p><p><br><strong>Was Sie noch tun können:</strong></p>
<p>Bedingt durch seine hohe atmosphärische Konzentration ist Kohlendioxid nach Wasserdampf das wichtigste Klimagas. Die globale Konzentration von Kohlendioxid ist seit Beginn der Industrialisierung um gut 50 % gestiegen. Demgegenüber war die Kohlendioxid-Konzentration in den vorangegangenen 10.000 Jahren annähernd konstant. Konzentrationen weiterer Treibhausgase tragen ebenfalls zum Klimawandel bei.</p><p>Kohlendioxid </p><p>Durch das Verbrennen fossiler Energieträger (wie zum Beispiel Kohle und Erdöl) und durch großflächige Entwaldung wird Kohlendioxid (CO2) in der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> angereichert. Diese Anreicherung wurde durch die Wissenschaft unzweifelhaft nachgewiesen.</p><p>Die weltweite Kohlendioxid-Konzentration lag im Jahr 2024 bei 422,79 (<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=ppm#alphabar">ppm</a>) Kohlendioxid (<a href="https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_annmean_gl.txt">NOAA 2024</a>). Hinzu kommen Konzentrationen weiterer Treibhausgase, die ebenfalls zum weltweiten <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a> beitragen.</p><p>Die <a href="https://www.umweltbundesamt.de/presse/pressemitteilungen/uba-misst-neue-rekordwerte-fuer-kohlendioxid">Auswertung von Messungen</a> der atmosphärischen Kohlendioxid-Konzentration für das Jahr 2015 an den Messstationen des Umweltbundesamtes Schauinsland (Südschwarzwald) und auf der Zugspitze hat gezeigt, dass in diesem Jahr die Konzentration an beiden Stationen im Jahresdurchschnitt erstmals über 400 µmol/mol (ppm) lag. Zum Vergleich: Die Kohlendioxid-Konzentration aus vorindustrieller Zeit lag bei etwa 280 µmol/mol (ppm).</p><p>Auf Deutschlands höchstem Gipfel sind die Messwerte besonders repräsentativ für die Hintergrundbelastung der Atmosphäre, da die Zuspitze häufig in der unteren freien <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Troposphre#alphabar">Troposphäre</a> liegt und somit weitestgehend unbeeinflusst von lokalen Quellen ist. Im Jahr 2024 stieg der Jahresmittelwert auf der Zugspitze auf 424,2 µmol/mol (ppm) (siehe Abb. „Kohlendioxid-Konzentration in der Atmosphäre (Monatsmittel)“).</p><p>Lange Messreihen ergeben ein zuverlässiges Maß für den globalen Anstieg der Kohlendioxid-Konzentration. Dank ihrer Genauigkeit ermöglichen sie es, den Effekt der Verbrennung fossiler Brennstoffe von natürlichen Konzentrations-Schwankungen zu unterscheiden. Auf dieser Grundlage kann die langfristige Veränderung des Kohlendioxid-Vorrats in der Atmosphäre mit Klimamodellen genauer analysiert werden.</p><p>Die Auswertung der Messreihe vom aktiven Vulkan Mauna Loa auf Hawaii werden zur Bestimmung des globalen Kohlendioxid-Anstiegs genutzt, da sich die Messstation in größer Höhe und weit entfernt von störenden Kohlendioxidquellen befindet. Während in den 1960er-Jahren der jährliche Anstieg auf Mauna Loa (aktiver Vulkan auf Hawaii, wo) im Mittel noch bei 0,86 µmol/mol (ppm) Kohlendioxid lag, stieg der Welttrend in den vergangenen 15 Jahren im Mittel auf 2,47 µmol/mol (ppm) pro Jahr, in Mauna Loa auf 2,5 µmol/mol (ppm) pro Jahr. Gegenüber den 1950er-Jahren wurde damit der globale Kohlendioxid-Anstieg annähernd verdreifacht.</p><p>Methan</p><p>Bis 2024 stieg die weltweite Methan-Konzentration bis etwas über 1929,7 nmol/mol (<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=ppb#alphabar">ppb</a>).</p><p>An der Messstation Zugspitze wurde für 2024 ein Jahresmittelwert von 2003 nmol/mol (ppb) gemessen (siehe Abb. „Methan-Konzentration in der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> (Monats- und Jahresmittelwerte)“).</p><p>Lachgas</p><p>Weltweit lag die Lachgas-Konzentration im Jahr 2024 bei über 337,7 nmol/mol (<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=ppb#alphabar">ppb</a>).</p><p>An der Messstation Zugspitze wurde für 2024 ein Jahresmittelwert von 338,5 nmol/mol (ppb) gemessen (siehe Abb. „Lachgas-Konzentration in der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> (Monatsmittelwerte)“).</p><p>Beitrag langlebiger Treibhausgase zum Treibhauseffekt</p><p>In der Summe bilden Kohlendioxid (CO2), Methan, Lachgas und die halogenierten Treibhausgase den sogenannten <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhauseffekt#alphabar">Treibhauseffekt</a>: Die langlebigen Treibhausgase leisteten 2023 einen Beitrag zur globalen Erwärmung <a href="http://www.esrl.noaa.gov/gmd/aggi/aggi.html">(NOAA 2024)</a> von insgesamt 3,485 W/m² (Watt pro Quadratmeter). Verglichen mit dem Stand von 1990 ergibt dies eine Zunahme von fast 52 %. Dabei leistet atmosphärisches CO2 den vom Menschen in erheblichem Umfang mit verursachten Hauptbeitrag zur Erwärmung des Erdklimas. In Folge dieser Klimaerwärmung nimmt auch der sehr mobile und wechselnd wirkende Wasserdampf in der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> zu. Im Vergleich zu CO2 ist dieser zwar deutlich maßgebender für die Erwärmung, atmosphärisches CO2 bleibt aber der vom Menschen verursachte Hauptantrieb.</p><p>Wie stark die verschiedenen langlebigen Klimagase im Einzelnen zur Erwärmung beitragen, ist in der Abbildung „Beitrag zum Treibhauseffekt durch Kohlendioxid und langlebige Treibhausgase 2023“ zu sehen. Der größte Anteil dabei entfällt auf Kohlendioxid mit etwa 66 %, gefolgt von Methan mit 16 %, Lachgas mit 6%, und den halogenierten Treibhausgasen insgesamt mit 12 %.</p><p>Obergrenze für die Treibhausgas-Konzentration</p><p>Um die angestrebte Zwei-Grad-Obergrenze der atmosphärischen Temperaturerhöhung mit einer Wahrscheinlichkeit von mindestens 66 % zu unterschreiten, müsste die gesamte <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>-Konzentration (Kohlendioxid, Methan, Lachgas und F-Gase) in der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> bis zum Jahrhundertende bei rund 450 <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=ppm#alphabar">ppm</a> Kohlendioxid-Äquivalenten stabilisiert werden. Dabei ist eine kurzfristige Überschreitung dieses Konzentrationsniveaus möglich (<a href="https://www.de-ipcc.de/270.php">IPCC-Synthesebericht</a>).</p><p>2023 lag die gesamte Treibhausgas-Konzentration bei 534 ppm Kohlendioxid-Äquivalenten (siehe Abb. „Treibhausgas-Konzentration in der Atmosphäre“). Um die angestrebte Stabilisierung zu erreichen, müssen die globalen Treibhausgas-Emissionen gesenkt werden. In den meisten Szenarien des Welt-Klimarates (IPCC) entspricht dies einer Menge von weltweiten Treibhausgas-Emissionen zwischen 30 und 50 Milliarden Tonnen (Mrd. t) Kohlendioxid-Äquivalenten im Jahr 2030. Im weiteren Verlauf bis 2050 müssten die Emissionen weltweit zwischen 40 % und 70 % unter das Niveau von 2010 gesenkt werden und bis Ende des Jahrhunderts auf nahezu null sinken. Dazu sind verbindliche Zielsetzungen im Rahmen einer globalen Klimaschutzvereinbarung erforderlich.</p><p>Im Dezember 2015 vereinbarte die Staatengemeinschaft auf der 21. Vertragsstaatenkonferenz unter der <a href="https://www.umweltbundesamt.de/daten/klima/klimarahmenkonvention">Klimarahmenkonvention</a> (COP21) das <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimaschutz#alphabar">Klimaschutz</a>-Übereinkommen von Paris. Darin ist zum ersten Mal in einem völkerrechtlichen Abkommen verankert, dass die durchschnittliche globale Erwärmung auf deutlich unter zwei Grad begrenzt werden soll. Darüber hinaus sollen sich die Vertragsstaaten bemühen, den globalen Temperaturanstieg möglichst unter 1,5 Grad zu halten. Um dieses Ziel zu erreichen, müssen die Treibhausgas-Emissionen sobald wie möglich abgesenkt werden. In der zweiten Hälfte des Jahrhunderts soll eine globale Balance der Quellen und das Senken von Treibhausgas-Emissionen (Netto-Null-Emissionen) erreicht werden. Das bedeutet die Dekarbonisierung der Weltwirtschaft und damit einen Ausstieg aus der Nutzung fossiler Energieträger. Enorme Anstrengungen sind notwendig, um dieses Ziel zu erreichen, und zwar nicht nur in Deutschland, sondern in allen Staaten, insbesondere den Industrienationen. Zur Erreichung der Klimaziele hat Deutschland das <a href="https://www.bundesregierung.de/resource/blob/974430/1679914/e01d6bd855f09bf05cf7498e06d0a3ff/2019-10-09-klima-massnahmen-data.pdf?download=1">Klimaschutzprogramm 2030</a> verabschiedet.</p><p>Weiterführende Informationen</p><p>Auf den folgenden Seiten finden Sie weiterführende Informationen zu internationalen Klimabeobachtungssystemen:</p><p><em>Wir danken der Nationalen Administration für die Ozeane und die Atmosphäre (NOAA Global <a href="https://www.umweltbundesamt.de/service/glossar/m?tag=Monitoring#alphabar">Monitoring</a> Division) in Boulder, USA und dem Scripps Institut für Ozeanography, La Jolla, USA für die CO2-Daten des GAW Globalobservatoriums von Mauna Loa, Hawaii, sowie dem Mace Head GAW Globalobservatorium, Irland und dem AGAGE Projekt für die Lachgasdaten.</em></p>
<p>Die privaten Haushalte benötigten im Jahr 2024 etwa gleich viel Energie wie im Jahr 1990 und damit gut ein Viertel des gesamten Endenergieverbrauchs in Deutschland. Sie verwendeten mehr als zwei Drittel ihres Endenergieverbrauchs, um Räume zu heizen.</p><p>Endenergieverbrauch der privaten Haushalte</p><p>Private Haushalte verbrauchten im Jahr 2024 625 Terawattstunden (<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>) Energie, das sind 625 Milliarden Kilowattstunden (Mrd. kWh). Dies entsprach einem Anteil von gut einem Viertel am gesamten <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a>.</p><p>Im Zeitraum von 1990 bis 2024 fiel der Endenergieverbrauch in den Haushalten – ohne Kraftstoffverbrauch, da dieser dem Sektor Verkehr zugeordnet ist – um 4,5 % (siehe Abb. „Entwicklung des Endenergieverbrauchs der privaten Haushalte“). Dabei herrschten in den Jahren 1996, 2001 und 2010 sehr kalte Winter, die zu einem erhöhten Brennstoffverbrauch für Raumwärme führten. So lag der Energieverbrauch im sehr kalten Jahr 2010 etwa 14 % über dem Wert des eher warmen Jahres 1990.</p><p>Höchster Anteil am Energieverbrauch zum Heizen</p><p>Die privaten Haushalte benötigen mehr als zwei Drittel ihres Endenergieverbrauchs, um Räume zu heizen (siehe Abb. „Anteil der Anwendungsbereiche der privaten Haushalte 2008 und 2024“). Sie nutzen zurzeit dafür hauptsächlich Erdgas und Mineralöl. An dritter Stelle folgt die Gruppe der erneuerbaren Energien, an vierter die Fernwärme. Zu geringen Anteilen werden auch Strom und Kohle eingesetzt. Mit großem Abstand zur Raumwärme folgen die Energieverbräuche für die Anwendungsbereiche Warmwasser sowie sonstige <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozesswrme#alphabar">Prozesswärme</a> (Kochen, Waschen etc.) bzw. <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozessklte#alphabar">Prozesskälte</a> (Kühlen, Gefrieren etc.).</p><p>Mehr Haushalte, größere Wohnflächen – Energieverbrauch pro Wohnfläche sinkt</p><p>Der Trend zu mehr Haushalten, größeren Wohnflächen und weniger Mitgliedern pro Haushalt (siehe „<a href="https://www.umweltbundesamt.de/daten/private-haushalte-konsum/strukturdaten-privater-haushalte/bevoelkerungsentwicklung-struktur-privater">Bevölkerungsentwicklung und Struktur privater Haushalte</a>“) führt tendenziell zu einem höheren Verbrauch. Diesem Trend wirken jedoch der immer bessere energetische Standard bei Neubauten und die Sanierung der Altbauten teilweise entgegen. So sank der spezifische <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> (Energieverbrauch pro Wohnfläche) für Raumwärme seit 2008 um über 40 % (siehe Abb. „Endenergieverbrauch und -intensität für Raumwärme – Private Haushalte (witterungsbereinigt“)).</p><p>Stromverbrauch mit einem Anteil von rund einem Fünftel</p><p>Der Energieträger Strom hat einen Anteil von rund einem Fünftel am <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> der privaten Haushalte. Hauptanwendungsbereiche sind die <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozesswrme#alphabar">Prozesswärme</a> (Waschen, Kochen etc.) und die <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozessklte#alphabar">Prozesskälte</a> (Kühlen, Gefrieren etc.), die zusammen rund die Hälfte des Stromverbrauchs ausmachen. Mit jeweiligem Abstand folgen die Anwendungsbereiche Informations- und Kommunikationstechnik, Warmwasser und Beleuchtung (siehe Abb. „Anteil der Anwendungsbereiche am Netto-Stromverbrauch der privaten Haushalte 2008 und 2024“).</p><p>Direkte Treibhausgas-Emissionen privater Haushalte sinken</p><p>Der Energieträgermix verschob sich seit 1990 bis heute zugunsten von Brennstoffen mit geringeren Kohlendioxid-Emissionen und erneuerbaren Energien. Das verringerte auch die durch die privaten Haushalte verursachten direkten Kohlendioxid-Emissionen (d.h. ohne Strom und Fernwärme) (siehe Abb. „Direkte Kohlendioxid-Emissionen von Feuerungsanlagen der privaten Haushalte“).</p>
Cadmium verdient unter den Schwermetallen besondere Beachtung, da seine Toxizität für Tiere und Menschen erheblich größer als die anderer Schwermetalle ist. Als Akkumulationsgift wird es im Körper angereichert und kann dort über Jahrzehnte verbleiben. Auf Grund seiner chemischen Verwandtschaft zum Zink kommt es fast ausschließlich mit diesem vor, insbesondere in allen zinkführenden Mineralen (u. a. Zinkblende, Galmei) und Gesteinen. Die durchschnittliche Cd-Konzentration der Gesteine der oberen kontinentalen Erdkruste (Clarkewert) beträgt 0,1 mg/kg, in Böden finden sich Gehalte in der Regel 0,50 mg/kg. Im Gegensatz zu As und anderen Schwermetallen (z. B. Cr, Ni) ist in den oberflächennah anstehenden sächsischen Hauptgesteinstypen keine geochemische Spezialisierung auf Cd nachweisbar. Die petrogeochemische Komponente liegt im Bereich des Clarkwertes um 0,1 mg/kg. In den Erzlagerstätten ist Cd vor allem an die Zinkerze der polymetallischen hydrothermalen Gänge und teilweise an die Skarnlagerstätten und stratigen-stratiformen Ausbildungen gebunden (chalkogene Komponente). Seit Beginn der Industrialisierung gelangt Cadmium über die Emissionen der Buntmetallhütten, die Verbrennung von Kohlen und Erdöl und in jüngerer Zeit über Galvanotechnik, Müllverbrennung, Düngemittel, Klärschlämme und Komposte anthropogen in die Umwelt. Während in den Oberböden Nord- und Mittelsachsens niedrige Gehalte dominieren (Cd-arme periglaziäre sandige bis lehmige Substrate; Löss), kommt es in den Verwitterungsböden über Festgesteinen zu einer relativen Anreicherung. Eine Abhängigkeit vom Tongehalt ist insofern festzustellen, dass die sandigen Substrate gegenüber lehmigen Substraten etwas niedrigere Cd-Gehalte aufweisen. Auf Acker- und Grünlandstandorten sind im Vergleich zu den Waldstandorten im Oberboden höhere Cd-Gehalte anzutreffen, da infolge der sehr niedrigen pH-Werte unter Forst eine Cd-Mobilisierung und Verlagerung in größere Bodentiefen stattfindet. Besonders hohe Cd-Belastungen befinden sich im Freiberger Raum, die durch die geogene Cd-Anreicherung bei der Bildung buntmetallführender Erzgänge aber vor allem anthropogen durch die Verhüttung von Zinkerzen verursacht werden. Die höchsten Gehalte sind in den Oberböden in unmittelbarer Nähe der Hüttenstandorte sowie in geringeren Konzentrationen östlich davon (in Hauptwindrichtung) festzustellen. Andere Lagerstättengebiete mit Zinkverzungen im Westerzgebirge und in der Erzgebirgsnordrandzone weisen nur schwach erhöhte Gehalte auf. Eine besondere Stellung bei der Belastung mit Cadmium nehmen die Auenböden der Freiberger und der Vereinigten Mulde ein. Durch die Abtragung von Böden mit geogen verursachten Anreicherungen im Einzugsgebiet und den enormen anthropogenen Zusatzbelastungen durch die Erzaufbereitung und die Hüttenindustrie, kommt es bei Ablagerung der Flusssedimente und Schwebanteile in den Überflutungsbereichen zu hohen Cd-Anreicherungen. In den Auenböden der Elbe und Zwickauer Mulde treten dagegen deutlich niedrigere Gehalte auf. Die geogenen und anthropogenen Prozesse führen im Freiberger Raum und in den Auenböden der Freiberger und Vereinigten Mulde zu flächenhaften Überschreitungen der Prüf- und Maßnahmenwerte der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) für Cadmium.
| Origin | Count |
|---|---|
| Bund | 2190 |
| Land | 625 |
| Wissenschaft | 9 |
| Zivilgesellschaft | 10 |
| Type | Count |
|---|---|
| Chemische Verbindung | 1173 |
| Daten und Messstellen | 489 |
| Ereignis | 58 |
| Förderprogramm | 636 |
| Gesetzestext | 1081 |
| Kartendienst | 1 |
| Lehrmaterial | 1 |
| Text | 320 |
| Umweltprüfung | 32 |
| unbekannt | 88 |
| License | Count |
|---|---|
| geschlossen | 1418 |
| offen | 740 |
| unbekannt | 642 |
| Language | Count |
|---|---|
| Deutsch | 2719 |
| Englisch | 608 |
| Resource type | Count |
|---|---|
| Archiv | 160 |
| Bild | 8 |
| Datei | 494 |
| Dokument | 273 |
| Keine | 1962 |
| Unbekannt | 1 |
| Webdienst | 33 |
| Webseite | 341 |
| Topic | Count |
|---|---|
| Boden | 2800 |
| Lebewesen und Lebensräume | 1371 |
| Luft | 1245 |
| Mensch und Umwelt | 2800 |
| Wasser | 1238 |
| Weitere | 2080 |