API src

Found 7 results.

The explorational drilling Gt BTrKoe 1/2021 in Berlin Adlershof, Germany - Field Data and Measurements

The Gt BTrKoe 1/2021 borehole was drilled in the framework of a research project called GeoFern, funded by the German Ministry for Economic Affairs and Climate Action under the grant number 03EE4007. The overall objective of this research project was to support the development of the geothermal heat utilization for urban areas. Therefore, the integration of reservoir utilization concepts into heat supply systems need to be studied. The GeoFern project aimed to contribute to the knowledge on geological structure and the lithological composition of the subsurface to minimize the explorational risks for future site developments in SE Berlin, Germany. It focused on the exploration of possible Mesozoic aquifers, suitable for aquifer thermal energy storage (ATES) in depths of up to 500 m. As stopping criteria for drilling, the presence of terrestrial (arid) clayey Keuper sediments of the Exter Formation (Upper German Triassic) were defined. In this data publication we provide the results of the investigations and measurements conducted on site in the field laboratory as well as the open-hole geophysical well-logging data of the Gt BTrKoe 1/2021 borehole acquired by a commercial contractor. In addition, a temperature log of the borehole, measured by the GFZ about two months after the end of drilling activities, is part of this data publication. The drilling of the Gt BTrKoe 1/2021 borehole started at the 15th of November 2021 with the setting of the conductor pipe and reached its final depth of 456 m in Triassic sediments on the 19th of December 2021. The drilling was conducted in two main sections using two different technologies. For the upper section, covering Cenozoic sediments and reaching a depth of 211 m, reverse drilling technology was used. This section comprises the Quaternary to Tertiary groundwater system and the Tertiary “Rupelton” (Oligocene, Rupelian). The latter represents an about 100 m thick clayey succession that do act as a regional aquitard, separating the deeper saline groundwater systems from the upper utilized (freshwater) groundwater levels. After setting and cementing of the casing, the borehole was further deepened by using conventional Rotary drilling technology. Due to the lack of knowledge on the geological situation of the pre-Cenozoic strata before the drilling, this section represents the most relevant part for answering the research goals of the project. In order to allow the most accurate description and characterization of the drilled strata, this section was completely cored using wireline coring equipment with 3-m core barrels. In total, 90 core runs were conducted and 197.4 m of cores retrieved, showing a core recovery factor of 81%. The core show a mean core diameter of about 100 mm. The drilling was stopped after encountering the multicolored terrestrial playa sediments of the Upper Triassic in the last core run. While the token cutting samples were not assigned with International Generic Sample Numbers (IGSN), the borehole (Norden, 2022) and all taken cores were registered with IGSNs.

Detrital age spectra of the middle Miocene to Present day glaciomarine sediments of the DSDP Leg 28 drilling sites 271, 272 Central Ross Sea, Antarctica

This dataset contains provenance detrital data from the glacimarine sequence of Deep Sea Drilling Project Leg 28, Site 271 e 272. The two boreholes are located in the middle of the Ross Sea, in a key site close at 180° longitude that is considered the present confluence between ice flows fed by West Antarctica and East Antarctica. These two sites, together, provide insights to Middle Miocene to Present ice sheet dynamics. We analyzed eight detrital samples of glaciomarine sediments, four from 272 drill core and 4 from 271. We used an integrated single-grain provenance approach (Olivetti et al., 2023). This multi-proxy provenance study employs conventional U-Pb detrital zircon dating integrated with apatite U-Pb and fission-track dating and trace element analysis of detrital apatite. The dataset suggests a recurrent E - W oscillations of the ice flow divide between ice fed by West and East Antarctica ice sheets, respectively.

Global distribution and composition of Neogene-Quaternary intraplate volcanic rocks

Global database of  >20, 000 geochemical analyses of Neogene-Quaternary intraplate volcanic rocks. The database collates major, trace element and Sr-Nd-Pb isotopic data for whole-rock samples <20 Ma old that were published between 1990 and 2020. Database as published in Ball et al. (2021). Key publication: Ball, P. W., White, N. J., Maclennan, J., & Stephenson, S. N. (2021). Global influence of mantle temperature and plate thickness on intraplate volcanism. Nature Communications, 12(1), 2045. https://doi.org/10.1038/s41467-021-22323-9

The Paleoseismic Database of Germany and Adjacent Regions PalSeisDB

Central Europe is an intraplate domain which is characterized by low to moderate seismicity with records of larger seismic events occurring in historical and recent times. These records of seismicity are restricted to just over one thousand years. This does not reflect the long seismic cycles in Central Europe which are expected to be in the order of tens of thousands of years. Therefore, we have developed a paleoseismic database (PalSeisDB) that documents the records of paleoseismic evidence (trenches, soft-sediment deformation, mass movements, etc.) and extends the earthquake record to at least one seismic cycle. It is intended to serve as one important basis for future seismic hazard assessments. In the compilation of PalSeisDB, paleoseismic evidence features are documented at 129 different locations in the area of Germany and adjacent regions. A brief explanation of the folder structure, file list and file contents included in the data publication of PalSeisDB is provided in the data description .A detailed explanation of the data collection, the content of the data files and the table headers is available (Hürtgen et al., 2020). A full list of source references for PalSeisDB is provided in Hürtgen (2017, Appendix 8.3, p. 128 ff) and also included in the zip folder here

Omongwa Pan, Namibia (June 2015) - an EnMAP Preparatory Flight Campaign

The dataset is composed of Neo HySpex (VNIR/SWIR) hyperspectral imagery acquired during airplane overflights on June 6th, 2015 covering the Omongwa Pan located in the South-West Kalahari, Namibia. The dataset includes three cloud-free flight lines with 408 spectral bands ranging from VNIR to SWIR wavelength regions (0.4-2.5 µm). The dataset also includes Level 2A EnMAP-like imagery simulated using the end-to-end Simulation tool (EeteS). The overall goal of the campaign was to acquire imagery over the Omongwa Pan and use the spectral reflectance for the analyses of surface sediments, specifically the mineralogical composition of exposed surface evaporites / salts on the airborne and spaceborne scale. The data are highly novel and can be used to test estimation of surface sediment properties in a highly saline and dynamic environment.

Supplementary material to: A refined age calibrated paleosecular variation and relative paleointensity stack for the NW Barents Sea: implication for geomagnetic field behavior during the Holocene.

This dataset includes paleomagnetic and rock magnetic analyses from four sediment cores collected on continental slope of Storfjorden and Kveithola trough‐mouth fans (western Spitsbergen margin, southern Svalbard archipelago). In detail, piston core SV-04 was collected during the Spanish SVAIS cruise on board the BIO Hespérides (Longyearbyen, July 29 – August 17, 2007); gravity cores EG-02 and EG-03 were collected during the EGLACOM cruise on board the RV OGS-Explora (Kristinsund, July 07 – August, 2008) and gravity core GeoB17603-3 was collected during the MSM30-CORIBAR cruise on board the RV Maria S. Merian (Tromsø, July 16 – August 15, 2013).The dataset gave the opportunity to reconstruct variation of past geomagnetic field at high latitude and to refine the age-calibrated Holocene PSV and relative paleointensity (RPI) stack curves derived from marine sedimentary cores retrieved in the Northwestern Barents Sea (NBS). Data are presented as one metadata table with definitions of the column heads and four tables with the data on the measured rock magnetic and paleomagnetic parameters and 3 tables with the results of data analyses and elaboration.List of tables is as follows:1) Metadata: definition of columns heads;2) GeoB17603-3: down-core variation of rock magnetic and paleomagnetic parameters [k (10E-05 SI); ARM (A/m); MDF (mT); NRM (A/m); MAD (°); Incl PCA (°); Decl PCA (°)] for Core GeoB17603-3;3) EG02: down-core variation of rock magnetic and paleomagnetic parameters [k (10E-05 SI); ARM (A/m); MDF (mT); NRM (A/m); MAD (°); Incl PCA (°); Decl PCA (°)] for Core EG02;4) EG03: down-core variation of rock magnetic and paleomagnetic parameters [k (10E-05 SI); ARM (A/m); MDF (mT); NRM (A/m); MAD (°); Incl PCA (°); Decl PCA (°)] for Core EG03;5) SV04: down-core variation of rock magnetic and paleomagnetic parameters [k (10E-05 SI); ARM (A/m); MDF (mT); NRM (A/m); MAD (°); Incl PCA (°); Decl PCA (°)] for Core SV04;6) Cores Correlation: GeoB17603-3 depth (cm) and ARM (A/m) down-core variations for core GeoB17603-3 (master core); EG02 depth (cm), EG02 depth transferred to GeoB17603-3 depth (cm), ARM (A/m) down-core for core EG02 and correlation tie points; EG03 depth (cm), EG03 depth transferred (cm), ARM (A/m) down-core and correlation tie points; SV04 depth (cm), SV04 transferred to GeoB17603-3 (cm), ARM (A/m) down-core for core SV04 and correlation tie points;7) Age model: age model for Core GeoB17603-3; EG02; EG03; SV04; 8) NBS stack: paleomagnetic inclination, declination and RPI variations for NBS stack. In order to define high-resolution correlation between the cores the along-core variation of rock magnetic and paleomagnetic parameters (Sagnotti et al., 2011; Caricchi et al., 2018) have been integrated with the distribution of characteristic lithofacies (Lucchi et al., 2013), and the available age constraints (Sagnotti et al., 2011; Caricchi et al., 2018). Core to core correlation has been reconstructed by means of the StratFit software (Sagnotti and Caricchi, 2018), which is based on the Excel forecast function and linear regression between subsequent couples of selected tie-points.The data are presented as one Excel sheet with seven tables and in tab-delimited ASCII format in the zip folder: 2020-002_Caricchi-et-al_data-txt.zip.

Data supplement to: A high-resolution geomagnetic relative paleointensity record from the Arctic Ocean deep water gateway deposits during the last 60 ky

This data publication includes the paleomagnetic and rock magnetic dataset from two Calypso giant piston cores collected at the crest of the Bellsund (GS191-01PC) and Isfjorden (GS191-02PC) sediment drifts during the Eurofleets-2 PREPARED cruise, on board the R/V G.O. Sars (Lucchi et al., 2014). These sediments drift are located on the eastern side of the Fram Strait (western Spitsbergen margin).The dataset gave the opportunity to define the behavior of past geomagnetic field at high latitude and to constrain the palaeoclimatic events that occurred in a time framework spanning Marine Isotope Stage (MIS) 3 to Holocene (Caricchi et al., in press). The data are provided as raw data in .dat format and interpreted data in .xlx and tab-delimited text formats. The raw data files can be opened using a text-editor, MS Excel or equivalent software.The interpreted data are presented as a metadata table with definitions of the column heads and 5 individual tables with the content:- Metadata: definition of columns heads- Rock Magnetic-Paleomag Data 01: down-core variation of rock magnetic and paleomagnetic parameters [k (10E-05 SI); ARM (A/m); ARM/k (A/m); MDF (mT); ΔGRM/ΔNRM; NRM (A/m); MAD (°); Incl PCA (°); Decl PCA (°)] for Core GS191-01PC- Rock Magnetic-Paleomag Data 02: down core variation of rock magnetic and paleomagnetic data [k (10E-05 SI); ARM (A/m); ARM/k (A/m); MDF (mT); ΔGRM/ΔNRM; NRM (A/m); MAD (°); Incl PCA (°) Decl PCA (°)] for Core GS191-02PC- Cores Correlation: Depth of Core GS191-02PC and depth of Core GS191-02PC correlated to Core GS191-01PC, NRM (A/m); ARM(A/m) and RPI down-core variations for core GS191-02PC; Depth of Core GS191-01PC NRM (A/m); ARM(A/m) and RPI down-core variations for core GS191-01PC; tie points values.- Age Model 01: age model for Core GS191-01PC- Age Model 02: age model for Core GS191-01PC

1