API src

Found 9769 results.

Related terms

Nds. Landschaftsprogramm (Karte 2): Böden mit besonderen Werten

Der Datensatz aus Karte 2 des Niedersächsischen Landschaftsprogramms setzt sich aus Böden mit hoher kulturgeschichtlicher Bedeutung (Plaggenesche, Heidepodsole, Wölb- und Terrassenäcker, Marschhufenbeete sowie historische Formen kultivierter Moore z. B. Spittkultur), naturnahen Böden (naturnahe Moore innerhalb der Kulisse der organischen Böden mit Klimaschutzpotential sowie alte Waldstandorte, die sich durch weitgehend unbeeinträchtigte Bodeneigenschaften auszeichnen), Extremstandorten (extrem nasse und trockene Böden, sehr nährstoffarme Böden und Salzböden des Binnenlandes und Rohmarschen, die günstige Voraussetzungen für die Entwicklung besonders gefährdeter Biotope aufweisen und Rückzugsorte für seltene Tiere oder Pflanzen sind) sowie seltenen Böden (die infolge ungewöhnlicher Kombinationen der Standortbedingungen wie Ausgangsgestein, Klima, Relief seltene Eigenschaften oder Ausprägungen aufweisen) zusammen. Im Datensatz sind nur Flächen > 25 ha enthalten. Karte 2 „Schutzgüter Boden und Wasser“ des Landschaftsprogramms stellt die aus landesweiter Sicht bedeutsamen Bereiche für die Schutzgüter Boden und Wasser dar. Die schutzwürdigen Böden außerhalb der Siedlungsfläche umfassen die Böden mit besonderen Werten, Böden mit hoher natürlicher Bodenfruchtbarkeit sowie Moorböden und kohlenstoffreiche Böden gemäß Programm Nds. Moorlandschaften. Die landesweit bedeutsamen Gewässer setzen sich aus den Fließgewässern für die Umsetzung der Wasserrahmenrichtlinie, den Laich- und Aufwuchsgewässern, den überregionalen Wanderrouten für die Fischfauna, den Küsten-, Übergangs- und Stillgewässern sowie den Gewässerauen gemäß Aktionsprogramm Nds. Gewässerlandschaften zusammen. Nutzungsbeschränkung: Geometrien sind auf Grundlage der Digitalen Topografischen Karte 1:50.000 (DTK50) aussagekräftig. Quellennachweis: © GeoBasis-DE/LVermGeo SH/CC BY 4.0, © 2021, daten@nlwkn.niedersachsen.de

Schwerpunktprogramm (SPP) 1530: Flowering time control: from natural variation to crop improvement, StPCP1: ein IDD Transkriptionsfaktor in der Regulation der Zucker-vermittelten Blühinduktion und Knollenbildung in Solanum tuberosum

Blüten- und Knolleninduktion werden in Kartoffelpflanzen (Solanum tuberosum) von nahezu identischen Signalwegen gesteuert. Da die Kartoffelpflanze als Ertragspflanze und der Knollenertrag weltweit immer mehr an Bedeutung gewinnt, ist die Identifikation ertrags- und qualitätssteigernder Faktoren von größtem Interesse. Im Rahmen des vorliegenden Antrags planen wir die Identifizierung und Charakterisierung der an der Blühinduktion und Knolleninduktion beteiligten Signaltransduktionswege auf molekularer Ebene. Blühinduktion und Knollenbildung stellen multifaktoriell gesteuerte Entwicklungsprozesse dar, die sowohl durch endogene, als auch durch exogene Parameter beeinflusst werden. Uns interessieren dabei u.a. Integrationsstellen, an denen diese Signalwege mit dem Metabolismus der Pflanze koordiniert werden. Das POTATO COUCH POTATO 1 (StPCP1) Protein ist ein Transkriptionsfaktor der IDD Familie. StPCP1 RNAi Pflanzen zeigen Veränderungen im Blühzeitpunkt und des Knollenertrags. Erste Ergebnisse aus quantitativen real-time PCR Experimenten deuten darauf hin, dass StPCP1 in die Regulation der Expression von Zuckertransportern involviert ist, was erklärt wie StPCP1 maßgeblich den Kohlenhydrathaushalt der Pflanze beeinflussen kann. Einige phloem-mobile Faktoren könnten die Funktion eines Botenstoffes erfüllen, der den Zuckerstatus der Sourceblätter an die Sinkorgane wie z.B. das Apikalmeristem und die Stolonspitzen weiterleitet. Wir planen, diese putativen phloem-mobilen Substanzen in Kartoffel zu untersuchen. Diese sind im Speziellen: Trehalose 6-Phosphat, miR156 und miR172 sowie deren Zielgene und -transkripte. Vorarbeiten weisen darauf hin, dass ähnlich wie es für Arabidopsis gezeigt werden konnte, der Zuckerstatus in den Blättern mit einer veränderten Expression bzw. Bildung dieser mutmaßlichen Signalmoleküle einhergeht. Wir werden weiterhin die regulatorischen Eigenschaften von StPCP1 und die Expression seiner Zielgene untersuchen. Das betrifft im Besonderen die direkte Regulation von Zuckertransportergenen (z.B. StSUT4) und die Identifizierung unbekannter Zielgene durch die Bindung der bekannten ID1 Bindedomäne. Gleichzeitig wollen wir bisher offene Fragen hinsichtlich der Interaktion bekannter Signalwege, die den Blühzeitpunkt und die Knollenbildung in Kartoffelpflanzen beeinflussen, beantworten, da im Speziellen der photoperiodische, der T6P- und der GA-Signalweg von StPCP1 gleichermaßen betroffen zu sein scheinen.

Baumkataster Köln 2020

<p>Baumkataster  Stand 2020. Inklusive Georeferenzierung und Angaben nach Art, Gattung und Alter der erfassten Bäume.</p> <p><strong>Was bedeuten die Felder?</strong></p> <p><strong>Objekttyp</strong>: Es gibt 14 Objekttypen die wie folgt unterteilt sind:</p> <p>1 NN; 2 Kleingarten; 3 Sportplatz; 4 Kinderspielplatz; 5 Gebäude/Schule/Heim; 6 Straße/Platz; 7 Grünanlage; 8 Friedhof; 9 Biotopflächen; 10 Fluss/Bach; 11 Sonderanlage; 12 Forst; 13 Ausgleichsfläche; 14 Unbekannt</p> <p><strong>Baumbest_1</strong> : Z.B Baumbest:1 : 22P =&gt; 22 P ist die Baumnummer<br /> Gängig sind folgende Buchstabenkürzel:<br /> G = Bäume auf der Seite mit geraden Hausnummern<br /> U = Bäume auf der Seite mit ungeraden Hausnummern<br /> P = Bäume auf einen Platz<br /> M = Bäume auf einem Mittelstreifen<br /> MU = Bäume auf einem Mittelstreifen zur Seite mit den ungeraden Hausnummern<br /> MG = Bäume auf einem Mittelstreifen zur Seite mit den geraden Hausnummern<br /> MM = Bäume auf einem Mittelstreifen in der mittleren Reihe<br /> Ein Teil der Bäume hat auch nur eine Nummer, das ist z.B. auf Spielplätzen der Fall oder wenn in einer Straße nur wenige Bäume stehen.<br /> Die Nummerierung ist teilweise so eingerichtet, dass bei einem Kontrollgang der kürzeste Weg genommen werden kann – dafür sind die Buchstaben teilweise auch hinter die Baumnummern gesetzt.<br />  </p> <p><strong>STAMMVON: </strong>z.B.<strong> </strong>"STAMMVON": 0.0<br /> Bei 2- oder mehrstämmigen Bäumen wird einmal der kleinste und einmal der größte Stammdurchmesser in cm angegeben.<br /> Der kleinste Stammdurchmesser wird bei „Stamm von“ und der größte bei „Stamm bis“<br />  </p> <p><strong>STAMMBIS: </strong>z.B. "STAMMBIS": 50.0<br /> Die ist die Angabe des Stammdurchmessers in cm.<br /> Bei 2- oder mehrstämmigen Bäume erfolgt hierunter der Eintrag des größten Stammdurchmessers</p> <p><strong>KRONE:  </strong>z.B. "KRONE": 8.0<br /> Die ist die Angabe zum Durchmesser der Krone in Meter.</p> <p><strong>H_HE: </strong>z.B. "H_HE": 10.0,<br /> Dies ist die Angabe zur Höhe des Baumes in Meter.</p> <p><strong>Sorte:</strong> z.B.<br /> "Sorte": null,<br /> In der botanischen Nomenklatur unterteilt man Pflanzen in Gattung, Art und Sorte<br /> Bei Pflanzungen in früheren Zeiten wurden hierzu leider keine Angaben gemacht. Bei Neupflanzungen sollen diese Einträge nun standardmäßig durchgeführt werden.<br /> Der Eintrag „null“ gibt an, dass hier keine Sorte eingetragen wurde.<br />  </p> <p>Information</p> <p>Es sind noch nicht alle Bäume erfasst, die Erfassung des gesamten städtischen Baumbestandes wird angestrebt. Der Datensatz wird aus diesem Grunde unregelmäßig aktualisiert. Der Einsatz einer neuen Software ist in Planung und soll mittelfristig auch den Abruf von Daten des Baumkatatsers erleichtern.</p>

Das Naturschutzgroßprojekt Baar – eine Zwischenbilanz nach fünf Jahren Umsetzung

Die Fördergebietskulisse des Naturschutzgroßprojekts Baar befindet sich im Südwesten Baden-Württembergs. Das Projekt wird durch das Programm „chance.natur − Bundesförderung Naturschutz“ gefördert. Zu den wesentlichen Teilzielen des Projekts zählen die Sicherung und Aufwertung der Biotope für den Artenschutz, die Verbesserung des naturbasierten Klimaschutzes und die Förderung des Biotopverbunds. Zu den prioritär umzusetzenden Maßnahmen zählen daher die Wiederherstellung von Niedermooren und Magerrasen in Kerngebieten. Weiterhin müssen vorhandene Refugialräume für den Biotopverbund gesichert sowie vertikale und horizontale Wanderbewegungen für Arten ermöglicht werden. Dem Naturraum Baar kommt durch seine Lage innerhalb der europäischen Großlandschaften eine Schlüsselbedeutung im Biotopverbund zu. Nach fünf Jahren Projektumsetzung erfolgte eine erste vorläufige Evaluation. Dabei wurde der bisherige Zielerreichungsgrad u. a. anhand der Umsetzung der Biotoppflegemaßnahmen überprüft. Wenngleich eine Aussage nach fünf Jahren nur bedingt möglich ist, lässt sich erkennen, dass einige Maßnahmen – wie die Pflege extensiven Grünlands, die Schaffung von Waldrefugien und eine Verbesserung des Biotopverbunds durch die Gestaltung der Waldränder – erfolgversprechend umgesetzt wurden. In den Waldbereichen wurde eine Zunahme einiger Lichtwaldarten unter den Gefäßpflanzen und Tagfaltern verzeichnet. Andere Maßnahmen, die längere Abstimmungsprozesse benötigen, wie die hydrologische Stabilisation von Moorflächen, bedürfen noch der Nachbesserung und der Lösung von Zielkonflikten, wenn bspw. dynamische Anstauprozesse, die durch den Biber angestoßen werden, sensible Zielarten lokal verdrängen.

Exploiting cereal biodiversity in nutrient use and biological interactions in crop resilience breeding, Teilvorhaben A

Green ERA Hub Call 2: CROP BOOSTERS - Biotechnologische Lösungen zur Minderung von Pflanzenstress

Mittlerer potenzieller Bodenwasservorrat in der Vegetationsperiode für den 10-jährigen Zeitraum 1961-1970

Die Karte zeigt den mittleren potentiellen Bodenwasservorrat (in %nFK) in der Vegetationsperiode (April – September) für die Dekade 1961-1970 berechnet mit dem Bodenwasserhaushaltsmodell BOWAB (für 0 – 60 cm). Für die Pflanzen ist die Wasserverfügbarkeit im Boden ein zentrales Element für das Wachstum. Diese Verfügbarkeit von Bodenwasser hängt von der Bodenart und der Menge des im Boden gespeicherten Wassers ab. Wobei letztere maßgeblich vom Niederschlag und der Temperatur (bzw. Verdunstung) beeinflusst wird. Das für Pflanzen nutzbare Bodenwasser wird als Prozent der nutzbaren Feldkapazität (%nFK) angegeben. Ein Wert von 100% nFK oder mehr bedeutet die Speicherfähigkeit des Bodens für pflanzenverfügbares Wasser erreicht ist. Ab etwa 40 % nFK wird eine Beregnung von Ackerkulturen empfohlen, um einen optimalen Ertrag erzielen zu können.

Auswirkungen von Trockenheit und erhöhtem CO2 auf die Blattrollkrankheit der Weinrebe: Eine Untersuchung der Interaktionen zwischen Pflanze, Vektor und Virus

In Zeiten des Klimawandels wird die Pflanzengesundheit durch kombinierten Stress durch abiotischen, klimawandelbedingten Faktoren und biotischem Faktoren durch Schädlinge und Krankheitserreger beeinträchtigt. Dieses Projekt zielt darauf ab, die Auswirkungen abiotischer, klimawandelbedingte Stressfaktoren, wie z. B. erhöhtem atmosphärischen CO2-Gehalt (eCO2) und Trockenstress, auf die Interaktion zwischen Weinreben, Blattrollviren (GLRaV), und virusübertragenden Schmierläusen zu untersuchen. GLRaV, insbesondere GLRaV-3, verändert die CO2-Assimilation, die Wassernutzungseffizienz sowie die primären und sekundären Stoffwechselprodukte der Pflanze, was letzendlich zu Ertragsminderungen, verzögerter Fruchtreife und schlechter Traubenqualität führt. Das Virus wird durch infiziertes Vermehrungsmaterial und phloemsaugende Insekten, wie z. B. Schmierläuse, verbreitet. Es ist bekannt, dass eCO2- und Wasserstress einen erheblichen Einfluss auf die Pflanzenphysiologie und die Schädlingsbekämpfung haben kann. Außerdem weiß man, dass Pflanzenviren biotischen Stress für die Pflanzen verursachen und das Verhalten der Virusvektoren verändern können. Gleichzeitig werden Viren von denselben klimawandelbedingten abiotischen Stressfaktoren beeinflusst, wie die anderen Mitglieder des Ökosystems. Es gibt nur sehr wenige Studien über die Auswirkungen des Klimawandels auf Virusinfektionen auf Weinreben und keine einzige über die Auswirkungen auf Schmierläuse als Virusvektoren. Schlussfolgerungen aus anderen Pathosystemen zu ziehen, gestaltet sich schwierig, da die Auswirkungen von abiotischem, klimawandelbedingtem Stress oft artspezifisch sind. Bisher hat sich die Forschung vor allem mit den Wechselwirkungen einzelner Klimawandelparameter mit Pflanzen, Insekten oder Krankheitserregern befasst. Um die Wechselwirkungen zwischen mehreren Stressoren und die komplexen Beziehungen zwischen Pflanzen, Krankheitserregern und Vektoren zu verstehen, sind breitere Forschungsansätze nötig. Nur so können wirksame Anpassungsstrategien entwickelt werden um Pflanzen in der Zukunft gesund und produktiv zu halten. Im Rahmen des Projekts werden eine Reihe von Experimenten durchgeführt, bei denen Weinreben zwei Klimawandelparametern (Wasserstress + CO2) in Kombination mit biotischem Stress durch eine GLRaV-3-Infektion ausgesetzt werden. Untersucht werden die Mechanismen (Genexpression) und die Auswirkungen auf die Pflanzen (Aminosäuren, Phenole, C/N, Zucker, Chlorophyll) und den Insektenvektor (Fressverhalten, Fitness), zusätzlich zu klassischen Übertragungsexperimenten mit GLRaV. Die Forderung nach multifaktoriellen Stress-Experimenten wird seit Jahrzehnten erhoben. Diese Experimente sind ehrgeizig und komplex, aber sie sind der notwendige nächste Schritt, um Erkenntnisse über die zukünftige Entwicklung der Blattrollkrankheit zu gewinnen.

Verlängerte Wurzeln zur effizienten Erschließung von Stickstoffquellen durch Veränderung der Brassinosteroid- und Auxinbioynthese und Signaltransduktion

Pflanzen passen sich an räumliche und zeitliche Fluktuationen von Nährstoffen im Boden durch das "Sensing" von Nährstoffen und Veränderungen in der Wurzelarchitektur an. Solche morphologischen Anpassungen ermöglichen es, verfügbare Nährstoffe im Boden effizienter zu erschließen. Wenn Pflanzen unter leichtem bzw. mildem Mangel an Stickstoff (N) wachsen, erhöhen sie die Länge von Primär- und Seitenwurzeln. Diese Reaktion birgt Potential zur Verbesserung der N-Effizienz, weil sich das Bodenvolumen vergrößert, aus dem limitierende Nährstoffe aufgenommen werden. In unseren Vorarbeiten haben wir in natürlichen Akzessionen der Modellpflanze Arabidopsis allelische Variation in Genen der Brassinosteroid- und Auxinbiosynthese bzw.-Signaltransduktion (YUC8, BSK3) gefunden, die die Wurzelverlängerung unter mildem N-Mangel verändern. Das finale Ziel dieses 6-jährigen Projekts ist es, die hormonelle Regulation der Wurzelverlängerung unter N-Mangel aufzuklären und diese Kenntnis zu nutzen, um in Gerstenwurzeln die Wurzelentwicklung unter N-Mangel und damit die N-Aufnahmeeffizienz zu verbessern. Ziele der ersten 3 Jahre sind: i) in Arabidopsis die Rolle der YUC8-abhängigen Auxinbiosynthese und ihre Beziehung zu Brassinosteroiden in der Wurzelverlängerung unter leichtem N-Mangel aufzuklären und ii) in einem translationalen Ansatz in Gerste den Beitrag der allelischen Variation von Genen der Brassinosteroid- bzw. Auxinbiosynthese oder Signaltransduktion zur Wurzelstreckung zu untersuchen und zu modulieren. Zunächst werden in Arabidopsis die molekularen Mechanismen hinter den identifizierten allelischen Variationen im YUC8-Gen sowie seine Rolle in der Regulation der Wurzelverlängerung bestimmt. Dabei wird die Wurzelantwort auf milden N-Mangel in yuc-Mutanten und YUC8-komplementierten Linien charakterisiert. Diese und weitere Mutanten- und Reporterlinien werden auch eingesetzt, um die Beziehung zwischen Brassinosteroiden und Auxin in der transkriptionellen Regulation der Wurzelantwort auf milden N-Mangel aufzuklären. In einem translationalen Ansatz wird in Gerste das "schwache" BSK3-Allel durch das "starke" BSK3-Allel aus Arabidopsis ersetzt, da alle bisher untersuchen Gerstenakzessionen nur ein "schwaches" BSK3-Allel tragen. In einem Schritt wird die Cas Endonuklease-vermittelte Deletion des schwachen BSK3-Endogens mit der Komplementation durch das starke Transgen kombiniert. In einem RNA-Sequenzierungsansatz werden N-Mangel-regulierte Gene in Gerstenwurzeln identifiziert, um Kandidatengene auszuwählen, die zur CRISPR-Cas-vermittelten Gendeletion und zur Überexpression mithilfe eines wurzelspezifischen Promoters eingesetzt werden. Alle transgene Linien werden anschliessend hinsichtlich der Veränderung ihrer Wurzelarchitektur unter N-Mangel phänotypisiert.

Wo ist die biologische Vielfalt in der Schweiz am grössten?

Modelle der WSL zeigen, welche Landschaften in der Schweiz besonders reich an Farn- und Blütenpflanzen sind und welche Einflussgrössen deren Artenvielfalt bestimmen. Die Arbeiten liefern Grundlagen, damit wir die biologische Vielfalt in der Schweiz besser verstehen, schützen und fördern können. Die biologische Vielfalt umfasst alle Tier- und Pflanzenarten, die genetische Vielfalt ihrer Individuen sowie die Vielfalt der Lebensräume. Die biologische Vielfalt der Schweiz ist gross: Wissenschaftler schätzen, dass es hierzulande rund 50 000 Tier- und Pflanzenarten gibt1. Die Schweiz hat sich 1992 mit der Unterzeichnung der Biodiversitätskonvention von Rio verpflichtet, diese Vielfalt zu überwachen, zu erhalten und zu fördern. Das Bundesamt für Umwelt (BAFU) überwacht seit 2001 die biologische Vielfalt der Schweiz mit dem Biodiversitätsmonitoring (BDM). Da es unmöglich ist, die ganze Vielfalt zu erfassen, konzentriert sich das BDM auf Kennzahlen, die wichtige Aspekte der Vielfalt repräsentieren. Diese Kennzahlen zeigen, ob die biologische Vielfalt wächst oder schrumpft. Eine dieser Kennzahlen erfasst die Artenvielfalt an Farn- und Blütenpflanzen (Gefässpflanzen) in verschiedenen Landschaften (Koordinationsstelle Biodiversitätsmonitoring Schweiz (2006) Zustand der Biodiversität in der Schweiz. Umwelt-Zustand Nr. 0604. Bundesamt für Umwelt, Bern. ). Modelle der WSL liefern Karten der Pflanzenvielfalt in der Schweiz: Auf rund 500 Probeflächen, die regelmässig über die ganze Schweiz verteilt sind, erfasst das BDM die Artenvielfalt an Gefässpflanzen in der Landschaft. Trotz der grossen Anzahl liefern die Probeflächen nur punktuelle Informationen. Die WSL hat deshalb die Artenzahlen des BDM verwendet, um die Artenvielfalt für die gesamte Schweiz zu modellieren. Mit Hilfe dieser Modelle kann die Pflanzenvielfalt flächendeckend vorhergesagt werden.

1 2 3 4 5975 976 977