Das Projekt "Schwerpunktprogramm (SPP) 1704: Flexibilität entscheidet: Zusammenspiel von funktioneller Diversität und ökologischen Dynamiken in aquatischen Lebensgemeinschaften; Flexibility Matters: Interplay Between Trait Diversity and Ecological Dynamics Using Aquatic Communities as Model Systems (DynaTrait), Teilprojekt: Die Effekte von Variation in Nährstoffstöchiometrie in Algen auf Herbivorengemeinschaften" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung.Schwankungen in der Verfügbarkeit von Licht und Nährstoffen im Phytoplankton führen zu Unterschiede in der Nährstoffstöchiometrie der Algen. Diese Variabilität wird weiter beeinflusst durch Wachstumsratender Algen. In den meisten Fällen führt schnelles Wachstum zu einem bestimmten optimalen Nährstoffgehalt in Algen, während Algen die langsamer wachsen eine viel größere Variabilität in Nährstoffzusammensetzung vorweisen. Diese Muster wurden bis jetzt vor allem auf Populationsebene nachgewiesen, und bis jetzt ist es unklar, ob dies auch gilt innerhalb von Populationen, zwischen einzelnen Algenzellen. So ist es eine offene Frage, ob der Zusammenhang zwischen Wachstumsrate und Nährstoff Stöchiometrie von Algen eine Populationsresponse oder auch eine Response einzelner Zellen ist. Zooplankton verzeichnet in der Regel eine deutlich konstantere Nährstoffstöchiometrie als Algen und damit ein stärkeres Maß an Homöostase. Verschiedene Lebensstadien der gleichen Spezies können jedoch völlig unterschiedliche Ernährungsbedürfnisse haben. Zum Beispiel haben die schnellere wachsende Nauplien in Copepoden, einen höheren Bedarf an Phosphor als ältere Stadien. Infolgedessen, hat eine von jüngeren Stadien dominierte Population eine unterschiedliche optimale Nahrung als wenn die Population von älteren Stadien dominiert wird. In dieser Studie werden wir prüfen ob Variation in Populationswachstum in Mikroalgen zu Änderungen in der Nährstoffstöchiometrie der Algen führt, sowohl zwischen Populationen als auch zwischen Individuen innerhalb von Populationen. Wir untersuchen dann den Effekt dieser durch unterschiedliche Wachstumsraten induzierten Veränderungen in Nährstoffzusammensetzung auf das Wachstum und die Dynamik der Weidegänger. Wenn die Variation in Nährstoffstöchiometrie mit langsamer Algenwachstum zunimmt, dann entsteht hier durch potentiell ein Gradient verschiedener Nahrungsqualitäten. Wir wissen, dass viele Herbivoren ihre Nahrung sehr selektiv zu sich nehmen. Also, wenn langsameres Wachstum ein breiteres Spektrum an verschiedenen Nährstoffstöchiometrie in den Algen als Konsequenz hat, entstehen hier durch potentiell mehrere Nischen für unterschiedliche Arten oder Lebensstadien. Im Idealfall würde im Falle der Copepoden, die Nauplien hohe P-Algen aus der Population aufnehmen, während die älteren Stadien selektiv die Algen fressen würden die mehr Stickstoff enthalten. So würde die Konkurrenz für eine Ressource eingeschränkt werden, da es innerhalb einer langsam wachsenden Population mehr als eine Ressource geben würde. Letztlich könnte dies bedeuten, dass Systeme mit langsamer wachsenden Primärproduzenten eine höhere Vielfalt von Sekundärproduzenzen aufrechterhalten könnte als jene in dem Algenwachstum höher ist.
Der sogenannte S-Wert ist ein Kennwert zur Bewertung des Bodens als Bestandteil des Nährstoffhaltes und wird über die Nährstoffverfügbarkeit bewertet. Der S-Wert ist die Menge an Nährstoffen (Kationen, nicht z. B. Nitrat), die ein Boden austauschbar an Ton-, Humusteilchen, Oxiden und Hydroxiden binden bzw. sorbieren kann (Kationenaustauschkapazität). Der S-Wert ist somit gut geeignet, die Nährstoffverfügbarkeit zu beschreiben. Ähnlich wie bei der Feldkapazität im effektiven Wurzelraum (FKwe) bedingen hohe Gehalte an Ton, Humus, sowie ein großer effektiver Wurzelraum einen hohen S-Wert und umgekehrt. Auch der pH-Wert hat einen großen Einfluss auf den S-Wert. Der pH-Wert kann in Abhängigkeit von der Nutzung in einem weiten Bereich schwanken. Je höher der S-Wert, desto mehr Nährstoffe kann der Boden an Austauschern binden. Nährstoffeinträge über Luft oder Düngung werden so vor einem Austrag mit dem Sickerwasser geschützt. Gleichzeitig wird dadurch eine gleichmäßigere Nährstoffversorgung der Pflanzen sichergestellt. Mit dem S-Wert wird eine natürliche Bodenfunktionen nach § 2 Abs. 2 BBodSchG bewertet und zwar nach Punkt 1.b) als Bestandteil des Naturhaushalts, insbesondere mit seinen Wasser- und Nährstoffkreisläufen. Das hierfür gewählte Kriterium ist die Nährstoffverfügbarkeit mit dem Kennwert S-Wert. Die Karten liegen für die folgenden Maßstabsebenen vor: - 1 : 1.000 - 10.000 für hochaufgelöste oder parzellenscharfe Planung, - 1 : 10.001 - 35.000 für Planungen auf Gemeindeebene, - 1 : 35.001 - 100.000 für Planungen in größeren Regionen, - 1 : 100.001 - 350.000 für landesweit differenzierte Planung, - 1 : 350.001 - 1000.000 für landesweite bis bundesweite Planung. In dieser Darstellung wird der S-Wert landesweit einheitlich klassifiziert. Unter dem Titel "Bodenbewertung - Nährstoffverfügbarkeit im effektiven Wurzelraum (SWE), regionalspezifisch bewertet" gibt es noch eine naturraumbezogene Klassifikation des S-Wertes, die den S-Wert regional differenzierter darstellt.
Das Projekt "Die Rolle von Viren beim mikrobiellen Schadstoffabbau" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH, Institut für Virologie.Die Verunreinigung unserer Wasserressourcen mit organischen Schadstoffen, wie etwa Öl-bürtigen Kohlenwasserstoffen, ist ein ernstzunehmendes Problem und hat vielerorts bereits zu einer chronischen Belastung des Grundwassers geführt. Der biologische Abbau ist der einzige natürliche Prozess, der im Untergrund zu einer Schadstoffreduktion führt. Als Steuergrößen gelten hier die Anwesenheit von Abbauern (Mikroorganismen) und die Verfügbarkeit von Elektronenakzeptoren und Nährstoffen. In den letzten Jahren wurde zudem die Bedeutung dynamischer Umweltbedingungen (z.B. Hydrologie) als wichtige Einflussgröße erkannt. Ein wichtiger Aspekt wurde jedoch bisher nicht in Betracht gezogen, nämlich die Rolle der Viren bzw. Phagen. Viren sind zahlenmäßig häufiger als Mikroorganismen und ebenso ubiquitär vorhanden. Mittels verschiedener Mechanismen können sie einen enormen Einfluss auf die mikrobiellen Gemeinschaften ausüben. Einerseits verursachen sie Mortalität bei ihren Wirten. Andererseits können sie über horizontalen Gentransfer den Wirtsstoffwechsel sowohl zu dessen Vorteil als auch Nachteil modifizieren. In den vergangenen Jahren konnten verschiedene mikrobielle Phänomene der Aktivität von Viren zugeschrieben werden. Die klassische Ansicht, dass Viren ausschließlich Parasiten sind, ist nicht mehr zutreffend. Als Speicher und Überträger von genetischer Information ihrer Wirte nehmen sie direkten Einfluss auf biogeochemische Stoffkreisläufe sowie auf die Entstehung neuer Schadstoffabbauwege. Biogeochemische Prozesse in mikrobiell gesteuerten Ökosystemen wie dem Grundwasser und die dynamische Entstehung und Anpassung an neue Nischen als Folge von Veränderungen der Umweltbedingungen kann nur verstanden werden, wenn der Genpool in lytischen und lysogenen Viren entsprechend mit berücksichtigt wird. Das Projekt ViralDegrade stellt Paradigmen in Frage und möchte eine völlig neue Perspektive hinsichtlich der Rolle der Viren beim mikrobiellen Schadstoffabbau eröffnen, welche zur Zeit noch als Black Box behandelt werden. ViralDegrade postuliert, dass Viren (i) durch horizontalen Gentransfer und den Einsatz von metabolischen Genen den Wirtsstoffwechsel modulieren (Arbeitshypothese 1) und (ii) für den temporären Zusammenbruch von dominanten Abbauerpopulationen und, damit verbunden, für den Wechsel zwischen funktionell redundanten Schlüsselorganismen verantwortlich sind (Arbeitshypothese 2). Sorgfältig geplante Labor- und Felduntersuchungen und vor allem der kombinierte Einsatz von (i) neu entwickelten kultivierungsunabhängigen Methoden, wie etwa dem Viral-Tagging, und (ii) ausgewählten schadstoffabbauenden aeroben und anaeroben Bakterienstämmen, garantieren neue Erkenntnisse zur Rolle der Viren beim mikrobiellen Schadstoffabbau sowie ähnlichen mikrobiell gesteuerten Prozessen. Ein generisches Verständnis der Vireneinflüsse wird zudem zukünftig neue Optionen für die biologische Sanierung eröffnen.
Das Projekt "EJP SOIL Call 1: ICONICA - Auswirkungen langfristiger Phosphorzugaben auf die Kohlenstoffspeicherung und den Stickstoffkreislauf in landwirtschaftlichen Böden" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Justus-Liebig-Universität Gießen, Institut für Pflanzenökologie.
Das Projekt "Die Bedeutung von Pflanzenstreu für die Keimlingsetablierung von krautigen Arten aus Grünland- und Waldgesellschaften" wird/wurde gefördert durch: Alexander von Humboldt-Stiftung / Deutscher Akademischer Austausch Dienst. Es wird/wurde ausgeführt durch: Universität Gießen, Institut für Landschaftsökologie und Ressourcenmanagement, Professur für Landschaftsökologie und Landschaftsplanung.Abgestorbene Pflanzenteile (Streu) stellen eine wichtige Komponente biogeochemischer Nährstoffzyklen dar. Die Abbaurate von Streu durch Mineralisationsprozesse ist eine Steuergröße für die Produktivität von Ökosystemen und die Zusammensetzung von Pflanzengemeinschaften. Abgesehen von diesen langfristigen Effekten auf Ökosystemprozesse übt die Akkumulation von Pflanzenstreu jedoch auch bedeutende kurzfristige Auswirkungen auf Pflanzengemeinschaften aus. Diese können direkter Natur sein, z.B. wenn Streu als physische Barriere für die Entfaltung und Etablierung von Keimlingen wirkt, oder sie können indirekt über Veränderung abiotischer Bedingungen wirken. Die Zusammensetzung lokaler Pflanzengemeinschaften wird durch eine Reihe von Filtern kontrolliert, die aus dem globalen Artenpool jene Arten durchlassen, die (i) einen spezifischen Wuchsort überhaupt erreichen, (ii) die lokalen Standortbedingungen tolerieren und (iii) erfolgreich Interaktionen mit anderen Organismen derselben oder anderer trophischer Ebenen eingehen. Verschiedene Studien haben die wichtige Bedeutung von Interaktionen nach dem Tode , die durch die Effekte von Streu auf Artenzusammensetzung und Diversität vermittelt werden, hingewiesen. Pflanzenstreu besitzt das Potential, Etablierung und Fitness von Pflanzen in unterschiedlichen Entwicklungsstadien zu beeinträchtigen. Dies geschieht durch Veränderung der chemischen (Nährstoffverfügbarkeit, Allelopathische Effekte) oder physikalischen Umwelt (Quantität und Qualität des Lichts, Temperaturamplitude, Bodenfeuchte unter einer Streudecke), durch mechanische Effekte (Streu als Barriere für das Wachstum von Keimlingen) oder durch die Beeinflussung biotischer Interaktionen, d.h. durch Auswirkungen von Streu auf Konkurrenz zwischen Pflanzenarten oder auf Herbivorie. In einer Reihe von Experimenten haben wir verschiedene Aspekte des potentiellen Effekts einer Streudecke auf die Etablierung von Keimlingen unterschiedlicher Arten von Grünland-, Wald und Steppenhabitaten untersucht (siehe Veröffentlichung).
Das Projekt "Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Sub project: Core Project 9 'Soil' Linking biodiversity and land use to soil functions" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Max-Planck-Institut für Biogeochemie.Böden sind als Standort für Pflanzen und Lebensraum für eine Vielzahl von Mikroorganismen ein integraler Bestandteil von Ökosystemen. Das Kernprojekt Boden stellt grundlegende Daten über Bodeneigenschaften und Bodenfunktionen bereit. Wir organisieren zudem koordinierte Bodenprobenahmen auf den Experimentier-Flächen (EP) und beteiligen uns an der Synthese in den Biodiversitäts Exploratorien (BE). Im Vordergrund steht dabei die Fragestellung, wie sich Landnutzung und Biodiversität auf den Eintrag, die Speicherung und die Stabilität von Kohlenstoff und Nährstoffen im Boden auswirken. In der vergangenen Projektphase der BE haben wir 2017 die koordinierte Bodenprobenahme auf allen EP wiederholt und grundlegende Bodenparameter für weitere Projekte zur Verfügung gestellt. Wir haben zudem das Monitoring des Streufalls auf allen Waldflächen fortgesetzt. Wir konnten zeigen, dass der Streufall in den ungenutzten Wäldern größer als in genutzten Wäldern war, wozu insbesondere die größere Menge an Zweigen, Ästen und Früchten im ungenutzten Wald beitrug. Die Umsatzzeiten von Kohlenstoff in der organischen Auflage zeigen, dass diese sowohl durch den Standort (z.B. pH Wert, Nährstoffverfügbarkeit) als auch durch die Qualität der Streu beeinflusst werden. Der Abbau von organischer Substanz wurde auf allen Experimentier-Flächen in situ durch Messung der Bodenatmung bestimmt. Durch die Trockenheit im Sommer 2018 waren die gemessenen Bodenatmungsraten gering. Trotzdem konnten im Wald Effekte der Untersuchungsregion, der Landnutzung und der Hauptbaumart nachgewiesen werden. Die Nährstoffauswaschung wurde mit Austauscherharzen im Jahr 2018/19 kumulativ bestimmt, so dass die Analyse noch nicht abgeschlossen ist. In der kommenden Projektphase werden wir das Bodenmonitoring auf allen EP fortsetzen. In enger Kooperation mit anderen Projekten werden wir eine weitere Bodenprobenahme auf allen 300 EP organisieren. Diese Probenahme wird dann auch die neu etablierten Wald- und Grünlandexperimente einschließen. Auf allen Flächen werden wir grundlegende Bodeneigenschaften und Indikatoren für die Bodenqualität bestimmen, auch um die Vergleichbarkeit der neuen Versuchsflächen mit den bisherigen Untersuchungsflächen (den Kontrollflächen) sicherzustellen. Wir werden das Bodenprobenarchiv sowie das Streufall-Monitoring in den BE fortführen. Da die zentrale Frage des Waldexperiments ist, inwiefern ein Lückenschlag durch geänderte Resourcenverfügbarkeit die Biodiversität beeinflusst, werden wir in den neu etablierten Lücken sowohl den Streueintrag, als auch die Nährstoffverfügbarkeit im Boden bestimmen. Wir werden überprüfen, ob diese Änderungen in der Nährstoffverfügbarkeit durch den Abbau von organischer Bodensubstanz bedingt werden. Dazu werden wir die Bodenatmung, Enzymaktivitäten, den Streuabbau und die Aktivität der Bodenfauna bestimmen. Zusätzlich zu unseren bisherigen Synthese-Aktivitäten werden wir dann zur gemeinsamen Bewertung des Waldexperimentes beitragen.
Das Projekt "Transfer langlebiger Radionuklide aus der vadosen Zone in die Rhizosphäre und deren Aufnahme in Pflanzen unter Berücksichtigung mikrobiologischer Prozesse, Teilprojekt: Radioökologische Modellierung" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Öko-Institut. Institut für angewandte Ökologie e.V..
Das Projekt "Pflanzenverfügbarkeit von gefrittetem Bor aus der Emailherstellung auf Carbonatboden und carbonatfreiem Boden im Dauerversuch" wird/wurde ausgeführt durch: Technische Hochschule Bingen, Fachbereich 1 Life Sciences and Engineering.
Das Projekt "Transfer langlebiger Radionuklide aus der vadosen Zone in die Rhizosphäre und deren Aufnahme in Pflanzen unter Berücksichtigung mikrobiologischer Prozesse, Teilprojekt: Geochemische Modellierung der in den Teilprojekten A und B untersuchten Systeme" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Universität Bremen, Institut für Umweltphysik, Abteilung Terrestrische Umweltphysik.
Das Projekt "Der Einfluss von Tauniederschlag auf den Wasser- und Nährstoffhaushalt der Vegetation von Stipa tenacissima dominierten Hängen unterschiedlicher Exposition im semi-ariden Südosten Spaniens" wird/wurde ausgeführt durch: Albert-Ludwigs-Universität Freiburg, Institut für Biologie II, Lehrstuhl für Geobotanik.In vielen Lebensräumen ist Wasser der bedeutendste limitierende Faktor für das Wachstum und die Verbreitung der Pflanzen. Neuere Arbeiten zeigen, dass auch Arten, die nicht über spezielle Blattorgane zur Aufnahme von Wasser verfügen, auf Tau mit einer Erhöhung des Wasserpotentials und der Photosynthese sowie mit gesteigertem Wurzelwachstum reagieren. Das Ziel des Projekts ist die Evaluierung des Einflusses und die Untersuchung der Wirkungsweise von Tau auf die Vegetation von Stipa tenacissima dominierten Hängen entlang eines Niederschlags-Tauniederschlags-Transekts in SO-Spanien. An S. tenacissima und an ausgewählten annuellen Arten wird der Einfluss von Tau auf den Wasserhaushalt, die Photosynthese und die Fähigkeit der Wurzeln zur Wasseraufnahme im Freiland und im Gewächshaus bestimmt. Seine Wirkungsweise, eventuelle Aufnahmewege, Verlagerungen im Boden sowie sein Einfluss auf die Nährstoffverfügbarkeit werden untersucht. Die Bestimmung der Taumenge und -häufigkeit, verbunden mit Mikroklimamessungen, ermöglicht eine Abschätzung des Beitrags von Tau zur Wasserbilanz der untersuchten Hänge. Das Projekt wird Fragen des Wasser- und Nährstoffhaushalts der Vegetation in ariden und semi-ariden Gebieten beantworten. Dies trägt zu einem besseren Verständnis der Ökologie und der Verbreitung der Pflanzen dieser Gebiete bei, welches für die zukünftige Bewirtschaftung und Rehabilitation von degradierten Flächen in diesen Ökosystemen wichtig ist.
Origin | Count |
---|---|
Bund | 161 |
Land | 21 |
Type | Count |
---|---|
Förderprogramm | 147 |
Text | 14 |
unbekannt | 20 |
License | Count |
---|---|
geschlossen | 22 |
offen | 158 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 147 |
Englisch | 63 |
Resource type | Count |
---|---|
Archiv | 2 |
Bild | 1 |
Datei | 3 |
Dokument | 8 |
Keine | 111 |
Webdienst | 6 |
Webseite | 64 |
Topic | Count |
---|---|
Boden | 167 |
Lebewesen & Lebensräume | 179 |
Luft | 105 |
Mensch & Umwelt | 181 |
Wasser | 118 |
Weitere | 181 |