Gefahrstoffe mit dem Gefahrenmerkmal EUH029 ("Bilden im Kontakt mit Wasser giftige Gase") unterliegen der Störfall-Verordnung. Es wurde eine Kohorte von 30 Stoffen mit diesem Gefahrenmerkmal, die in der Praxis eine gewisse Bedeutung erlangt haben, analysiert. Das mit Abstand häufigste Hydrolyseprodukt (62%) ist Chlorwasserstoff, gefolgt von Phosphin mit 14%, und vereinzelt Fluorwasserstoff, Schwefelwasserstoff, Schwefeldioxid, Ammoniak, Stickoxide und Cyanwasserstoff. Die höchsten Gefahrenpotentialwerte werden für das Hydrolyseprodukt Phosphin gefolgt von Schwefeldioxid und Chlorwasserstoff ermittelt. Phosphin wird in der Kohorte ausschließlich aus Feststoffen generiert, Chlorwasserstoff und Schwefeldioxid hauptsächlich aus Flüssigkeiten. Zur standardisierten Berücksichtigung des Gefahrenpotentials dieser Stoffkategorie erscheint es notwendig hinsichtlich der Hydrolyseprodukte zu unterscheiden. Für die Abschätzung angemessener Sicherheitsabstände ist konservativ von einer 100% igen Umsetzung des Ausgangsstoffs in das Hydrolyseprodukt auszugehen und unter Berücksichtigung der stöchiometrischen Zusammenhänge die relevanten Mengen zu ermitteln und die Abstandsberechnung nach den "Handlungsempfehlungen..." vorzunehmen. Für phosphinentwickelnde (feste) Substanzen wird pauschal die Abstandskategorie VII-VIII (1000m - 1500m), für chlorwasserstoffentwickelnde (feste) Substanzen die Abstandskategorien III-IV (300m - 400m) als abdeckend vorgeschlagen. Für flüssige Stoffe aus denen Chlorwasserstoff generiert werden kann erscheint die Einhaltung eines Sicherheitsabstandes von 500m - 750 m in erster Näherung abdeckend. Quelle: Forschungsbericht
Deutsche Unternehmen der Opto- und Elektronikindustrie sind auf den Einsatz von Spezialwerkstoffen der Hochtechnologie angewiesen, um ihre aufgrund langjähriger und aufwendiger Forschungsarbeiten herausragende, internationale Position auch in Zukunft halten und innovativ ausbauen zu können. Dabei ist es selbstverständlich, dass die Vorgaben der europäischen und nationalen Chemikaliengesetzgebung hinsichtlich des Gesundheits- und Umweltschutzes wirksam umgesetzt werden. In den letzten Jahren wurden Verfahren zur Bewertung, Einstufung und Kennzeichnung solcher nach Tonnage eher kleiner, technologisch aber hoch bedeutender Materialien (z.B. Galliumarsenid, Indiumphosphid) durch die Fachbehörden der Europäischen Union nach CLP (Verordnung (EG) Nr. 1272/2008 - Classification, Labelling and Packaging of Substances) durchgeführt. Diese Materialien sind die Funktionswerkstoffe in Leuchtdioden, Lasern in Medizin und Materialbearbeitung, Datennetzen, Mobilfunktechnik, Auto- und Flugzeugradar und konzentrierter Photovoltaik. Die harmonisierte Einstufung bildet die Grundlage für mögliche nachfolgende Regulierungsprozesse unter REACh (Verordnung (EG) Nr. 1907/2006 - Registration, Evaluation, Authorization and Restriction of Chemicals) und strahlt in ca. 20 weitere Rechtsgebiete aus. Forschung und Industrie stimmen darin überein, dass die von den EU-Fachbehörden zur Umsetzung der CLP-Verordnung verwendete Informationsbasis für die Bewertung und Einstufung der Materialien in vielen Fällen unzureichend ist. So stehen beispielsweise Bewertungs- und Einstufungsergebnisse zum Schlüsselwerkstoff Galliumarsenid im Widerspruch zu übereinstimmenden Empfehlungen beteiligter Toxikologen wie auch aktuellen wissenschaftlichen Veröffentlichungen. Die europäischen Ansprüche an nachhaltige Chemikaliennutzung, Gesundheits- und Umweltschutz mit industrieller Innovations- und Wettbewerbsfähigkeit in Balance zu bringen, erfordert deshalb zwingend, die wissenschaftliche Informationsbasis und angewandte Bewertungsmethoden zu verbessern. Das Ziel des vom Bundesforschungsministerium geförderten Verbundprojekts TEMPO (Toxikologische, physikalisch-chemische und gesellschaftliche Erforschung innovativer Materialien und Prozesse der Optoelektronik) besteht darin, diese wissenschaftliche Grundlage für die Stoffe Galliumnitrid, Galliumarsenid, Siliziumcarbid, Indiumphosphid, Indiumarsenid und Galliumantimonid substanziell mit einem ganzheitlichen Ansatz zu vertiefen. Dazu wird vorhandenes (Material-)Wissen konzentriert, es werden Wissensdefizite identifiziert und durch experimentelle Untersuchungen, u.a. zu toxikologischen Schlüsselfragen wie Lungenwechselwirkungen und Bioverfügbarkeit, geschlossen. Der Projektschwerpunkt liegt darüber hinaus auch auf der Analyse der Expositionsrisiken und der vorhandenen Risikomanagementpraxis während des ganzen Lebenszyklus der betreffenden Stoffe von den Arbeitsplätzen bei der Herstellung bis hin zum Produktrecycling.
Untersuchungen ueber Art und Ausmass der Belastung des Menschen und seiner Umwelt durch Immissionen von Schadstoffen. Es soll die Belastung mit Phosphin, Methylbromid und Blausaeure bei der Begasung von Vorratslaegern, Muehlen, Lebensmittelbetrieben, Schiffen usw. untersucht werden. Insbesondere sollen Dosis-Wirkungsbeziehungen fuer Pflanzen und Tiere ermittelt werden. Fuer simulierende Praxisversuche soll eine in der BBA vorhandene Begasungsstation eingesetzt werden.
Das Ziel ist die Entwicklung einer Gesamtprozesskette für die Herstellung Indium-Gallium-Aluminium-Phosphid Leuchtdioden (InGaAlP-LED) auf der Basis von ressourcenschonenden dünneren 150mm Galliumarsenid (GaAs) - Substraten. Konkret bedeutet dies: 1. Neuentwicklung von Kernprozessen für die 150mm Fertigung auf z.T. neuen Anlagen 2. Evaluierung LED-Gesamtprozess für dünnere 150mm GaAs-Substrate. Damit wird auch der ressourcenschonende Umgang mit dem strategischen Metall Gallium im Werkstoff Galliumarsenid verfolgt, um damit die Abhängigkeit von außereuropäischen Rohstoffquellen zu verringern. Es sollen zunächst alle Einzelprozesse für die Herstellung In GaAlP-LED-Chips auf 150mm Wafer entwickelt werden. Dazu zählen das epitaktische Materialwachstum, die Metallisierung, die Lithographie, das Waferbonden, die Plasmaprozesse und das Waferhandling. Ein Übertrag der Herstellprozesse von bisher 100mm auf 150mm Wafer ist aus technischen und wirtschaftlichen Gründen nicht möglich. Es werden u.a. neue Fertigungsschritte und die dazugehörigen Anlagen für den größeren Waferdurchmesser benötigt. Nachdem die entsprechenden neuen Einzelprozesstechnologien in der nötigen Qualität und Uniformität über den Wafer bei geringer Ausfallrate zur Verfügung stehen, wird die Gesamtprozesstauglichkeit durch Querbeeinflussung der Einzelprozesse untersucht. Eine entsprechende Gesamtprozessanpassung soll die Herstellung von Demonstratorbauteilen auf 150mm Wafern sicherstellen.
Heutige industriell gefertigte großflächige Solarzellen erreichen in der Spitze Wirkungsgrade im Bereich nahe 19% auf multikristallinem sowie nahe 21% auf monokristallinem Siliziummaterial. Darüber hinausgehende Solarzellenkonzepte mit deutlich höherem Wirkungsgradpotential konnten mit Ausnahme der Rückkontaktsolarzellentechnologie von Sunpower, bislang nur im Labormaßstab entwickelt und demonstriert werden. Ein vielversprechendes innovatives Solarzellenkonzept stellen sogenannte selektive Kontakte dar. Mit einer Solarzelle basierend auf einem solchen selektiven Heteroübergang (amorphes Silizium auf kristallinem Siliziumwafer) konnte die Firma Panasonic im April 2014 mit 25,6% einen Wirkungsgrad-Weltrekord erzielen. Die Übertragung solcher Prozesstechnologien in ein industrielles Produktionsumfeld stellt hohe Anforderungen an - die Reinheit der Produktionsumgebung sowie - die Prozesssicherheit und - Prozessreproduzierbarkeit. Im Rahmen des Projektes PV Select wurde die in Abbildung 1 dargestellte und für die Umsetzung oben erwähnter hocheffizienter Solarzellentechnologien notwendige Labor- Reinrauminfrastruktur geschaffen. Basierend auf den Reinheitsanforderungen der unterschiedlichen oberflächensensitiven nass- und trockenchemischen Ätz- und Beschichtungsschritte wurde das Labor in einen Bereich mit Reinraumklasse 1000 sowie in abgetrennte Wartungsbereiche mit niedrigerer Reinheitsstufe eingeteilt (Reinraumklasse 100 in Fläche innerhalb hellblauer Markierungslinie). Die Konzeption beinhaltete zudem ein entsprechendes Reinraum-taugliches Schleusensystem, mit dem sowohl Mitarbeiter als auch ein- und ausgehende Waren den geschützten Bereich betreten bzw. verlassen können. Bei der Planung und Umsetzung der Reinrauminfrastruktur wurde insbesondere darauf geachtet, für kritische Prozess- und Probenlagerungsbereiche eine besondere reine Umgebung zu schaffen und somit mögliche Kontaminationsquellen aus der Umgebungsluft auszuschließen bzw. zu minimieren. Die im Rahmen des Projektes zu integrierenden Großbeschichtungsanlagen (Anlagen selbst wurden über parallel laufende Förderprojekte beschafft) erforderten den Aufbau eines umfangreichen Gasver- und Entsorgungssystems, aufgrund der Gefährlichkeit der (teilweise in hoher Konzentration) eingesetzten Gase wie etwa Silan, Phosphin oder auch Diboran wurde des Weiteren eine umfangreiche Sicherheitstechnik installiert (Sicherheitsschränke, Gaswarn- und detektionssysteme, persönliche Schutzeinrichtungen).
Landesanstalt für Umweltschutz Baden-Württemberg Freisetzung von Phosphorwasserstoff bei der Oberflächenreinigung von Aluminiumteilen Dipl.-Chem. Hubert Faller Dipl.-Ing. (FH) Gerhard Ott OChR Ulrich Wurster* *Korrespondenzadresse: Landesanstalt für Umweltschutz Baden-Württemberg Referat Arbeitsschutz/Chemikalien Postfach 210752 76157 Karlsruhe Landesanstalt für Umweltschutz Baden-Württemberg Referat Arbeitsschutz/Chemikalien Postfach 210752 76157 Karlsruhe 2 Freisetzung von Phosphorwasserstoff bei der Oberflächenreinigung von Aluminiumteilen Zusammenfassung Die Entstehung von Phosphorwasserstoff (Phosphin , PH3) in relevanten Konzentrationen aus phosphathaltiger alka- lischer Reinigungslösung bei der Reinigung von Alumini- umteilen in einer handelsüblichen Industriespülmaschine unter üblichen Betriebsbedingungen konnte nachgewie- sen werden. Im stark alkalischen Milieu wird offenbar Phosphat des Reinigers im Kontakt mit Aluminium reduziert. Die für Phosphorwasserstoff existierende Maximale Ar- beitsplatz Konzentration (MAK-Wert) von 0,15 mg/m³ (0,1 ppm) kann hierbei zeitweise überschritten werden – ent- sprechende Arbeitsschutzmaßnahmen sind deshalb zu beachten. 1 Einleitung Beim Entladen einer Spülmaschine, die zur Reinigung von Aluminiumblechen eingesetzt wurde, klagte der Maschi- nenbediener über starkes Unwohlsein mit Schwindelgefühl und Atembeschwerden. Es wurde eine intensivmedizini- sche Behandlung nötig und ein ”Reizgasinhalationstrau- ma” diagnostiziert. Mitarbeiter hatten schon vor diesem Unfallereignis mehr- fach über einen carbidähnlichen Geruch (nach Knoblauch) beim Betrieb der Spülmaschine berichtet - ein Zusammen- hang mit einer möglichen Entwicklung von Phosphorwas- serstoff während des Reinigungsvorganges wurde jedoch zunächst nicht in Betracht gezogen. Aufgrund des auch bei dem Arbeitsunfall deutlich wahr- nehmbaren Geruches sollte auf Anforderung des zu- ständigen Staatlichen Gewerbeaufsichtsamtes durch Untersuchungen der Landesanstalt für Umweltschutz Ba- den-Württemberg (LfU) geklärt werden, ob bei dem ange- wendeten Oberflächenreinigungsprozess unter den übli- chen Betriebsbedingungen (Aluminiumbleche, alkalischer Phosphatreiniger, Temperatur ca. 60 °C) möglicherweise eine Freisetzung von PH3 (oder anderer Gefahrstoffe) statt- gefunden haben könnte. 2 Toxikologie von Phosphorwasserstoff Phosphorwasserstoff ist in die Kategorie I der lokal rei- zenden Stoffe eingeteilt, so dass der MAK-Wert von 0,1 ppm zu keinem Zeitpunkt überschritten werden soll (Über- schreitungsfaktor =1=) [1]. Phosphorwasserstoff ist ein hochgiftiges Gas mit Wir- kung auf wichtige Zellenzyme („Stoffwechselgift“), das bei akuter Vergiftung unter den Anzeichen der inneren Ersti- ckung zum Tode führen kann. Nach Inhalation ist ein to- xisches Lungenödem möglich. Dabei treten bei mittle- ren Konzentrationen (10 bis 100 ppm; Expositionszeit 0,5 bis 1 h) meist erst nach Stunden Vergiftungserschei- nungen auf. Bei Expositionszeiten von sechs Stunden sind schon 7 ppm wirksam. LfU Eine chronische Vergiftung ist nicht möglich, da im Orga- nismus üblicherweise eine Entgiftung kleiner Konzentrati- onen bis 2,5 ppm erfolgt [2]. Die Geruchsschwelle für die Phosphorwasserstoffwahr- nehmung liegt mit ca. 0,02 ppm [4] unter dem derzeit gülti- gen MAK-Wert von 0,1 ppm. 3 Beschreibung des Reinigungsverfahren Die Reinigung von Aluminiumblechen erfolgt im vorlie- genden Fall in einer handelsüblichen Industriespülma- schine. Die Reinigungslösung wird aus einem Spültank bei einer Solltemperatur von 55 bis 60 °C über 18 Düsen von unten auf die zu reinigendem Teile sprüht. Das Reini- gungsprogramm dauert fünf Minuten, wobei in der letzten Minute das Spülgut mit demineralisiertem Wasser nach- gespült wird. Ein Nachdosieren des Reinigerkonzentrates ist nach jedem Spülprozess erforderlich, da ein Teil des Spültankinhaltes während der Nachspülphase durch das demineralisierte Wasser ersetzt wird. Eine Dosiereinrich- tung soll gewährleisten, dass die empfohlene Konzentra- tion des Reinigerkonzentrates von ca. 4 g/l bei allen Spül- vorgängen in der Reinigungslösung konstant bleibt. Damit wird ein mittlerer pH-Wert von 10,8 erreicht (Mittelwert der Messwerte aus neun Spülvorgängen). Die Zusammensetzung des unverdünnten Reinigerkon- zentrats laut Sicherheitsdatenblatt ist in Tabelle 1 wieder- gegeben. Tabelle 1: Zusammensetzung eines Reinigerkonzentrats Stoff Anteil in Gew.-% Kaliumhydroxid1–5 Phosphate15 – 30 Alkalisilikate> 10 Amphotere Tenside<5 pH-Wert14 Die zu reinigenden Aluminiumbleche bestehen aus den Legierungen AlMg1 und AlMg3 eingesetzt, die sich im we- sentlichen durch ihren Anteil von ca. 1 bzw. 3 Gew.-% Ma- gnesium unterscheiden. Der Summenanteil anderer Ele- mente (somit auch der Gehalt an Phosphor) ist mit < 0,05 Gew.-% spezifiziert. 4 Phosphorwasserstoff- Entstehung 4.1 Phosphorquelle Für eine potenzielle Phosphorwasserstoff-Freisetzung in der Industriespülmaschine war zunächst die Herkunft des Phosphors zu klären. Bei einer typischen Beladung der Spülmaschine mit 30 Aluminiumblechen (Masse ca. 230 g; Oberfläche ca. 80 cm²) ergibt sich eine Gesamtmasse von LfU Freisetzung von Phosphorwasserstoff bei der Oberflächenreinigung von Aluminiumteilen ca. 6,9 kg. Darin können entsprechend der Spezifikation max. 3,5 g Phosphor enthalten sein, die jedoch nur zu ei- nem kleinen Teil (an der Blechoberfläche) für eine Reakti- on zur Verfügung stehen können. Bei einer gemessenen Aluminiumkonzentration von max. 10 mg/l in der Reinigungslösung (ca. 80 l) dürf- ten insgesamt nur ca. 0,4 mg Phosphor aus den Aluminiumblechen gelöst worden sein. Bei einer Reinigerkonzentration von ca. 4 g/l in der Rei- nigungslösung ergibt sich aus dem Gehalt an Phospha- ten eine Sollkonzentration von ca. 0,2 g/l Phosphor in der Reinigungslösung. In einer Maschinenfüllung dieser Rei- nigungslösung liegt somit eine Phosphormenge von 16 g vor. Dieser Phosphor steht für Reaktionen zur Verfügung und wird ständig nachdosiert – die dominierende Phos- phorquelle während des Spülprozesses ist demnach das Phosphat aus dem Reiniger. 4.2 Redoxreaktion Als starkes Reduktionsmittel für die Reduktion von Phos- phat zu Phosphorwasserstoff kommt Wasserstoff (”in sta- tu nascendi”) in Frage, der aus der Reaktion von Alumini- um mit der Reinigungslösung bei hohem pH-Wert stammt. Da bei kleinen wie bei hohen pH-Werten die Oxidschutz- schicht des Aluminiums nicht beständig ist, wird Alumini- um bei alkalischen Bedingungen unter Wasserstoffent- wicklung als Aluminat gelöst [1; 4; 5]. Nur im Bereich von 3 4,5 < pH < 8,5 ist die schützende Schutzschicht weitge- hend unlöslich (sieheBild 1). Wesentliche Faktoren für die Reaktion dürften aber, neben Reaktionszeit, pH-Wert und Konzentration von Fremdio- nen [6], die Reaktionstemperatur sein, da Phosphorwas- serstoff in einer endothermen Reaktion gebildet wird [4]. Bei pH-Werten im alkalischen Bereich kann durch Zusatz von Inhibitoren (z.B.: Alkalisilikate) der Angriff gehemmt werden [7]. In Bild 1 ist für die üblichen Betriebsbedingungen (pH ? 11; Temperatur ca. 60 °C; Aluminiumkonzentration in der Reinigungslösung von ca. 3,5 mg/l) die überschlägig er- mittelte flächenbezogene Massenverlustrate des Reini- gungsprozesses aufgetragen. Der Punkt liegt oberhalb des eingezeichneten Kurvenastes, da bei erhöhter Tem- peratur gearbeitet wird. 4.3 MAK-Wert-Überschreitung: Zum Erreichen des für Phosphorwasserstoff festgeleg- ten MAK-Wertes von 0,1 ppm im nur ca. 0,4 m³ großen Spülraum der Maschine sind nur 0,06 mg PH3 erforder- lich. Ein Vergleich mit der tatsächlichen in der Reinigungs- lösung vorhandenen Phosphormasse zeigt, dass ein mehr als 105-facher Überschuss an verfügbarem Phosphor bei Solldosierung des Reinigerkonzentrates vorhanden ist. Ein nur geringfügiges Ausmaß der o.g. Redoxreaktion dürfte demnach ausreichen, um relevante PH3-Konzentrationen im Bereich des MAK-Wertes im Spülraum zu erreichen. flächenbezogene Massenverlustrate [g°m-2°h-1] 1,0 0,8 0,6 0,4 0,2 0,0 0 2 4 6 8 10 12 pH-Wert Abbildung 1: Einfluss des pH-Wertes auf die flächenbezogene Massenverlustrate für die Aluminiumoxidschutzschicht (Daten aus [5]). Der eingetra- gene Punkt zeigt die überschlägig ermittelte Massenverlustrate im Reinigungsprozess bei den üblichen Betriebsbedingungen.
Origin | Count |
---|---|
Bund | 87 |
Land | 1 |
Type | Count |
---|---|
Chemische Verbindung | 63 |
Förderprogramm | 22 |
Gesetzestext | 37 |
Text | 1 |
unbekannt | 2 |
License | Count |
---|---|
geschlossen | 66 |
offen | 22 |
Language | Count |
---|---|
Deutsch | 86 |
Englisch | 2 |
Resource type | Count |
---|---|
Dokument | 1 |
Keine | 80 |
Webseite | 7 |
Topic | Count |
---|---|
Boden | 19 |
Lebewesen und Lebensräume | 24 |
Luft | 21 |
Mensch und Umwelt | 88 |
Wasser | 18 |
Weitere | 26 |