Compilation of more than 1500 major- and trace-element data points, and 650 Sr-, 610 Nd-, and 570 Pb-isotopic analyses of Mesozoic-Cenozoic (190–0 Ma) magmatic rocks in southern Peru, northern Chile and Bolivia (Central Andean orocline). This compilation was initially published by Mamani et al. (2010) and was based on selected data published up until 2009, combined with new data from that study.
Related key publication: Mamani, M., Wörner, G., & Sempere, T. (2010). Geochemical variations in igneous rocks of the Central Andean orocline (13°S to 18°S): Tracing crustal thickening and magma generation through time and space. GSA Bulletin, 122(1–2), 162–182. https://doi.org/10.1130/B26538.1
In “Investigating Mesozoic Climate Trends and Sensitivities with a Large Ensemble of Climate Model Simulations” we study global trends in the climatic evolution through the Mesozoic era (252-66 Ma). The data presented here is the model output on which the results of this manuscript are based. Also included are different boundary condition model input files and scripts to generate the included figures (using the Python programming language in a Jupyter Notebook).
The model output is provided in different netcdf files. The data is generated using the coupled ocean-atmosphere model CLIMBER3alpha (Montoya et al. 2005) which models climate globally on a 3.75° x 3.75° (ocean, lon.x lat.) and 22.5° x 7.5° (atmosphere) grid. Please note that data from other research that is shown in the figures in Landwehrs et al. (2020a) is not included in this data publication to avoid copyright issues.