API src

Found 2793 results.

Related terms

Energieverbrauch privater Haushalte

<p>Die privaten Haushalte benötigten im Jahr 2024 etwa gleich viel Energie wie im Jahr 1990 und damit gut ein Viertel des gesamten Endenergieverbrauchs in Deutschland. Sie verwendeten mehr als zwei Drittel ihres Endenergieverbrauchs, um Räume zu heizen.</p><p>Endenergieverbrauch der privaten Haushalte</p><p>Private Haushalte verbrauchten im Jahr 2024 625 Terawattstunden (⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>⁠) Energie, das sind 625 Milliarden Kilowattstunden (Mrd. kWh). Dies entsprach einem Anteil von gut einem Viertel am gesamten ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a>⁠.</p><p>Im Zeitraum von 1990 bis 2024 fiel der Endenergieverbrauch in den Haushalten – ohne Kraftstoffverbrauch, da dieser dem Sektor Verkehr zugeordnet ist – um 4,5&nbsp;% (siehe Abb. „Entwicklung des Endenergieverbrauchs der privaten Haushalte“). Dabei herrschten in den Jahren 1996, 2001 und 2010 sehr kalte Winter, die zu einem erhöhten Brennstoffverbrauch für Raumwärme führten. So lag der Energieverbrauch im sehr kalten Jahr 2010 etwa 14 % über dem Wert des eher warmen Jahres 1990.</p><p>Höchster Anteil am Energieverbrauch zum Heizen</p><p>Die privaten Haushalte benötigen mehr als zwei Drittel ihres Endenergieverbrauchs, um Räume zu heizen (siehe Abb. „Anteil der Anwendungsbereiche der privaten Haushalte 2008 und 2024“). Sie nutzen zurzeit dafür hauptsächlich Erdgas und Mineralöl. An dritter Stelle folgt die Gruppe der erneuerbaren Energien, an vierter die Fernwärme. Zu geringen Anteilen werden auch Strom und Kohle eingesetzt. Mit großem Abstand zur Raumwärme folgen die Energieverbräuche für die Anwendungsbereiche Warmwasser sowie sonstige ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozesswrme#alphabar">Prozesswärme</a>⁠ (Kochen, Waschen etc.) bzw. ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozessklte#alphabar">Prozesskälte</a>⁠ (Kühlen, Gefrieren etc.).</p><p>Mehr Haushalte, größere Wohnflächen – Energieverbrauch pro Wohnfläche sinkt</p><p>Der Trend zu mehr Haushalten, größeren Wohnflächen und weniger Mitgliedern pro Haushalt (siehe „<a href="https://www.umweltbundesamt.de/daten/private-haushalte-konsum/strukturdaten-privater-haushalte/bevoelkerungsentwicklung-struktur-privater">Bevölkerungsentwicklung und Struktur privater Haushalte</a>“) führt tendenziell zu einem höheren Verbrauch. Diesem Trend wirken jedoch der immer bessere energetische Standard bei Neubauten und die Sanierung der Altbauten teilweise entgegen. So sank der spezifische ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a>⁠ (Energieverbrauch pro Wohnfläche) für Raumwärme seit 2008 um über 40 % (siehe Abb. „Endenergieverbrauch und -intensität für Raumwärme – Private Haushalte (witterungsbereinigt“)).</p><p>Stromverbrauch mit einem Anteil von rund einem Fünftel</p><p>Der Energieträger Strom hat einen Anteil von rund einem Fünftel am ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a>⁠ der privaten Haushalte. Hauptanwendungsbereiche sind die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozesswrme#alphabar">Prozesswärme</a>⁠ (Waschen, Kochen etc.) und die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozessklte#alphabar">Prozesskälte</a>⁠ (Kühlen, Gefrieren etc.), die zusammen rund die Hälfte des Stromverbrauchs ausmachen. Mit jeweiligem Abstand folgen die Anwendungsbereiche Informations- und Kommunikationstechnik, Warmwasser und Beleuchtung (siehe Abb. „Anteil der Anwendungsbereiche am Netto-Stromverbrauch der privaten Haushalte 2008 und 2024“).</p><p>Direkte Treibhausgas-Emissionen privater Haushalte sinken</p><p>Der Energieträgermix verschob sich seit 1990 bis heute zugunsten von Brennstoffen mit geringeren Kohlendioxid-Emissionen und erneuerbaren Energien. Das verringerte auch die durch die privaten Haushalte verursachten direkten Kohlendioxid-Emissionen (d.h. ohne Strom und Fernwärme) (siehe Abb. „Direkte Kohlendioxid-Emissionen von Feuerungsanlagen der privaten Haushalte“).</p>

3D-Seismik

Das Thema zeigt die Lage der 3D-seismischen Messungen nach derzeitigem Kenntnisstand in den am KW-Verbund beteiligten Bundesländern. Diese Messungen dienen der Strukturerkennung mit dem Ziel unterirdische Lagerstätten (im Wesentlichen Erdgas bzw. Erdöl) zu explorieren.

Seismische Stationen in Niedersachsen (WMS Dienst)

Seismische Stationen in Niedersachsen Seismische Stationen in Niedersachsen werden von verschiedenen Institutionen und zu unterschiedlichen Zwecken betrieben. Dazu gehören Stationen zur dauerhaften und unabhängigen Überwachung durch staatliche Erdbebendienste und Forschungsinstitutionen, Stationen zur Überwachung von Bergbauaktivitäten durch Industrieunternehmen und zeitweilig installierte Stationen zum Beispiel im Rahmen von Forschungsprojekten. Der Niedersächsische Erdbebendienst (NED) im LBEG betreibt seismische Stationen im Rahmen der folgenden Messnetze und Aufgaben. Stationen dieser Messnetze werden auf dem Kartenserver dargestellt: 1) Landesmessnetz Niedersachsen (LBEG): Unabhängige Erdbebenüberwachung in Niedersachsen Das Landesmessnetz Niedersachsen dient der systematischen Registrierung von natürlichen und anthropogen verursachten, induzierten Erdbeben in Niedersachsen. Es befindet sich zurzeit im Aufbau. Vorbereitet sind sechs Stationen, die vor allem in Gebieten Niedersachsens installiert werden, in denen bislang noch keine seismischen Stationen betrieben worden sind. Hochempfindliche Seismometer und Standorte an seismisch ruhigen Standorten sollen die flächendeckende Registrierung von Erdbeben auch deutlich unterhalb der Spürbarkeit des Menschen ermöglichen. 2) Kooperationsnetz Niedersachsen (LBEG, BGR): Unabhängige Erdbebenüberwachung im Gebiet der Erdgasförderregionen In den Erdgasförderregionen im zentralen Niedersachsen betreibt das LBEG ein Messnetz aus hochempfindlichen Seismometern in Kooperation mit der Bundesanstalt für Geowissenschaften und Rohstoffe (BGR). Es befindet sich zurzeit in der technischen Überarbeitung und Erweiterung. Vorbereitet werden sechs Stationen für das Gebiet zwischen Cloppenburg und Munster bzw. Nienburg (Weser) und Rotenburg (Wümme). Induzierte Erdbeben im Zusammenhang mit Erdgasförderung können durch dieses Messnetz noch besser bewertet werden. Zum Beispiel werden Lokalisierungen mit geringen Unsicherheiten von +/-2 km angestrebt, so dass schwache Erdbeben besser ausgewertet werden können. Weitere seismische Messnetze in Niedersachsen ohne Beteiligung des LBEG werden im Folgenden kurz beschrieben. Für detaillierte Informationen verweisen wir auf die Internetseiten der jeweiligen Betreiber. Stationen dieser Messnetze werden auf dem Kartenserver nicht dargestellt: 3) German Regional Seismic Network (GRSN) (Kooperation seismologischer Institute): Erdbebenüberwachung und Forschungsaufgaben Das Deutsche Seismologische Regionalnetz (German Regional Seismic Network, GRSN) wurde in den Neunzigerjahren aufgebaut mit dem Ziel, deutschlandweit hochwertige und einheitliche seismologische Daten zu erheben. Es wird durch die Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) koordiniert und in Zusammenarbeit mit deutschen Hochschul- und Forschungseinrichtungen sowie Landeserdbebendiensten betrieben. Seit seiner Errichtung wird es kontinuierlich ausgebaut. Neben den Stationsnetzen der Landeserdbebendienste liefert es einen wichtigen Beitrag zur Erdbebenüberwachung in Deutschland, in Europa und weltweit. Darüber hinaus liefert es wichtige Daten für Forschungsprojekte. Einige Stationen des GRSN befinden sich in Niedersachsen. Die Standorte der Messstationen sind zum Beispiel einsehbar unter https://www.bgr.bund.de. Eine Liste der wichtigsten Metadaten finden Sie in Textform unter https://eida.bgr.de/fdsnws/station/1/query?format=text&level=station&network=GR. Für weitere Informationen steht Ihnen die BGR als zentrale Ansprechpartnerin zur Verfügung. 4) Stationen der BGR für spezifische Beratungsaufgaben Im Rahmen ihrer spezifischen Beratungs- und Forschungsaufgaben betreibt die Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) seismische Stationen, von denen einige in Niedersachsen installiert sind. Die Standorte der Messstationen der BGR sind einsehbar unter https://www.bgr.bund.de. Eine Liste der wichtigsten Metadaten finden Sie in Textform unter https://eida.bgr.de/fdsnws/station/1/query?format=text&level=station&network=GR. Für weitere Informationen kontaktieren Sie bitte die BGR. 5) Messnetze SON und DEN des Bergschadenskundlichen Beweissicherungssystems (BBS), (BVEG) Zur Überwachung seismischer Ereignisse im Umfeld der Erdgasfördergebiete wird durch den Bundesverband Erdgas, Erdöl und Geoenergie e. V. (BVEG) ein seismisches Messnetz, das Bergschadenskundliche Beweissicherungssystem (BBS), betrieben. Die Überwachung dient zum einen der Bewertung der Auswirkungen von Erschütterungen auf Gebäude. Hierzu werden Erschütterungsmessstationen zur Bewertung entsprechend DIN 4150 betrieben (Messnetz DEN). Diese Stationen sind zumeist in öffentlichen Gebäuden in Ortszentren installiert. Zum anderen wird die Überwachung für weitergehende seismologische Auswertungen genutzt. Hierzu werden Bohrloch- und Oberflächenstationen an seismisch ruhigen Orten betrieben (Messnetz SON). Die Daten des BVEG werden dem NED für die Erdbebenüberwachung im Gebiet der Erdgasförderregionen zur Verfügung gestellt. Die Standorte der Messstationen des Bundesverbandes Erdöl, Erdgas und Geoenergie e.V. (BVEG). sind einsehbar unter http://www.bveg-maps.de/. Für weitere Informationen kontaktieren Sie bitte den BVEG. 6) Temporäre Forschungsprojekte (verschiedene Betreiber) In Forschungsprojekten werden seismologische Detailfragen untersucht. Projekte werden von Universitäten und anderen Forschungsinstituten durchgeführt, öffentlich gefördert, in Zusammenarbeit mit oder im Auftrag von Bergbauunternehmen. Stationen im Rahmen von Forschungsprojekten werden für eine begrenzte Zeit betrieben, je nach Fragestellung typischerweise für einige Wochen bis drei Jahre. Eine Übersicht über Forschungsprojekte seit 2013, in deren Rahmen seismische Stationen betrieben wurden, stellt der NED auf Anfrage zur Verfügung. Für Informationen des Beeinflussungsbereichs von Windenergieanlagen auf seismische Stationen verweisen wir auf die Erläuterungen in den Metadaten des Themas „Seismische Stationen – Beeinflussungsbereich Windenergieanlagen“.

2D-Seismik

Das Thema zeigt die Lage der 2D-seismischen Messungen nach derzeitigem Kenntnisstand in den am KW-Verbund beteiligten Bundesländern. Diese Messungen dienen der Strukturerkennung mit dem Ziel unterirdische Lagerstätten (im Wesentlichen Erdgas bzw. Erdöl) zu explorieren.

INSPIRE: Geoscientific Map of Germany 1:2,000,000 - Important deposits (GK2000 Lagerstätten)

The GK2000 Lagerstätten (INSPIRE) shows deposits and mines of energy resources, metal resources, industrial minerals and salt on a greatly simplified geology within Germany on a scale of 1:2,000,000. According to the Data Specifications on Mineral Resources (D2.8.III.21) and Geology (D2.8.II.4_v3.0) the content of the map is stored in three INSPIRE-compliant GML files: GK2000_Lagerstaetten_Mine.gml contains mines as points. GK2000_ Lagerstaetten _EarthResource_polygon_Energy_resources.gml contains energy resources as polygons. GK2000_ Lagerstaetten _GeologicUnit.gml contains the greatly simplified geology of Germany. The GML files together with a Readme.txt file are provided in ZIP format (GK2000_ Lagerstaetten -INSPIRE.zip). The Readme.text file (German/English) contains detailed information on the GML files content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.

UVP Vorprüfungsergebnis Änderung Fackelsystem EAA Großenknetren / ExxonMobil Production Deutschland GmbH

Die ExxonMobil Production Deutschland GmbH (EMPG) (als technische Betriebsführerin der Erdgas und Erdöl GmbH & Co. KG (BEB) sowie der Mobil Erdgas-Erdöl GmbH (MEEG)) plant Änderungen am Fackelsystem der Erdgasaufbereitungsanlage Großenkneten (EAA GK). Der Standort des Vorhabens liegt auf dem Gebiet der Gemeinde Großenkneten im Landkreis Oldenburg. Für diese Änderung ist gemäß § 9 (3) i. V. m. Nr. 8.1.3 der Anlage 1 des Gesetzes über die Umweltverträglichkeitsprüfung (UVPG) eine standortbezogene Vorprüfung nach § 7 (2) UVPG durchzuführen. Dazu hat die Vorhabenträgerin Unterlagen für die Durchführung einer standortbezogenen Vorprüfung gemäß Anlage 2 UVPG vorgelegt. Diese nach den Vorgaben der Anlage 3 UVPG vorgenommene Vorprüfung hat ergeben, dass eine Umweltverträglichkeitsprüfung für das o. g. Vorhaben nicht erforderlich ist. Die einzelnen Gründe für die Entscheidung können im anliegenden Prüfvermerk eingesehen werden. Diese Feststellung wird hiermit öffentlich bekannt gegeben. Sie ist nach § 5 Abs. 3 UVPG nicht selbständig anfechtbar.

GcBÜK400 - Cadmium im Oberboden

Cadmium verdient unter den Schwermetallen besondere Beachtung, da seine Toxizität für Tiere und Menschen erheblich größer als die anderer Schwermetalle ist. Als Akkumulationsgift wird es im Körper angereichert und kann dort über Jahrzehnte verbleiben. Auf Grund seiner chemischen Verwandtschaft zum Zink kommt es fast ausschließlich mit diesem vor, insbesondere in allen zinkführenden Mineralen (u. a. Zinkblende, Galmei) und Gesteinen. Die durchschnittliche Cd-Konzentration der Gesteine der oberen kontinentalen Erdkruste (Clarkewert) beträgt 0,1 mg/kg, in Böden finden sich Gehalte in der Regel 0,50 mg/kg. Im Gegensatz zu As und anderen Schwermetallen (z. B. Cr, Ni) ist in den oberflächennah anstehenden sächsischen Hauptgesteinstypen keine geochemische Spezialisierung auf Cd nachweisbar. Die petrogeochemische Komponente liegt im Bereich des Clarkwertes um 0,1 mg/kg. In den Erzlagerstätten ist Cd vor allem an die Zinkerze der polymetallischen hydrothermalen Gänge und teilweise an die Skarnlagerstätten und stratigen-stratiformen Ausbildungen gebunden (chalkogene Komponente). Seit Beginn der Industrialisierung gelangt Cadmium über die Emissionen der Buntmetallhütten, die Verbrennung von Kohlen und Erdöl und in jüngerer Zeit über Galvanotechnik, Müllverbrennung, Düngemittel, Klärschlämme und Komposte anthropogen in die Umwelt. Während in den Oberböden Nord- und Mittelsachsens niedrige Gehalte dominieren (Cd-arme periglaziäre sandige bis lehmige Substrate; Löss), kommt es in den Verwitterungsböden über Festgesteinen zu einer relativen Anreicherung. Eine Abhängigkeit vom Tongehalt ist insofern festzustellen, dass die sandigen Substrate gegenüber lehmigen Substraten etwas niedrigere Cd-Gehalte aufweisen. Auf Acker- und Grünlandstandorten sind im Vergleich zu den Waldstandorten im Oberboden höhere Cd-Gehalte anzutreffen, da infolge der sehr niedrigen pH-Werte unter Forst eine Cd-Mobilisierung und Verlagerung in größere Bodentiefen stattfindet. Besonders hohe Cd-Belastungen befinden sich im Freiberger Raum, die durch die geogene Cd-Anreicherung bei der Bildung buntmetallführender Erzgänge aber vor allem anthropogen durch die Verhüttung von Zinkerzen verursacht werden. Die höchsten Gehalte sind in den Oberböden in unmittelbarer Nähe der Hüttenstandorte sowie in geringeren Konzentrationen östlich davon (in Hauptwindrichtung) festzustellen. Andere Lagerstättengebiete mit Zinkverzungen im Westerzgebirge und in der Erzgebirgsnordrandzone weisen nur schwach erhöhte Gehalte auf. Eine besondere Stellung bei der Belastung mit Cadmium nehmen die Auenböden der Freiberger und der Vereinigten Mulde ein. Durch die Abtragung von Böden mit geogen verursachten Anreicherungen im Einzugsgebiet und den enormen anthropogenen Zusatzbelastungen durch die Erzaufbereitung und die Hüttenindustrie, kommt es bei Ablagerung der Flusssedimente und Schwebanteile in den Überflutungsbereichen zu hohen Cd-Anreicherungen. In den Auenböden der Elbe und Zwickauer Mulde treten dagegen deutlich niedrigere Gehalte auf. Die geogenen und anthropogenen Prozesse führen im Freiberger Raum und in den Auenböden der Freiberger und Vereinigten Mulde zu flächenhaften Überschreitungen der Prüf- und Maßnahmenwerte der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) für Cadmium.

Fahrleistungen, Verkehrsleistung und Modal Split

<p>Im Personen- und im Güterverkehr steigen Fahrleistung und Verkehrsleistung über die Jahre in ihrer Tendenz an. In den Pandemiejahren 2020 und 2021 sanken beide Parameter im Personenverkehr im Vergleich zu den Vorjahren. Im Güterverkehr sank im Jahr 2023 die Verkehrsleistung bei allen Verkehrsträgern.</p><p>Anmerkung</p><p><strong>Die Pandemiejahre 2020 und 2021 sind bezüglich eines Vergleichs mit den Vorjahren als Ausnahmejahre zu betrachten. Ein genereller Trend </strong><strong>ist hieraus nicht ableitbar</strong><strong>.</strong></p><p>Fahrleistung im Personen- und Güterverkehr</p><p>Die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/f?tag=Fahrleistung#alphabar">Fahrleistung</a>⁠ aller Kraftfahrzeuge im Straßenverkehr stieg in Deutschland von 1991 bis 2019 um ca. 31,5 %. Die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/f?tag=Fahrleistung#alphabar">Fahrleistung</a>⁠ des Personenverkehrs nahm in diesem Zeitraum um 29 % zu, die des Güterverkehrs um 69 %. Der sprunghafte Anstieg der Fahrleistung der Lkw ist für die Umwelt besonders problematisch, da diese pro gefahrenen Kilometer deutlich höhere Luftschadstoff- und Lärmemissionen als Pkw verursachen (siehe Abb. „Gesamtfahrleistungen im Straßenverkehr nach Kraftfahrzeugarten“). Ab dem Pandemiejahr 2020 zeichnet sich ein leicht verändertes Bild ab: Die Fahrleistung aller Kraftfahrzeuge im Straßenverkehr sank um 9,5 % gegenüber dem Vorjahr, sie blieb auch 2021 auf einem ähnlichen Niveau. Ab 2022 stieg sie wieder an, lag aber 2023 immer noch 4,8 % unterhalb des Niveaus von 2019.</p><p>Personenverkehr</p><p>Die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Verkehrsleistung#alphabar">Verkehrsleistung</a>⁠ im Personenverkehr erhöhte sich zwischen den Jahren 1991 und 2019 um fast 34 %, sank im Jahr 2020 um 21,2 % zum Vorjahr und stieg ab 2021 wieder an. In 2023 lag sie noch um 5,5 % unterhalb des Niveaus von 2019. Der motorisierte Individualverkehr mit Pkw und Krafträdern nahm bis 2019 um etwa 28,6 % zu, sank 2020 um 12,9 % und stieg in den folgenden drei Jahren um 3 bis 5 % im Vergleich zum Vorjahr an. Der Verkehr mit Pkw und Krafträdern behielt seine dominierende Stellung: Sein Anteil (⁠<a href="https://www.umweltbundesamt.de/service/glossar/m?tag=Modal_Split#alphabar">Modal Split</a>⁠) an der gesamten ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Personenverkehrsleistung#alphabar">Personenverkehrsleistung</a>⁠ ging von 1991 (81,6 %) bis 2019 (78,4 %) kaum zurück und stieg pandemiebedingt in 2020 und 2021 sogar auf den Höchstwert von jeweils rund 87 %. Im Jahr 2023 sank der Anteil wieder auf 79,4 % (siehe Abb. „Personenverkehr: motorisierte Verkehrsleistung nach Verkehrsmitteln in Deutschland“).</p><p>___<br> * ab 2017 Neuberechnung der Fahrleistungs- und Verbrauchsberechnung und des Personenverkehrsmodells, hier Verkehr mit Pkw, mot. Zweirädern etc. Einschl. Taxi- und Mietwagenverkehr<br> ** zum Teil vorläufige Werte, die ausgewiesenen Daten für den Liniennahverkehr (insbesondere mit Bussen) bilden möglicherweise die tatsächlichen Rückgänge nicht vollständig ab<br> *** Motorisierter Individualverkehr: ab 1994 veränderte Methodik, die zu einer höheren Verkehrsleistung führt<br> **** Luftverkehr: ab 2010 geänderte Erfassungsmethode, es zählt der Inlands-, Gelegenheits- sowie Linienflugverkehr einschließlich Pauschalreiseluftverkehr auf dem Gebiet der EU hinein</p><p>Von 1991 bis 2019 stieg die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Verkehrsleistung#alphabar">Verkehrsleistung</a>⁠ im Luftverkehr um rund 218 %. Im Jahr 2020 ist ein starker Einbruch zu verzeichnen (- 74 %) Damit sank die Verkehrsleistung sogar unter das Niveau von 1991. Im Jahr 2023 lag sie noch 20,2 % unterhalb des Höchstwertes von 2019.</p><p>Beim öffentlichen Straßenpersonenverkehr und den Bahnen ist dagegen zwischen 1991und 2019 eine deutlich geringere Zunahme von zusammen knapp 30% zu verzeichnen. Der Anteil dieser vergleichsweise weniger umweltbelastenden Verkehrsarten an der Gesamtverkehrsleistung ging in den Jahren von 1991 bis 2002 von 15,8 % auf 13,7 % zurück. Dann stieg er bis 2019 sukzessive auf 15,5 % an. In den Jahren 2020 bis 2021 lag der Anteil bei rund 11 % und stieg in 2023 wieder auf 15,5 % an.</p><p>Wird der nicht-motorisierte Personenverkehr (Fußgänger*Innen, Radfahrende) in die gesamte Verkehrsleistung einbezogen, ergibt sich ein ähnliches Bild: 2022 dominierte der motorisierte Individualverkehr mit einem Anteil von 75,5 % und lag damit eindeutig vor dem ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=Umweltverbund#alphabar">Umweltverbund</a>⁠ mit zusammen 20,3 %. Der Anteil des Umweltverbundes hat sich im Vergleich zum Jahr 2017 nicht verändert. Es fanden lediglich Verschiebungen zwischen den Verkehrsarten statt, z.B. vom Öffentlichen Straßenpersonenverkehr zur Eisenbahn (siehe Abb. „Modal Split der Verkehrsleistung im Personenverkehr einschließlich des nicht motorisierten Verkehrs“). Die Entwicklung des Umweltverbundes thematisiert auch der <a href="https://www.umweltbundesamt.de/daten/umweltindikatoren/indikator-umweltfreundlicher-personenverkehr">Indikator „Umweltfreundlicher Personenverkehr“</a>.</p><p>Der nicht motorisierte Verkehr ist leise und belastet die Umwelt kaum mit Schadstoffen und Treibhausgasen. Fuß- und Radverkehr sind die umwelt- und stadtverträglichsten Fortbewegungsformen, auch Aktive Mobilität genannt. Eine weitere Verlagerung von Wegen, vor allem des motorisierten Individualverkehrs, auf umweltfreundlichere Fortbewegungsformen ist daher erstrebenswert. Die Bundesregierung unterstützt den Radverkehr u.a. durch den Nationalen Radverkehrsplan (NRVP). Der <a href="https://www.bmv.de/nrvp">NRVP 3.0</a> wurde im Jahr 2021 der Öffentlichkeit vorgestellt. Für den Fußverkehr wurden bereits von einigen Bundesländern und Kommunen Strategien entwickelt. Das Land Berlin hat Anfang 2021 das erste Gesetz für Fußgänger und Fußgängerinnen in Deutschland im Rahmen seines Mobilitätsgesetzes beschlossen (<a href="https://www.berlin.de/sen/uvk/verkehr/verkehrspolitik/mobilitaetsgesetz/">Berliner Mobilitätsgesetz</a> mit Änderung vom 9. Februar 2021). Im Februar 2025 hat auch der Bund eine Fußverkehrsstrategie veröffentlicht (siehe auch „<a href="https://bmdv.bund.de/SharedDocs/DE/Publikationen/StV/fussverkehrsstrategie.pdf?__blob=publicationFile">Fußverkehrsstrategie</a>“).&nbsp;</p><p>Güterverkehr</p><p>Die inländische Güterverkehrsleistung stieg von 1991 bis 2019 um 75 %. Die größten Zuwächse erzielte der Straßengüterverkehr mit einem Plus von fast 103 % − einer Verdopplung der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Verkehrsleistung#alphabar">Verkehrsleistung</a>⁠ (siehe Abb. „Güterverkehrsleistung nach Verkehrsträgern in Deutschland“). Dieser Zuwachs ging vor allem zu Lasten der umweltschonenderen Verkehrsmittel Bahn und Binnenschiff. Deren Anteil lag 1991 bei etwa 34,5 % und ist inzwischen auf zusammen 26,1 % in 2023 zurückgegangen (Schienengüterverkehr 20 %, Binnenschifffahrt 6,1 %). Zwischen 2008 und 2009 ist infolge der Wirtschaftskrise die gesamte Güterverkehrsleistung um etwa 11 % gesunken. Die Verkehrsleistung der Binnenschiffe schwankte in den letzten Jahren stark und steht im engen Zusammenhang mit Niedrigwasserereignissen.</p><p>Im Gegensatz zur ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Personenverkehrsleistung#alphabar">Personenverkehrsleistung</a>⁠ sind im Güterverkehr die Auswirkungen der Pandemie weniger spürbar. Die Güterverkehrsleistung ist von 2019 zu 2020 um nur 3,6 % gesunken und erreichte 2021 und 2022 wieder das Niveau von 2019. Im Jahr 2023 verringerte sich die gesamte Güterverkehrsleistung konjunkturbedingt um ca. 5 % - diese Entwicklung betraf alle Verkehrsbereiche.</p><p>Ausgehend von einem niedrigen Niveau im Jahr 1991 hat sich die Verkehrsleistung im Luftverkehr (Fracht- und Luftpost) bis 2023 auf 1,5 Milliarden ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tonnenkilometer#alphabar">Tonnenkilometer</a>⁠ vervierfacht. Im Jahr 2021 erreichte sie mit 1,8 Milliarden Tonnenkilometer den bisherigen Höchstwert.&nbsp;</p><p>___<br> * zum Teil vorläufige Angaben<br> ** ab 1996 nur Rohöl<br> *** Fracht- und Luftpost, ohne Umladungen<br> **** 2016 bis 2022 Revision aufgrund verbesserter Meldedaten</p><p>Weiterführende Informationen</p><p><a href="https://www.bmv.de/nrvp">BMV: Verkehr in Zahlen</a></p><p><a href="https://www.umweltbundesamt.de/themen/verkehr/nachhaltige-mobilitaet/gueterverkehr">Güterverkehr</a></p><p><a href="https://www.umweltbundesamt.de/themen/verkehr/nachhaltige-mobilitaet/oeffentlicher-personennahverkehr">Öffentlicher Personennahverkehr</a></p><p><a href="http://www.mobilitaet-in-deutschland.de/publikationen2017.html">Mobilität in Deutschland</a></p>

GcBÜK400 - Cadmium im Oberboden

Cadmium verdient unter den Schwermetallen besondere Beachtung, da seine Toxizität für Tiere und Menschen erheblich größer als die anderer Schwermetalle ist. Als Akkumulationsgift wird es im Körper angereichert und kann dort über Jahrzehnte verbleiben. Auf Grund seiner chemischen Verwandtschaft zum Zink kommt es fast ausschließlich mit diesem vor, insbesondere in allen zinkführenden Mineralen (u. a. Zinkblende, Galmei) und Gesteinen. Die durchschnittliche Cd-Konzentration der Gesteine der oberen kontinentalen Erdkruste (Clarkewert) beträgt 0,1 mg/kg, in Böden finden sich Gehalte in der Regel 0,50 mg/kg. Im Gegensatz zu As und anderen Schwermetallen (z. B. Cr, Ni) ist in den oberflächennah anstehenden sächsischen Hauptgesteinstypen keine geochemische Spezialisierung auf Cd nachweisbar. Die petrogeochemische Komponente liegt im Bereich des Clarkwertes um 0,1 mg/kg. In den Erzlagerstätten ist Cd vor allem an die Zinkerze der polymetallischen hydrothermalen Gänge und teilweise an die Skarnlagerstätten und stratigen-stratiformen Ausbildungen gebunden (chalkogene Komponente). Seit Beginn der Industrialisierung gelangt Cadmium über die Emissionen der Buntmetallhütten, die Verbrennung von Kohlen und Erdöl und in jüngerer Zeit über Galvanotechnik, Müllverbrennung, Düngemittel, Klärschlämme und Komposte anthropogen in die Umwelt. Während in den Oberböden Nord- und Mittelsachsens niedrige Gehalte dominieren (Cd-arme periglaziäre sandige bis lehmige Substrate; Löss), kommt es in den Verwitterungsböden über Festgesteinen zu einer relativen Anreicherung. Eine Abhängigkeit vom Tongehalt ist insofern festzustellen, dass die sandigen Substrate gegenüber lehmigen Substraten etwas niedrigere Cd-Gehalte aufweisen. Auf Acker- und Grünlandstandorten sind im Vergleich zu den Waldstandorten im Oberboden höhere Cd-Gehalte anzutreffen, da infolge der sehr niedrigen pH-Werte unter Forst eine Cd-Mobilisierung und Verlagerung in größere Bodentiefen stattfindet. Besonders hohe Cd-Belastungen befinden sich im Freiberger Raum, die durch die geogene Cd-Anreicherung bei der Bildung buntmetallführender Erzgänge aber vor allem anthropogen durch die Verhüttung von Zinkerzen verursacht werden. Die höchsten Gehalte sind in den Oberböden in unmittelbarer Nähe der Hüttenstandorte sowie in geringeren Konzentrationen östlich davon (in Hauptwindrichtung) festzustellen. Andere Lagerstättengebiete mit Zinkverzungen im Westerzgebirge und in der Erzgebirgsnordrandzone weisen nur schwach erhöhte Gehalte auf. Eine besondere Stellung bei der Belastung mit Cadmium nehmen die Auenböden der Freiberger und der Vereinigten Mulde ein. Durch die Abtragung von Böden mit geogen verursachten Anreicherungen im Einzugsgebiet und den enormen anthropogenen Zusatzbelastungen durch die Erzaufbereitung und die Hüttenindustrie, kommt es bei Ablagerung der Flusssedimente und Schwebanteile in den Überflutungsbereichen zu hohen Cd-Anreicherungen. In den Auenböden der Elbe und Zwickauer Mulde treten dagegen deutlich niedrigere Gehalte auf. Die geogenen und anthropogenen Prozesse führen im Freiberger Raum und in den Auenböden der Freiberger und Vereinigten Mulde zu flächenhaften Überschreitungen der Prüf- und Maßnahmenwerte der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) für Cadmium.

CO2 und Staub - zwie interaktive Ausstellungen des WZU auf Reisen

Staub - Spiegel der Umwelt. Der Mensch hat schon früh die ungewöhnlichen Eigenschaften staubfeiner Stoffe für seine Zwecke genutzt, indem er sie z.B. zur Körperbemalung verwandte. Zugleich ist seit prähistorischen Zeiten bekannt, dass Staub auch eine Gefahr sein kann. Mit dem Atem dringt er in den Körper ein - und umso tiefer, je feiner er ist. Vor dem Hintergrund der Diskussion über Feinstaub und über nanoskalige Materialien ist es das Ziel der Ausstellung, auf unterhaltsame und doch ernsthafte Weise über den Umweltfaktor Staub zu informieren. Ein großer Experimentierbereich macht die Ausstellung gerade für Schüler und sogar für Kinder zu einem spannenden Erlebnis. Seit 2006 ist die Ausstellung zu Gast in Museen, Museen in Deutschland in Umweltbildungseinrichtungen und auf internationalen Messen. 2009 wurden Exponate der Ausstellung gleich zweimal in China präsentiert, nämlich in Shenyang und in Wuhan - in einem Pavillion des BMBF. 2011 wurde sie im Bremer Haus der Wissenschaft gezeigt. Aktuell sind einzelne Exponate im Mineralogischen Museum der Universität Bonn zu sehen. C02- Ein Stoff und seine Geschichte 30 Prozent: Das war der Gehalt. an Kohlendioxid in der Atmosphäre der jungen Erde vor drei bis vier Milliarden Jahren. Heute sind es 0,038 Prozent. Der Rest steckt in Kalksteinen, Lebewesen und natürlich den fossilen Brennstoffen, wie Öl, Gas und Kohle. Wie das Kohlendioxid dorthin gekommen ist, welche Rolle es gespielt hat in der Entwicklung von Erde, Leben und Klima - diese Geschichte erzählt die Ausstellung. Neben Bildschirminformationen und kleinen Filmen rund um den Stoff gibt es verschiedene Experimentierstationen. Eine davon findet sich in vielen Haushalten: ein Sprudelautomat. Sie zeigt, dass C02 zwar problematisch, doch kein giftiger Stoff ist, sondern ein Teil des Lebens, ein Teil der Erde. Wälder und Wiesen, Brot und Wein: Alles das war ursprünglich C02. C02 ist das Hauptprodukt der Verbrennung von Kohle, Erdöl und Erdgas, die ihrerseits mumifizierte, verwandelte Reste von Geschöpfen des Meeres oder des Landes sind. Es entsteht auch sonst überall dort, wo Leben vergeht. Die Chemiker bezeichnen es als anorganische Kohlenstoffverbindung, was ein Unsinn ist, denn ein organischeres Molekül ist gar nicht denkbar. Dieses Gas ist 'der letzte Weg allen Fleisches ', wie der Chemiker Primo Levi schrieb. Es ist die eigentliche Asche der Geschöpfe; eine gasförmige Asche, sie steigt auf in die Luft und verteilt sich rasch. Sie wirkt überhaupt nicht tot, sondern unruhig und lebendig, und schmeckt sogar erfrischend. Aus der Perspektive des Lebens ist die Luftartigkeit des C02 die entscheidende Qualität, die den Kohlenstoff, der auf Erden selten ist, allen anderen Elementen überlegen macht. Wäre C02 wie die meisten Oxide fest und schwer löslich, das Leben wäre rasch erloschen. Wäre es flüssig, so wäre das Leben aus dem Meer nie herausgekommen usw.

1 2 3 4 5278 279 280