In diesem Vorhaben werden Anbauverfahren bereits etablierter Niedermoor-Paludikulturen in Bayern und Niedersachsen untersucht und optimiert sowie nachhaltige Produkte (weiter-) entwickelt. Ziel der Untersuchungen ist es, die langfristige Ertrags- und Qualitätsentwicklung von Typha, Phragmites, Phalaris und Carex auf den Bestandsflächen zu ermitteln und den Einfluss der Nährstoffversorgung und weiterer relevanter Faktoren zu quantifizieren. Die Auswirkungen von Nährstoffverfügbarkeit und einer möglichen Düngung auf die Biomassequantität und -qualität, den Stoffhaushalt (THG-Austausch und Nährstoffdynamik) und die Biodiversität werden untersucht. Die Anbauverfahren werden hinsichtlich ihrer Wirtschaftlichkeit bewertet. Ein weiteres Alleinstellungsmerkmal ist die Erstellung eines Pflanzenwachstumsmodells für Paludikulturarten. Die Projektpartner stellen die Infrastruktur und die Flächen in Süd- und Norddeutschland zur Verfügung: Großflächige 'Pilot Sites', 'Intensivmessstandorte' und insgesamt 36 'Mesokosmen'. Der Schwerpunkt des Vorhabens liegt auf der Nachhaltigkeit der gesamten Produktionskette vom Anbau bis zur Verwertung. Für stoffliche Verwertungskonzepte (Bioraffination, Biobasierte Werkstoffe) werden praxisnahe Untersuchungen durchgeführt. Das Konsortium wird im Projekt interdisziplinär zusammenarbeiten und gemeinsam mit Stakeholdern das Konzept der Paludikultur weiterentwickeln. Durch eine enge Zusammenarbeit mit Praxispartnern aus der Wirtschaft können kurzfristig praktische Ergebnisse in die Diskussion eingebracht und mittelfristig in die Umsetzung gebracht werden. Das Projekt soll bewerten, wie nachhaltig Niedermoor-Paludikulturen in Hinblick auf Produktivität, Verwertungsschienen und Ökonomie sowie auf Nährstoffdynamik, Biodiversität und Klimarelevanz auf Dauer sind. Die generierten Daten und Ergebnisse leisten einen wichtigen Beitrag im Wissenstransfer z.B. im Bereich Emissionsminderung der Sektoren Landwirtschaft und Landnutzung.
In diesem Vorhaben werden Anbauverfahren bereits etablierter Niedermoor-Paludikulturen in Bayern und Niedersachsen untersucht und optimiert sowie nachhaltige Produkte (weiter-) entwickelt. Ziel der Untersuchungen ist es, die langfristige Ertrags- und Qualitätsentwicklung von Typha, Phragmites, Phalaris und Carex auf den Bestandsflächen zu ermitteln und den Einfluss der Nährstoffversorgung und weiterer relevanter Faktoren zu quantifizieren. Die Auswirkungen von Nährstoffverfügbarkeit und einer möglichen Düngung auf die Biomassequantität und -qualität, den Stoffhaushalt (THG-Austausch und Nährstoffdynamik) und die Biodiversität werden untersucht. Die Anbauverfahren werden hinsichtlich ihrer Wirtschaftlichkeit bewertet. Ein weiteres Alleinstellungsmerkmal ist die Erstellung eines Pflanzenwachstumsmodells für Paludikulturarten. Die Projektpartner stellen die Infrastruktur und die Flächen in Süd- und Norddeutschland zur Verfügung: Großflächige 'Pilot Sites', 'Intensivmessstandorte' und insgesamt 36 'Mesokosmen'. Der Schwerpunkt des Vorhabens liegt auf der Nachhaltigkeit der gesamten Produktionskette vom Anbau bis zur Verwertung. Für stoffliche Verwertungskonzepte (Bioraffination, Biobasierte Werkstoffe) werden praxisnahe Untersuchungen durchgeführt. Das Konsortium wird im Projekt interdisziplinär zusammenarbeiten und gemeinsam mit Stakeholdern das Konzept der Paludikultur weiterentwickeln. Durch eine enge Zusammenarbeit mit Praxispartnern aus der Wirtschaft können kurzfristig praktische Ergebnisse in die Diskussion eingebracht und mittelfristig in die Umsetzung gebracht werden. Das Projekt soll bewerten, wie nachhaltig Niedermoor-Paludikulturen in Hinblick auf Produktivität, Verwertungsschienen und Ökonomie sowie auf Nährstoffdynamik, Biodiversität und Klimarelevanz auf Dauer sind. Die generierten Daten und Ergebnisse leisten einen wichtigen Beitrag im Wissenstransfer z.B. im Bereich Emissionsminderung der Sektoren Landwirtschaft und Landnutzung.
Ziel dieses Vorhabens ist die Erhöhung des Nutzens von biologisch basierten und biologisch abbaubaren Mulchfolien für die Agrarwirtschaft. Die Folien sollen mit Zusatzstoffen ausgestattet werden, die langfristig Qualität und Wert des Bodens durch Erhalt der pflanzenphysiologischen wichtigen Kohlenstoffstruktur erhöhen und kurzfristig gesteigerte Erträge durch verbesserte Nährstoffverfügbarkeit ermöglichen.
Der sogenannte S-Wert ist ein Kennwert zur Bewertung des Bodens als Bestandteil des Nährstoffhaltes und wird über die Nährstoffverfügbarkeit bewertet. Der S-Wert ist die Menge an Nährstoffen (Kationen, nicht z. B. Nitrat), die ein Boden austauschbar an Ton-, Humusteilchen, Oxiden und Hydroxiden binden bzw. sorbieren kann (Kationenaustauschkapazität). Der S-Wert ist somit gut geeignet, die Nährstoffverfügbarkeit zu beschreiben. Ähnlich wie bei der Feldkapazität im effektiven Wurzelraum (FKwe) bedingen hohe Gehalte an Ton, Humus, sowie ein großer effektiver Wurzelraum einen hohen S-Wert und umgekehrt. Auch der pH-Wert hat einen großen Einfluss auf den S-Wert. Der pH-Wert kann in Abhängigkeit von der Nutzung in einem weiten Bereich schwanken. Je höher der S-Wert, desto mehr Nährstoffe kann der Boden an Austauschern binden. Nährstoffeinträge über Luft oder Düngung werden so vor einem Austrag mit dem Sickerwasser geschützt. Gleichzeitig wird dadurch eine gleichmäßigere Nährstoffversorgung der Pflanzen sichergestellt. Mit dem S-Wert wird eine natürliche Bodenfunktionen nach § 2 Abs. 2 BBodSchG bewertet und zwar nach Punkt 1.b) als Bestandteil des Naturhaushalts, insbesondere mit seinen Wasser- und Nährstoffkreisläufen. Das hierfür gewählte Kriterium ist die Nährstoffverfügbarkeit mit dem Kennwert S-Wert. Die Karten liegen für die folgenden Maßstabsebenen vor: - 1 : 1.000 - 10.000 für hochaufgelöste oder parzellenscharfe Planung, - 1 : 10.001 - 35.000 für Planungen auf Gemeindeebene, - 1 : 35.001 - 100.000 für Planungen in größeren Regionen, - 1 : 100.001 - 350.000 für landesweit differenzierte Planung, - 1 : 350.001 - 1000.000 für landesweite bis bundesweite Planung. In dieser Darstellung wird der S-Wert landesweit einheitlich klassifiziert. Unter dem Titel "Bodenbewertung - Nährstoffverfügbarkeit im effektiven Wurzelraum (SWE), regionalspezifisch bewertet" gibt es noch eine naturraumbezogene Klassifikation des S-Wertes, die den S-Wert regional differenzierter darstellt.
Der sogenannte S-Wert ist ein Kennwert zur Bewertung des Bodens als Bestandteil des Nährstoffhaltes und wird über die Nährstoffverfügbarkeit bewertet. Der S-Wert ist die Menge an Nährstoffen (Kationen, nicht z. B. Nitrat), die ein Boden austauschbar an Ton-, Humusteilchen, Oxiden und Hydroxiden binden bzw. sorbieren kann (Kationenaustauschkapazität). Der S-Wert ist somit gut geeignet, die Nährstoffverfügbarkeit zu beschreiben. Ähnlich wie bei der Feldkapazität im effektiven Wurzelraum (FKwe) bedingen hohe Gehalte an Ton, Humus, sowie ein großer effektiver Wurzelraum einen hohen S-Wert und umgekehrt. Auch der pH-Wert hat einen großen Einfluss auf den S-Wert. Der pH-Wert kann in Abhängigkeit von der Nutzung in einem weiten Bereich schwanken. Je höher der S-Wert, desto mehr Nährstoffe kann der Boden an Austauschern binden. Nährstoffeinträge über Luft oder Düngung werden so vor einem Austrag mit dem Sickerwasser geschützt. Gleichzeitig wird dadurch eine gleichmäßigere Nährstoffversorgung der Pflanzen sichergestellt. Mit dem S-Wert wird eine natürliche Bodenfunktionen nach § 2 Abs. 2 BBodSchG bewertet und zwar nach Punkt 1.b) als Bestandteil des Naturhaushalts, insbesondere mit seinen Wasser- und Nährstoffkreisläufen. Das hierfür gewählte Kriterium ist die Nährstoffverfügbarkeit mit dem Kennwert S-Wert. Die Karten liegen für die folgenden Maßstabsebenen vor: - 1 : 1.000 - 10.000 für hochaufgelöste oder parzellenscharfe Planung, - 1 : 10.001 - 35.000 für Planungen auf Gemeindeebene, - 1 : 35.001 - 100.000 für Planungen in größeren Regionen, - 1 : 100.001 - 350.000 für landesweit differenzierte Planung, - 1 : 350.001 - 1000.000 für landesweite bis bundesweite Planung. In dieser Darstellung wird der S-Wert regionalspezifisch klassifiziert. Unter dem Titel "Bodenbewertung - Nährstoffverfügbarkeit im effektiven Wurzelraum (SWE), landesweit bewertet" gibt es noch eine Klassifikation des S-Wertes, die den S-Wert über die Naturraumgrenzen hinweg landesweit einheitlich darstellt.
Düngemitteln beigemischte Urease- und Nitrifikationsinhibitoren sollen die Pflanzenverfügbarkeit von Stickstoff erhöhen und sollen durch die Hemmung bestimmter mikrobieller bzw. enzymatischer Prozesse zu einer Reduzierung von klimarelevanten Gasemissionen beitragen. Allerdings haben die Stoffe eine biozide Wirkung sowie eine hohe Persitenz in der Umwelt und damit möglicherweise schädliche Einflüsse auf Böden, Grundwasser und Trinkwasserressourcen. In dem Vorhaben soll daher der Verbleib und Transport in Böden anhand von Lysimeter- und Säulenversuchen untersucht werden.?
Damit Ökosystemdienstleistungen, die beispielsweise der Bodenfruchtbarkeit und -gesundheit dienen, mit einer hohen Rate erbracht werden können, ist eine größere und aktivere mikrobielle Biomasse (MB) im Boden von Vorteil. Die MB wird häufig über die Chloroform-Fumigation-Extraktion von Kohlenstoff (C), Stickstoff (N) und Phosphor (P) bestimmt und diese drei Elemente weisen eine homöostatische Stöchiometrie auf. Mikroorganismen bestehen jedoch aus mehr als diesen drei Elementen und jene anderen spielen wichtige Rollen in Zellfunktionen, Wachstum, und Ökosystemdienstleistungsbezogenen Aktivitäten. Aber deren Stöchiometrie in der MB ist nicht bekannt. Gemäß dem Minimumgesetz werden Wachstum und Aktivität durch jene Nährstoffe begrenzt, die im Verhältnis zur benötigten Menge die geringste Verfügbarkeit aufweisen. Allerdings hat sich die Erkenntnis durchgesetzt, dass Co-Limitierung dominiert. Andererseits können einige Elemente wie Mangan andere wie beispielsweise Magnesium, Eisen und Zink substituieren. Das Verhältnis von C zu anderen Elementen als N und P, das für Wachstum und Aktivität im Boden benötigt wird, ist nicht bekannt. Kürzlich haben wir eine Chloroform-Fumigation-Extraktionsmethode zur Analyse weiterer MB-Elemente optimiert. Mit dieser Methode soll die MB in Bodenvarianten aus zwei Langzeitdüngeexperimenten und ihren Korngrößenfraktionen untersucht werden. Während sich erstere in ihrem Nährstoffstatus durch die verschiedenen Düngungevarianten unterscheiden, unterscheiden sich letztere durch die Diversität der Mineralien und die Qualität assoziierter organischer Bodensubstanz. In Inkubationsexperimenten sollen des Weiteren Elemente in mehreren Konzentrationsstufen zugeführt werden. Durch diese Herangehensweisen soll die Hypothese getestet werden, dass im Gegensatz zu C:N:P Elemente, die substituiert werden können, eine flexible Stöchiometrie aufweisen. Die Untersuchungen beinhalten die Messung von Bodenatmung und Enzymaktivitäten. Mittels Schrotschusssequenzierung sollen funktionelle Gene analysiert werden, die mit den Elementen in Beziehung stehen wie jene, die für Metalloproteine codieren. Es soll überprüft werden, ob das Wissen über die Stöchiometrie bioverfügbarer und MB-Elemente genutzt werden kann, um Wachstum und Aktivität der Mikroorganismen zu erhöhen. Die Ergebnisse dieses Projekts geben Einsicht in den stöchiometrischen Phänotyp der MB des Bodens jenseits von C, N und P. Dieses Wissen zusammen mit jenem über bioverfügbare Elemente soll Interessengruppen ermöglichen, die mikrobielle Gemeinschaft des Bodens durch spezifische Elementzugabe in spezifischen Konzentrationen so zu behandeln, dass Bodenfruchtbarkeit und -gesundheit sowie entsprechend Ökosystemdienstleistungen des Bodens erhöht werden.
In vielen Lebensräumen ist Wasser der bedeutendste limitierende Faktor für das Wachstum und die Verbreitung der Pflanzen. Neuere Arbeiten zeigen, dass auch Arten, die nicht über spezielle Blattorgane zur Aufnahme von Wasser verfügen, auf Tau mit einer Erhöhung des Wasserpotentials und der Photosynthese sowie mit gesteigertem Wurzelwachstum reagieren. Das Ziel des Projekts ist die Evaluierung des Einflusses und die Untersuchung der Wirkungsweise von Tau auf die Vegetation von Stipa tenacissima dominierten Hängen entlang eines Niederschlags-Tauniederschlags-Transekts in SO-Spanien. An S. tenacissima und an ausgewählten annuellen Arten wird der Einfluss von Tau auf den Wasserhaushalt, die Photosynthese und die Fähigkeit der Wurzeln zur Wasseraufnahme im Freiland und im Gewächshaus bestimmt. Seine Wirkungsweise, eventuelle Aufnahmewege, Verlagerungen im Boden sowie sein Einfluss auf die Nährstoffverfügbarkeit werden untersucht. Die Bestimmung der Taumenge und -häufigkeit, verbunden mit Mikroklimamessungen, ermöglicht eine Abschätzung des Beitrags von Tau zur Wasserbilanz der untersuchten Hänge. Das Projekt wird Fragen des Wasser- und Nährstoffhaushalts der Vegetation in ariden und semi-ariden Gebieten beantworten. Dies trägt zu einem besseren Verständnis der Ökologie und der Verbreitung der Pflanzen dieser Gebiete bei, welches für die zukünftige Bewirtschaftung und Rehabilitation von degradierten Flächen in diesen Ökosystemen wichtig ist.
Die Verunreinigung unserer Wasserressourcen mit organischen Schadstoffen, wie etwa Öl-bürtigen Kohlenwasserstoffen, ist ein ernstzunehmendes Problem und hat vielerorts bereits zu einer chronischen Belastung des Grundwassers geführt. Der biologische Abbau ist der einzige natürliche Prozess, der im Untergrund zu einer Schadstoffreduktion führt. Als Steuergrößen gelten hier die Anwesenheit von Abbauern (Mikroorganismen) und die Verfügbarkeit von Elektronenakzeptoren und Nährstoffen. In den letzten Jahren wurde zudem die Bedeutung dynamischer Umweltbedingungen (z.B. Hydrologie) als wichtige Einflussgröße erkannt. Ein wichtiger Aspekt wurde jedoch bisher nicht in Betracht gezogen, nämlich die Rolle der Viren bzw. Phagen. Viren sind zahlenmäßig häufiger als Mikroorganismen und ebenso ubiquitär vorhanden. Mittels verschiedener Mechanismen können sie einen enormen Einfluss auf die mikrobiellen Gemeinschaften ausüben. Einerseits verursachen sie Mortalität bei ihren Wirten. Andererseits können sie über horizontalen Gentransfer den Wirtsstoffwechsel sowohl zu dessen Vorteil als auch Nachteil modifizieren. In den vergangenen Jahren konnten verschiedene mikrobielle Phänomene der Aktivität von Viren zugeschrieben werden. Die klassische Ansicht, dass Viren ausschließlich Parasiten sind, ist nicht mehr zutreffend. Als Speicher und Überträger von genetischer Information ihrer Wirte nehmen sie direkten Einfluss auf biogeochemische Stoffkreisläufe sowie auf die Entstehung neuer Schadstoffabbauwege. Biogeochemische Prozesse in mikrobiell gesteuerten Ökosystemen wie dem Grundwasser und die dynamische Entstehung und Anpassung an neue Nischen als Folge von Veränderungen der Umweltbedingungen kann nur verstanden werden, wenn der Genpool in lytischen und lysogenen Viren entsprechend mit berücksichtigt wird. Das Projekt ViralDegrade stellt Paradigmen in Frage und möchte eine völlig neue Perspektive hinsichtlich der Rolle der Viren beim mikrobiellen Schadstoffabbau eröffnen, welche zur Zeit noch als Black Box behandelt werden. ViralDegrade postuliert, dass Viren (i) durch horizontalen Gentransfer und den Einsatz von metabolischen Genen den Wirtsstoffwechsel modulieren (Arbeitshypothese 1) und (ii) für den temporären Zusammenbruch von dominanten Abbauerpopulationen und, damit verbunden, für den Wechsel zwischen funktionell redundanten Schlüsselorganismen verantwortlich sind (Arbeitshypothese 2). Sorgfältig geplante Labor- und Felduntersuchungen und vor allem der kombinierte Einsatz von (i) neu entwickelten kultivierungsunabhängigen Methoden, wie etwa dem Viral-Tagging, und (ii) ausgewählten schadstoffabbauenden aeroben und anaeroben Bakterienstämmen, garantieren neue Erkenntnisse zur Rolle der Viren beim mikrobiellen Schadstoffabbau sowie ähnlichen mikrobiell gesteuerten Prozessen. Ein generisches Verständnis der Vireneinflüsse wird zudem zukünftig neue Optionen für die biologische Sanierung eröffnen.
| Origin | Count |
|---|---|
| Bund | 180 |
| Land | 31 |
| Wissenschaft | 7 |
| Type | Count |
|---|---|
| Daten und Messstellen | 7 |
| Förderprogramm | 159 |
| Taxon | 4 |
| Text | 18 |
| Umweltprüfung | 1 |
| unbekannt | 25 |
| License | Count |
|---|---|
| geschlossen | 30 |
| offen | 179 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 173 |
| Englisch | 93 |
| Resource type | Count |
|---|---|
| Archiv | 3 |
| Bild | 1 |
| Datei | 5 |
| Dokument | 14 |
| Keine | 101 |
| Unbekannt | 4 |
| Webdienst | 10 |
| Webseite | 90 |
| Topic | Count |
|---|---|
| Boden | 189 |
| Lebewesen und Lebensräume | 191 |
| Luft | 110 |
| Mensch und Umwelt | 209 |
| Wasser | 126 |
| Weitere | 210 |