API src

Found 293 results.

Related terms

Possible effects of transgenic plants on soil organisms

Soil is the first component of the environment that can be effected by GM plants, because they do not only consume the nutritive substances from the soil, but also release there different compounds during a growing period, and leave in the soil their remains. If the plants are modified to increase their resistance to plant pathogens, particularly bacteria, they can also affect the other microorganisms important for plant development. Also there are no considerable data about possible effect of GM plants on soil organic matter and chemical processes in soil. For the experiment it is planned to use transgenic potato plants (Solanum tuberosum L. cv. Desiree) expressing a chimerical gene for T4 lysozyme for protection against bacterial infections; - obtaining and short-term growing of GM plants in laboratory conditions; - extraction and collection of root exudates and microbial metabolites from rhizosphere; - analysis of these exudates by Pyrolysis-Field Ionisation Mass Spectrometry (Py-FIMS) in comparison with the exudates of wild-type plants and transgenic controls not harbouring the lysozyme gene, and with dissolved organic matter from non-cropped soil; - creation of 'fingerprints' for each new transgenic line in combination with certain soil on the basis of marker signals. Expected impacts: - New highly cost-effective express testing system for the risk assessment of genetically modified plants at the earliest stages of their introduction; - The conclusion about safety/danger of GM plants for the soil ecosystems; - Model for prediction of possible risk caused by GM plants.

Kupferaufnahme und seine Wirkung auf den pflanzlichen Stoffwechsel

Es wird die Cu-Aufnahme durch Zellsuspensions-Kulturen untersucht im Hinblick auf eine kinetische Auswertung. Ferner wird der Saeurehaushalt sowie der Ca-Haushalt der Gerstenwurzeln untersucht unter dem Einfluss steigender Kupfermenge. Gleichzeitig wird die Hypothese der ATPase-Beteiligung an der Cu-Aufnahme geprueft bei der Gerste und bei Schwermetall-resistenten Pflanzen.

Molekularbiologische Analyse der Rolle der Mykorrhiza für den Schwefelhaushalt der Pappel

Mykorrhizen sind in der Lage, das Wachstum der Bäume durch erhöhte Aufnahme von Nährstoffen zu verbessern. Im Gegensatz zu Phosphat und Nitrat, ist nur wenig über die Bedeutung der Mykorrhiza für die Aufnahme und den Metabolismus von Schwefel bekannt, obwohl schwefelhaltige Stoffe eine wichtige Rolle bei Rhizobiumwurzel Symbiose spielen, die in vielen Aspekten ähnlich zu Mykorrhizierung ist. Ziel des Projekts ist es, Gene des Schwefelhaushalts von Wurzeln zu identifizieren, die bei der Wechselwirkung Wurzelpilz eine Rolle spielen, und deren Expression und Regulation zu analysieren. Als Modellsystem soll dabei die Pappel und der Pilz Amanita muscaria eingesetzt werden. In diesem Modellsystem soll die Hypothese überprüft werden, dass der Pilz die Sulfatversorgung der Pflanze durch eine erhöhte Aufnahme sowie einen intensiven Austausch mit der Wurzel verbessert und, in Analogie zu Rhizobien, dem Pilz von der Pflanze reduzierter Schwefel in Form von Glutathion zur Verfügung gestellt wird. In der ersten Phase wird der Einfluss der Schwefel- und Stickstoffernährung auf die Expression der Gene des Schwefel-Metabolismus in Pappel und im Pilz untersucht. Weiterhin soll der Einfluss der Modulation des Schwefelhaushalts in Pappeln durch genetische Manipulation auf die Wechselwirkung im Schwefelhaushalt zwischen Wurzel und Pilz analysiert werden.

Untersuchungen zum Einfluss von UV-Strahlung auf das System arktischer Daphnien/Futteralgen in Bezug auf Reproduktion, Schutzmechanismen, Überleben und UV-Toleranz unter Labor- und natürlichen Bedingungen

In dem geplanten Projekt sollen die Auswirkungen von UV-Strahlung sowohl auf Daphnien als auch auf deren Futteralgen untersucht werden. Dies soll Einblicke in die komplexen Wirkweisen von solarer UV-Strahlung auf biotische Systems, wie sie in arktischen Kleingewässern zu finden sind, erlauben. Veränderungen im Wachstum, Protein- und Kohlenhydratgehalt, sowie im Gehalt an Pigmenten, Lipiden und möglicher Schutzsubstanzen (MAAs) der UV-bestrahlten Futteralgen sollen dokumentiert und deren Einfluss auf die UV-Toleranz, die Lebensdauer und die Reproduktionsfähigkeit von Daphnien getestet werden. Schwerpunktmäßig soll die Rolle der in die Fetttröpfchen der Daphnien eingelagerten pflanzlichen Carotinoide und die Lipidreservestoffe der Daphnien untersucht werden. Darüber hinaus soll festgestellt werden, ob der Gehalt an UV-Schutzsubstanzen (Mycosporin like Amino Acids) durch UV-Bestrahlung in den Algen bzw. den Daphnien beeinflusst werden kann. Die im Labor gewonnenen Ergebnisse werden im Freiland unter natürlichen Bedingungen überprüft.

Die mikrobielle Besiedlung von Wurzeloberfläche und Rhizosphäre in ihrer Bedeutung für Stoffumsätze in Böden

Die Bedeutung der mikrobiellen Besiedlung von Wurzeloberfläche und Rhizosphäre für Stoffumsätze in Böden soll im Gewächshaus mit vier Gefäßversuchen erfasst werden. Im ersten Versuch wird die Eignung Ergosterol und Muraminsäure zur Quantifizierung von Pilz- und Bakterienbiomasse auf Wurzeloberflächen mit anderen, insbesondere mikroskopischen Methoden überprüft. Im zweiten Versuch wird der Einfluss der Pflanzenart auf die mikrobielle Besiedlung der Wurzeloberfläche untersucht. Im dritten Versuch wird ermittelt, ob die mikrobielle Biomasse eines Bodens und deren Zusammensetzung, dargestellt durch die Quotienten von Ergosterol (Biomarker für Pilze) bzw. Muraminsäure (Biomarker für Bakterien) und mikrobieller Biomasse, die mikrobielle Besiedlung von Wurzeloberflächen beeinflusst. Im vierten Versuch wird das Verhalten der rhizoplanen Organismen während des Absterbens der Wurzel beobachtet und untersucht, inwieweit es zu Interaktionen mit den Mikroorganismen der Rhizosphäre und des Gesamtbodens kommt. Dazu wird nicht nur die mikrobielle Biomasse quantifiziert, sondern auch der Übergang der Wurzelbiomasse in mikrobielle Residuen als Zwischenspeicher für Nährstoffe speziell beachtet. Es ist davon auszugehen, dass die Interaktionen zwischen Pflanze, mikrobieller Biomasse und mikrobiellen Residuen eine wichtige Funktion für die Immobilisierung und Mobilisierung von Pflanzennährstoffen haben.

Weg des Kohlenstoffs und Regulation des Saeurestoffwechsels bei Sukkulenten (Crassulaceen-Saeurestoffwechsel)

Sukkulenten, die ueber den Crassulaceen-Saeurestoffwechsel (CAM) verfuegen, vermoegen in der Nacht CO2 aus der Atmosphaere zu binden und dieses in Form von Aepfelsaeure zu speichern. Am folgenden Tag wird die Aepfelsaeure decarboxyliert und das dabei entstehende CO2 ueber den Calvin-Zyklus der Photosynthese zugefuehrt. Diese Form des Kohlenstoffgewinns ermoeglicht einen besonders sparsamen Wasserhaushalt. Es handelt sich also um eine oekologische Anpassung an wasserarme Standorte. In dem vom hier vorliegenden Bericht abgedeckten Zeitraum wurden besonders folgende Teilaspekte des CAM erforscht: 1. Charakterisierung der PEP-Carboxylase, des Schluesselenzyms des CAM und Untersuchung seiner Regulierbarkeit in vivo und in vitro. 2. Vergleich verschiedener Sukkulententypen und verschiedener Organe bzw. Gewebe einer Pflanze hinsichtlich ihrer Faehigkeit CAM durchzufuehren oder nicht. Erkenntnisziel: Erforschung der Voraussetzungen fuer das Zustandekommen des CAM bei Pflanzen. 3. Untersuchung des Weges des Kohlenstoffs im CAM. Besonders untersucht wurde das Problem, ob in den Plastoglobuli der Chloroplasten gespeicherte Lipide im CAM umgesetzt werden.

Polycyclische cancerogene Kohlenwasserstoffe in vom Menschen genutzten Pflanzen

Arbeiten ueber die Ursachen des Vorhandenseins von krebserregenden Verbindungen in Nutzpflanzen, d. h. Klaerung, ob diese Substanzen von der Pflanze selbst produziert werden oder aus der Umgebung (Luft, Boden, Wasser) in die Pflanze eindringen. Forschungsarbeiten ueber den Transport dieser Substanzen in der Pflanze sowie etwaige Einbeziehung in den Stoffwechsel. Es kommen sowohl chemisch-analytische Verfahren wie auch Verfahren unter Verwendung markierter Substanzen in Frage.

Wirkung von SO2- und Schwermetallimmissionen auf unterschiedlich resistente Pflanzen

Fragestellung: Sichtbare Schaeden (Nekrosen etc.) durch SO2- und SM-Immissionen an Pflanzen setzen tiefgreifende, schon fruehzeitig stattfindende Veraenderungen im Stoffwechsel voraus. Ziel: Aufklaerung der Wirkmechanismen von SO2 und Schwermetallen (Einzelwirkung sowie Synergismus); Grundlagen der unterschiedlichen Pflanzenresistenz; Wirkung auf qualitaetsgebende pflanzliche Inhaltsstoffe. Anwendungsmoeglichkeiten: Selektion von immissionsresistenten Pflanzen; biochemisch-physiologische Fruehindikation von Immissionen; Festlegung von Immissionsgrenzwerten; oekologische Massnahmen zur Minderung von Immissionsschaeden.

Klonierung und Charakterisierung eines an der Phytosiderophorsekretion in Mais beteiligten Gens

Das Spurenelement Eisen (Fe) ist an vielen essentiellen Stoffwechselvorgängen in Pflanzen beteiligt. Daher ist eine ausreichende Fe-Konzentration in pflanzlichen Geweben von außerordentlicher Bedeutung. Gramineen, die im Hinblick auf die Sicherung der Welternährung zu den wichtigsten Kulturpflanzen gehören, geben zur Aneignung von Fe Schwermetallchelatoren, sogenannte Phytosiderophore (PS), ab und nehmen Fe(III)-PS-Komplexe auf. Während das Transportprotein des Fe(III)-PS-Komplexes in Mais, eine der Modellpflanze der Gramineen, bereits molekular charakterisiert wurde, sind die Komponenten, die an der Abgabe der PS beteiligt sind, noch nicht isoliert worden. Ziel dieses Projektes ist es daher, das YS3-Gen, welches direkt oder indirekt an der Abgabe von PS in Mais beteiligt ist, zu klonieren und charakterisieren. Hierzu soll ein kartengestützter Klonierungsansatz verwendet werden. Parallel dazu soll ein direktes Transposon-tagging mit Mutator- (Mu) und Activator/Dissociator- (Ac/Ds) Transposons durchgeführt werden. Mit den in diesen Experimenten unabhängig generierten ys3-Allelen, soll schließlich der Nachweis geführt werden, dass das richtige Gen kloniert wurde. Zum Abschluss der ersten Förderperiode soll eine erste funktionelle Charakterisierung des YS3 Gens durchgeführt werden.

Erhoehter CO2-Partialdruck in der Atmosphaere: Anpassung des Stoffwechsels und Inhaltsstoffe von Nutzpflanzen (insbesondere Getreide)

Hypothesen: Der steigende CO2-Partialdruck in der Erdatmosphaere veraendert die Expression von Genen und damit den Stoffwechsel der Pflanzen. Folgen sind veraenderter Naehrstoffbedarf und veraenderte Zusammensetzung auch der landwirtschaftlichen Produkte. Ergebnisse: Der Phosphatbedarf der Pflanzen steigt in Hoch CO2. - Der Stickstoffbedarf faellt in Hoch-CO2 (Wachstum) - Das C/N Verhaeltnis in Pflanzen ist erhoeht in Hoch-CO2; sehr hohe Stickstoffgaben wirken diesem Effekt entgegen. - Modifizierungen im Phosphat- und Stickstoffwechsel erfolgen in den Blaettern. - Die Expression mancher photosynthetischer Gene wird von Hoch CO2 beeinflusst. - Aufklaerung des Stoffwechsels in Sink-Geweben der Pflanze (insbesondere Speicherorgane) - Untersuchungen zu CO2-Effekten auf die Rhizosphaere und Mineralstoffaufnahme (einschl. Schwermetalle).

1 2 3 4 528 29 30