API src

Found 5 results.

A database of centrifuge analogue models testing the influence of inherited brittle fabrics on continental rifting

This dataset presents the raw data of an experimental series of analogue models performed to investigate the influence of inherited brittle fabrics on narrow continental rifting. This model series was performed to test the influence of brittle pre-existing fabrics on the rifting deformation by cutting the brittle layer at different orientations with respect to the extension direction. An overview of the experimental series is shown in Table 1. In this dataset we provide four different types of data, that can serve as supporting material and for further analysis: 1) The top-view photos, taken at different steps and showing the deformation process of each model; they can be used to interpret the geometrical characteristics of rift-related faults; 2) Digital Elevation Models (DEMs) used to reconstruct the 3D deformation of the performed analogue models, allowing for quantitative analysis of the fault pattern. 3) Short movies built from top-view photos which help to visualize the evolution of model deformation; 4) line-drawing of fault and fracture patters to be used for fault statistical quantification. Further details on the modelling strategy and setup can be found in Corti (2012), Maestrelli et al. (2020), Molnar et al. (2020), Philippon et al. (2015), Zwaan et al. (2021) and in the publication associated with this dataset. Materials used for these analogue models were described in Montanari et al. (2017) Del Ventisette et al. (2019) and Zwaan et al. (2020).

A database of enhanced-gravity analogue models examining the influence of pre-existing fabrics on the evolution of oblique rift

This dataset shows the original data of a series of enhanced-gravity (centrifuge) analogue models, which were performed to test the influence of the pre-existing fabrics in the brittle upper crust on the evolution of structures resulting from oblique rifting. The obliquity of the rift (i.e., the angle between the rift axis and the direction of extension) was kept constant at 30° in all the models. The main variable of this experimental series was the orientation of the pre-existing fabrics (indicated as the angle between the trend of the fabric and the orthogonal to extension), which varied from 0° to 90° (i.e., from orthogonal to parallel to the extension direction). The inherited discontinuities were reproduced by cutting with a knife through the top brittle layer of models. An overview of the experimental series is shown in Table 1. In this dataset, four different data types are provided for further analysis: 1) Top-view photos of model deformation, taken at different time intervals and showing the deformation process of each model; they can be used to interpret the geometrical characteristics of rift-related faults; 2) Digital Elevation Models (DEMs) used to reconstruct the 3D deformation of the analogue models, allowing for quantitative analysis of the fault pattern. 3) Movies of model deformation, built from top-view photos, which help to visualize the evolution of model deformation; 4) Faults line-drawings to be used for statistical quantification of rift-related structures. Further information on the modelling strategy and setup can be found in the publication associated to this dataset and in Corti (2012), Philippon et al. (2015), Maestrelli et al. (2020), Molnar et al. (2020), Zwaan et al. (2021), Zou et al. (2023). Materials used to perform these enhanced-gravity analogue models were described in Montanari et al. (2017), Del Ventisette et al. (2019) and Zwaan et al. (2020).

A database of caldera collapse analogue models stretched under extensional conditions

This dataset presents the raw data from one experimental series (named CCEX, i.e., Caldera Collapse under regional Extension) of analogue models performed to investigate the process of caldera collapse followed by regional extension. Our experimental series tested the case of perfectly circular collapsed calderas afterward stretched under regional extensional conditions, that resulted in elongated calderas. The models are primarily intended to quantify the role of regional extension on the elongation of collapsed calderas observed in extensional settings, such as the East African Rift System. An overview of the performed analogue models is provided in Table 1. Analogue models have been analysed quantitatively by means of photogrammetric reconstruction of Digital Elevation Model (DEM) used for 3D quantification of the deformation, and top-view photo analysis for qualitative descriptions. The analogue materials used in the setup of these models are described in Montanari et al. (2017), Del Ventisette et al. (2019), Bonini et al., 2021 and Maestrelli et al. (2021a,b).

Apatite fission-track data from the watershed area of the Northern Apennines (Italy)

The data-set contains nine apatite fission-track data from samples collected at strategic locations to constrain the age of deformation along an ideal transect crossing the main Apennine watershed (from the north-eastern margin of the Casentino Basin to the Romagna Apennines. Apatite grains for fission-track analysis were separated from ~5 kg bulk samples. Four of them were collected from the Falterona Sandstones (Chattian-Aquitanian) and five in the Marnoso- Arenacea For-mation (Burdigalian-Tortonian). Apatite grains were separated using standard heavy liquids and a mag-netic technique.

Compilation of palaeomagnetic data from sediments and volcanic rocks spanning 30,000 to 50,000 years ago used to create the temporally continuous global spherical harmonic geomagnetic field model LSMOD.1

Compilation of palaeomagnetic data from sediments and volcanic rocks from 68 sites spanning 30,000 to 50,000 years ago used to create the temporally continuous global spherical harmonic geomagnetic field model LSMOD.1. This is in supplement to the paper "Earth's magnetic field is (probably not reversing" (Brown et al. 2018)A description of how the data were treated is given in SI Appendix of the associated publication. A full list of complementary data sources (references) is given is provided with the data.-----------------For the volcanics there is one filevolc.txtThe headers are:Age[ka] - age in thousands of years before present (0 = 1950 AD).Error[ka] - uncertainty on the age.Lat[Deg] - Latitude of site in degrees.Lon[Deg] - Longitude of site in degrees.Dec[Deg] - Declination in degrees.Inc[Deg] - Inclination in degrees.Alpha95[Deg] - 95% circular confidence limit on the directional data.F[microT] - intensity in micro Tesla.F_Error[microT] - uncertainy on the intensity in micro Tesla.-9999 - no data-----------------For the sediments there are two types of files, those that end *.txt and those that end *int.txt.*.txt - directional data with the headers:Age[ka] - age in thousands of years before present (0 = 1950 AD).Lat[Deg] - Latitude of site in degrees.Lon[Deg] - Longitude of site in degrees.Dec[Deg] - Declination in degrees.Inc[Deg] - Inclination in degrees.-9999 - no data*int.txt - scaled intensity data using PADM2M (as described in Section S1.3 of SI Appendix)Age[ka] - age in thousands of years before present (0 = 1950 AD).Lat[Deg] - Latitude of site in degrees.Lon[Deg] - Longitude of site in degrees.F[microT] - Scaled intensity in micro Tesla.6 of the sediment data sets are individual records (BLS, CHI, MIN, PYR, SIO, S01).6 of the sediment data sets are stacks of records (BBS, NAS, NPS, OBS, SBS, SAS).All details of the records are given in Table S1 and Table S2 of the SI Appendix of the associated publication.

1