API src

Found 105 results.

Related terms

Daten des Hamburger Luftmessnetzes (Halm)

Das Hamburger Luftmessnetz (HaLm) * betreibt 15 Messstationen zur Überwachung der Luftqualität * unterscheidet zwischen Hintergrund-, Ozon- und Verkehrs-Messstationen * misst kontinuierlich gemäß EU-Richtlinien und dem Bundesimmissionsschutzgesetz Die Hintergrund-Messstationen dienen der allgemeinen Luftüberwachung. Sie erfassen die Schadstoffkomponenten Schwefeldioxid (SO2), Stickstoffmonoxid (NO), Stickstoffdioxid (NO2) und Staub (Feinstaub/PM10: Partikel kleiner als 10 Mikrometer). Einige Stationen messen außerdem Kohlenmonoxid (CO). Die Ozon-Messstationen ermitteln neben Ozon (O3) auch die NO2- und NO-Belastungen. An den Verkehrs-Messstationen werden die für den Autoverkehr typischen Schadstoffe Benzol, NO, NO2, CO und Feinstaub gemessen. Die Messungen finden gemäß EU-Richtlinien und dem Bundes-Immissionsschutzgesetz kontinuierlich statt und erfüllen folgende Aufgaben/Zwecke: * Messungen nach den EU-Richtlinien für Schwebstaub PM10 / PM2,5, Schwefeldioxid (SO2), Stickstoffdioxid (NO2), Benzol, Kohlenmonoxid (CO) und Ozon (O3), umgesetzt in der 39. Verordnung zum Bundes-Immissionsschutzgesetz (39. BImSchV) * Ozonwarn- und -Informationsdienst * Information der Öffentlichkeit * Bereitstellung von Daten für immissionsschutzrechtliche Genehmigungen * Aufstellung von Daten-Zeitreihen zur Ermittlung von Belastungstrends * allgemeine Überwachung der Luftqualität entsprechend der Vierten Allgemeinen Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz Nach automatischer und manueller Plausibilitätsprüfung werden die Messdaten in einer Datenbank vorgehalten und können in der Zentrale des Hamburger Luftmessnetzes mit verschiedenen Software-Tools ausgewertet werden. Aktuelle Stundenmittelwerte werden über Videotext (Norddeutscher Rundfunk NDR Seite 678, Hamburg1 Seite 155), Ansagetelefon (040 42845-2424) und Internet der Öffentlichkeit zur Verfügung gestellt.

Sommersmog - rechtliche Befugnisse zu dessen Reduzierung

Das Projekt "Sommersmog - rechtliche Befugnisse zu dessen Reduzierung" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Mutius.Wie laesst sich der Sommersmog reduzieren? Massnahmen zur Verringerung der Ozonvorlaeufersubstanzen; Beurteilung der Paragraphen 40 a ff BImSchG; experimentelle Gesetzgebung; Schutzpflichten des Staates; Einschaetzungspraerogative des Gesetzgebers; welche weiteren Regelungen/Normen existieren zur Ozonverringerung?

Etude des phenomenes photochimiques dans une masse d'air au moyen d'un ballon a air chaud (FRA)

Das Projekt "Etude des phenomenes photochimiques dans une masse d'air au moyen d'un ballon a air chaud (FRA)" wird/wurde ausgeführt durch: Service de l'ecotoxicologie cantonal.L'evolution d'une masse d'air sous l'influence du rayonnement solaire fait l'objet de speculations dont la verification experimentale s'avere problematique. L'utilisation d'un ballon a air chaud qui, tout en la perturbant au minimum, est entraine par la masse d'air devrait permettre de donner des indications interessantes sur la validite des theories en vigueur. Dans un premier temps l'equipement du ballon a air chaud permettra la mesure de l'ozone et du dioxyde d'azote. (FRA)

Flüchtige Organische Verbindungen - Farben und Lacke Wissenswertes

Viele Farben und Lacke enthalten als Lösemittel sogenannte VOC (Volatile Organic Compounds). Zu dieser Gruppe flüchtiger organischer Substanzen zählen Luftschadstoffe, die u. a. Sommersmog verursachen können bzw. als Ozon-Vorläufersubstanzen zur Zerstörung der Ozonschicht beitragen. Aus diesen Gründen wurden die Richtlinie Nr. 2004/42/EG (Decopaint-Richtlinie) und Lösemittelhaltige Farben- und Lack- Verordnung (ChemVOCFarbV) erlassen, die den Gehalt an flüchtigen organischen Verbindungen in bestimmten Farben und Lacken zur Beschichtung von Gebäuden, ihren Bauteilen und dekorativen Bauelementen sowie in Produkten der Fahrzeugreparaturlackierung begrenzen, um die VOC-Emissionen zu vermeiden oder zu verringern. Auf den Verpackungen VOC-haltiger Produkte sind verpflichtend der maximale Gehalt sowie der gesetzlich geregelte Grenzwert für die jeweilige Produktkategorie anzugeben! Aktualisierungsdatum 11.02.2025 Nutzungsbedingungen externer Webseiten - ECHA - EUR-Lex - BAuA - Bundesumweltministerium

Altpapier

Die Papierindustrie setzte im Jahr 1990 knapp 49 Prozent Altpapier ein, 2015 74 Prozent und im Jahr 2023 rund 83 Prozent. Diese Steigerung senkte den Holz-, Wasser- und Primärenergieverbrauch pro Tonne Papier. Das Mehr an Papierkonsum relativierte jedoch den Effizienzgewinn. Zudem gefährden Verunreinigungen aus Druckfarben, Kleb- und Papierhilfsstoffen inzwischen das Altpapierrecycling. Vom Papier zum Altpapier Im Jahr 2023 wurden rechnerisch in Deutschland 175,6 Kilogramm (kg) Pappe, Papier und Karton pro Kopf verbraucht. Diese Zahl bezieht neben dem Verbrauch in den privaten Haushalten auch den gesamten Verbrauch an Papier in Wirtschaft, Medien und Verwaltungen mit ein. In privaten Haushalten beträgt die jährlich verbrauchte Papiermenge ca. 105 kg pro Kopf ( INTECUS GmbH ). Dies entspricht einem rechnerischen Gesamtverbrauch von 14,9 Millionen Tonnen (Mio. t). Im gleichen Jahr haben private und kommunale Entsorger 12,7 Mio. t Altpapier gesammelt. Dies ergibt eine Altpapierrücklaufquote von 85 % (siehe Tab. „Papiererzeugung, Papierverbrauch und Altpapierverbrauch“). Die deutsche Papierindustrie Die deutsche Papierindustrie stellte im Jahr 2023 rund 18,6 Mio. t Papier, Pappe und Kartonagen her. Sie setzte dafür rund 15,5 Mio. t Altpapier ein. Die Altpapiereinsatzquote – also der Altpapieranteil an der gesamten inländischen Papierproduktion – lag damit bei rund 83 %. Diese Quote stieg seit dem Jahr 2000 um 23 Prozentpunkte (siehe Tab. „Altpapiereinsatzquoten in Prozent“). Der deutschen Papierindustrie gelang es auf diese Weise, ihre spezifischen Umweltbelastungen zu verringern. Die hohe Altpapiereinsatzquote von 83 % lässt sich kaum noch erhöhen. Dennoch ist es technisch etwa möglich, mehr Altpapier bei der Herstellung von Zeitschriften-, Büro- und Administrationspapieren und vor allem bei der Herstellung von Hygienepapieren zu nutzen. Eine Nachfragesteigerung seitens Verbraucherinnen und Verbraucher würde dies befördern. Der Altpapiereinsatz bei der Herstellung von Hygienepapieren fällt erneut auf nunmehr 40 %. Dies liegt an der Abnahme weißer Altpapiere im Markt durch den Rückgang der graphischen Papiere, bedingt durch die fortschreitende Digitalisierung, bei gleichzeitiger Zunahme von Verpackungspapieren. Der Rohstoff Altpapier ist knapp. Der Einsatz von Altpapier ist vorteilhaft, da Fasern aus Hygienepapieren nach der Nutzung nicht für ein weiteres Recycling zur Verfügung stehen. Bei der Herstellung von Zeitungsdruck- und Wellpappenrohpapieren wurde im Jahr 2023 statistisch gesehen mehr als 100 % Altpapier eingesetzt. Der Grund ist, dass bei der Aufbereitung von Altpapier Sortierreste und alle Verunreinigungen, welche die Qualität des Neupapiers beeinträchtigen, abgeschieden werden. Dabei gehen auch in geringem Umfang Papierfasern verloren, deshalb wird in der Produktion bis zu 20 % mehr Rohstoff, der aber auch papierfremde Bestandteile enthält, eingesetzt. Die Altpapierverwertungsquote, also der Altpapierverbrauch im Verhältnis zum gesamten Papierverbrauch, lag 2023 bei über 100 % (siehe Abb. „Altpapierverwertungsquoten“). Es wurde mehr Altpapier für die Herstellung von Recyclingpapier verbraucht als Papier in Deutschland verbraucht wurde. Das liegt daran, dass mehr Papier für den Export produziert wurde und weniger im Inland verbraucht wurde. Tab: Altpapiereinsatzquoten in Prozent Quelle: DIE PAPIERINDUSTRIE e. V. Diagramm als PDF Diagramm als Excel mit Daten Altpapierverwertungsquote Quelle: DIE PAPIERINDUSTRIE e. V. Diagramm als PDF Diagramm als Excel mit Daten Energieeffiziente Papierherstellung Papier, Pappe und Kartonagen wurden im Jahr 2023 energieeffizienter hergestellt als im Jahr 1990. Der mittlere Energieeinsatz bezogen auf eine Tonne erzeugtes Papier sank in diesem Zeitraum von 3,413 auf 2,789 Megawattstunden (MWh). Diese Effizienzsteigerung wurde durch die erhöhte Produktion im selben Zeitraum überkompensiert. So stellte die deutsche Papierindustrie im Jahr 2023 rund 32 % mehr Papier, Pappe und Kartonagen her als im Jahr 1990. Die Emissionen an fossilem Kohlendioxid pro Tonne Papier konnten trotzdem seit 1990 um etwa ein Drittel gesenkt werden. Sie liegen jetzt bei 526 kg Kohlendioxid pro Tonne produzierten Papiers. Das liegt vor allem am zunehmenden Einsatz von alternativen Brennstoffen und dem steigenden Anteil an erneuerbaren Strom im deutschen Strommix. Die Papierbranche bemüht sich einerseits, den Energieverbrauch weiter zu senken. Gleichzeitig investieren viele Unternehmen in zusätzliche Prozessstufen, um aus dem Rohstoff Altpapier Papiere mit höheren Weißgraden und glatterer Oberfläche herzustellen. Dafür benötigen sie mehr Energie, da mehr Fasern aussortiert und diese stärker gereinigt und gebleicht werden. Der Gesamtenergieeinsatz stieg daher von 157 Petajoule (PJ) im Jahr 1990 um gut 20 % auf 188 PJ im Jahr 2023 (Leistungsbericht Papier 2024). Tipp zum Weiterlesen: DIE PAPIERINDUSTRIE e. V., Leistungsbericht PAPIER 2024. Der Bericht kann beim Verband DIE PAPIERINDUSTRIE e. V. unter https://www.papierindustrie.de/papierindustrie/statistik bestellt werden Grafische Papiere Die grafischen Papiere sind nach den Verpackungspapieren das mengenmäßig wichtigste Papiersegment. Darunter fallen alle Papiere, die für Zeitungen, Zeitschriften, Schreib- oder Kopierpapiere verwendet werden. Für diese grafischen Papiere hat das Umweltbundesamt 2020 in einer Ökobilanz erneut überprüfen lassen, welche Umweltwirkungen während des gesamten Lebensweges der Papiere entstehen und welche Umweltentlastungspotenziale der Einsatz von Altpapieren im Produktionsprozess bietet. Demnach besitzt Recyclingpapier deutliche ökologische Vorteile gegenüber Frischfaserpapieren (Primärfaserpapieren). Der Holzverbrauch verringert sich und steht für langlebigere Nutzungen zur Verfügung. Recyclingpapier muss nicht so intensiv gebleicht werden, wie es bei der Herstellung von Frischfaserpapier der Fall ist. Für die Gewinnung von Recyclingpapier wird damit nur die Hälfte an Energie benötigt und zwischen einem Siebtel bis zu einem Drittel der Wassermenge, die bei Frischfaserpapier eingesetzt wird. Auch die ⁠ Treibhausgas ⁠-Emissionen sind bei Recyclingpapieren auf dem deutschen Markt durchschnittlich 15 % geringer als bei Frischfaserpapieren, auch wenn integrierte Zellstoff- und Papierfabriken aus Frischfaser bessere Treibhausgasbilanzen aufweisen können. Die Wälder werden durch die Verwendung von Recyclingpapier geschont und damit Verlust an ⁠ Biodiversität ⁠ durch intensive Forst- und Plantagenwirtschaft und deren soziale und ökologische Folgen weltweit verringert. Ein höheres Altpapierrecycling ist für praktisch alle betrachteten Wirkungskategorien günstiger zu bewerten: Dies betrifft die Knappheit fossiler Energieträger, Treibhauspotenzial, Sommersmog, Versauerungspotenzial und Überdüngung von Böden und Gewässern. Das heißt konkret: Wer beim Kauf von einem Paket Papier mit 500 Blatt, das etwa 2,5 Kilogramm (kg) wiegt, zu Recyclingqualität greift, spart 5,5 kg Holz. Mit den 7,5 Kilowattstunden Energie, die man bei Kauf eines Paketes Recyclingkopierpapier zusätzlich spart, kann man 525 Tassen Kaffee kochen. Der Wald wird geschont. Tipp zum Weiterlesen: Broschüre „Papier. Wald und Klima schützen“ Mögliche Schadstoffanreicherung im Papier Das Schließen von globalen Stoffkreisläufen und die hohe Zahl an Recyclingzyklen kann jedoch auch einen negativen Aspekt haben: So treten immer wieder erhöhte Gehalte unerwünschter Stoffe in den Altpapierkreisläufen auf. Es handelt sich dabei um Chemikalien, die an Papierfasern gut haften und wasserlöslich sind. Beispiele hierfür sind bestimmte Mineralölbestandteile in Druckfarben, per- und polyfluorierte Verbindungen (⁠ PFAS ⁠), Bisphenol S aus Kassenzetteln und gewisse Phthalate aus Klebstoffen. Diese Chemikalien können Altpapier verunreinigen, wenn etwa neue Papierprodukte wie Thermopapier oder neue Druckverfahren mit den dazugehörige Druckfarben, Bindungen, oder Verbundmaterialien entwickelt werden, die nicht auf ihre Auswirkungen auf die Recyclingkreisläufe geprüft werden. Dabei kommt erschwerend hinzu, dass auch Stoffe, die in Deutschland schon seit Jahren nicht mehr eingesetzt werden, wie z.B. Phthalate in Klebstoffen, in anderen Ländern noch im Einsatz sind und hier in Deutschland über den Recyclingkreislauf wieder in das Papier eingetragen werden. Diese Verunreinigungen gefährden den Einsatz von Altpapier etwa als Verpackung für Cerealien, Mehl oder Reis und anderen Lebensmittelkontaktpapieren. Denn sowohl die Bedarfsgegenständeverordnung als auch die Empfehlung „XXXVI. Papiere, Kartons und Pappen für den Lebensmittelkontakt“ des Bundesinstitutes für Risikobewertung geben für den Gehalt an Schadstoffen in Papier, Pappe und Kartons Obergrenzen vor. Einige dieser Verunreinigungen gelangen nicht bei der Papierherstellung in den Kreislauf, sondern wenn etwa Wellpappenhersteller, Drucker und Verpacker Papier nutzen und weiter verarbeiten. Diese Unternehmen sind mitunter nicht ausreichend sensibilisiert oder motiviert, nur Stoffe einzusetzen, die für das Recycling unkritisch sind. Hier gilt es, durch ein vernetztes Denken und Handeln bei allen Beteiligten die erforderliche Sensibilität zu schaffen, damit das erreichte hohe Verwertungsniveau bei Altpapier nicht gefährdet wird und durch die Verwertung von Altpapier auch zukünftig ein wichtiger Beitrag zum ressourceneffizienten Umgang mit Rohstoffen geleistet werden kann. Das Umweltbundesamt setzt sich für eine Vermeidung von Verunreinigungen möglichst an der Quelle ein.

Ozon-Belastung

Die Höhe der Ozon-Spitzenkonzentrationen und die Häufigkeit sehr hoher Ozonwerte haben seit Mitte der 1990er-Jahre deutlich abgenommen. Der Zielwert zum Schutz der menschlichen Gesundheit wird jedoch weiterhin überschritten. Im Unterschied zu der Entwicklung der Spitzenwerte nahmen die Ozon-Jahresmittelwerte in städtischen Wohngebieten im gleichen Zeitraum zu. Überschreitung von Schwellenwerten Um gesundheitliche Risiken für die Bevölkerung bei kurzfristiger ⁠ Exposition ⁠ gegenüber erhöhten Ozonkonzentrationen auszuschließen, legt die 39. BImSchV Informations- und Alarmschwellenwerte fest (siehe Tab. „Zielwerte, langfristige Ziele und Alarmschwellen für den Schadstoff Ozon“). Der Informationsschwellenwert von 180 Mikrogramm pro Kubikmeter (µg/m³), gemittelt über eine Stunde, dient dem Schutz der Gesundheit besonders empfindlicher Bevölkerungsgruppen. Bei der Überschreitung des Alarmschwellenwertes von 240 µg/m³, gemittelt über eine Stunde, besteht ein Gesundheitsrisiko für die Gesamtbevölkerung. Seit 1995 hat die Zahl der Stunden mit Ozonwerten über 180 beziehungsweise 240 µg/m³ deutlich abgenommen (siehe Abb. „Überschreitungsstunden der Informationsschwelle (180 µg/m³) für bodennahes Ozon, Mittelwert über ausgewählte Stationen“ und Abb. „Überschreitungsstunden der Alarmschwelle (240 µg/m³) für bodennahes Ozon, Mittelwert über ausgewählte Stationen)“). Diese Abnahme ist von zwischenjährlichen Schwankungen überlagert, die auf die jährlich schwankenden meteorologischen sommerlichen Witterungsbedingungen zurückzuführen sind. Besonders deutlich ist dies im Jahr 2003 erkennbar. Im Sommer 2003 wurde eine außergewöhnlich langanhaltende Wettersituation beobachtet, welche die Ozonbildung begünstigte. Der Ozonsommer 2003 ist daher hinsichtlich der Spitzenwerte ein Sonderfall. Verglichen mit dem Jahr 1990 sind die Emissionen der Ozonvorläuferstoffe (Stickstoffoxide und flüchtige organische Verbindungen ohne Methan) in Deutschland bis 2022 um 67 % beziehungsweise 74 % zurückgegangen (siehe „Stickstoffoxid-Emissionen“ und „Emission flüchtiger organischer Verbindungen ohne Methan“ ). Der geringere Ausstoß von Ozonvorläufersubstanzen führte bereits in den 1990er Jahren zu einer Abnahme der Ozonspitzenwerte. Tab: Zielwerte, langfristige Ziele und Alarmschwellen für den Schadstoff Ozon Quelle: BImSchG Tabelle als PDF Tabelle als Excel Überschreitungsstunden der Informationsschwelle (180 µg/m³) für bodennahes Ozon, Mittelwert ... Quelle: Umweltbundesamt Diagramm als PDF Diagramm als Excel mit Daten Überschreitungsstunden der Alarmschwelle (240 µg/m³) für bodennahes Ozon, Mittelwert ... Quelle: Umweltbundesamt Diagramm als PDF Diagramm als Excel mit Daten Zielwerte und langfristige Ziele für Ozon Seit 2010 gibt es zum Schutz der menschlichen Gesundheit für Ozon einen europaweit einheitlichen Zielwert: 120 Mikrogramm pro Kubikmeter (µg/m³) als 8-Stunden-Mittel sollen nicht öfter als 25-mal pro Kalenderjahr, gemittelt über drei Jahre, überschritten werden. Um die meteorologische Variabilität der einzelnen Jahre bei einer langfristigen Betrachtung zu berücksichtigen, wird über einen Zeitraum von drei Jahren gemittelt. Die meisten Überschreitungen werden an ländlichen Hintergrundstationen registriert, also entfernt von den Quellen der Vorläuferstoffe (siehe Abb. „Prozentualer Anteil der Messstationen mit Überschreitung des Zielwertes für Ozon“). Das liegt daran, dass Stickstoffmonoxid (NO), das in Autoabgasen enthalten ist, mit Ozon reagiert. Dabei wird Ozon abgebaut, so dass die Ozonbelastung in Innenstädten deutlich niedriger ist. Andererseits werden die Ozonvorläuferstoffe mit dem Wind aus den Städten heraus transportiert und tragen entfernt von deren eigentlichen Quellen zur Ozonbildung bei. Langfristig soll der 8-Stunden-Mittelwert von 120 µg/m³ während eines Kalenderjahres nicht mehr überschritten werden. Dieses Ziel wird in Deutschland allerdings an kaum einer Station eingehalten. Die höchste Zahl an Überschreitungstagen wird üblicherweise an ländlichen Hintergrundstationen registriert (siehe Abb. „Zahl der Tage mit Überschreitung des Ozon-Zielwertes (120 µg/m³) zum Schutz der menschlichen Gesundheit, Mittelwert über ausgewählte Stationen“. Zahl der Tage mit Überschreitung des Ozon-Langfristziels (120 µg/m³) zum Schutz der Gesundheit ... Quelle: Umweltbundesamt Diagramm als PDF Diagramm als Excel mit Daten Prozentualer Anteil der Messstationen mit Überschreitung des Zielwertes für Ozon Quelle: Umweltbundesamt Diagramm als PDF Diagramm als Excel mit Daten Entwicklung der Jahresmittelwerte Jahresmittelwerte der Ozonkonzentrationen spielen bei der Bewertung der Belastung eine nachgeordnete Rolle. Dennoch können sie zur Beurteilung der Immissionssituation verwendet werden. Die Jahresmittelwerte haben eine größere Bedeutung für die langfristige Entwicklung der Ozonbelastung, sofern historische Werte herangezogen werden. Die Jahresmittelwerte der Ozonkonzentration von 1995 bis 2023 zeigen an städtischen Stationen insgesamt einen schwach zunehmenden Trend. Einerseits nahmen die Ozonspitzenwerte durch die Minderungsmaßnahmen für die NO x - und ⁠ NMVOC ⁠-Emissionen in Deutschland deutlich ab, andererseits führte dies wegen der Verringerung des Titrationseffekts (Ozonabbau durch Stickstoffmonoxid) zu einem Anstieg der mittelhohen Ozonkonzentrationen, was schließlich bei den Jahresmittelwerten sichtbar wird (siehe Abb. „Trend der Ozon-Jahresmittelwerte“). Zudem wird von einer zunehmenden Bedeutung des interkontinentalen (hemisphärischen) Transports für die Ozonbelastung in Deutschland und Europa aufgrund der industriellen Emissionen in Asien und Nordamerika ausgegangen. Bodennahes Ozon Ozon (O 3 ) wird nicht direkt freigesetzt, sondern bildet sich in den unteren Luftschichten der ⁠ Atmosphäre ⁠ bis in etwa zehn Kilometer Höhe bei intensiver Sonneneinstrahlung durch komplexe photochemische Reaktionen von Sauerstoff und Luftverunreinigungen. Vor allem flüchtige organische Verbindungen (⁠ VOC ⁠ = volatile organic compounds) einschließlich Methan sowie Stickstoffoxide (NO x ) sind an diesen Reaktionen beteiligt. Herkunft Die Emissionen von flüchtigen organischen Verbindungen und Stickstoffoxiden, den sogenannten Ozon-Vorläuferstoffen, werden überwiegend durch den Menschen verursacht. Hinzu kommt eine natürliche sogenannte Ozon-Hintergrundbelastung, die von hemisphärischem Transport und natürlichen Bildungsprozessen herrührt. Eine wichtige Quelle für die ⁠ Emission ⁠ der Ozon-Vorläuferstoffe stellt der Kraftfahrzeugverkehr dar. Darüber hinaus werden besonders aus dem Kraftwerksbereich Stickstoffoxide und aus der Anwendung von Lacken und Lösungsmitteln flüchtige organische Verbindungen emittiert (siehe „Stickstoffoxid-Emissionen“ und „Emission flüchtiger organischer Verbindungen ohne Methan“ ). Die Emissionen sind teilweise auch natürlichen Ursprungs, zum Beispiel Ausdünstungen flüchtiger organischer Stoffe aus Laub- und Nadelbäumen. Gesundheitliche Wirkungen Viele Menschen leiden an Tagen hoher Ozonkonzentration an Reizungen der Augen (Tränenreiz) und Schleimhäute (Husten) sowie − verursacht durch Begleitstoffe des Ozons − an Kopfschmerzen. Diese Reizungen sind von der körperlichen Aktivität weitgehend unabhängig. Ihr Ausmaß wird primär durch die Aufenthaltsdauer in der ozonbelasteten Luft bestimmt. Die Empfindlichkeit der Menschen gegenüber Ozon ist sehr unterschiedlich ausgeprägt. Eine Risikogruppe lässt sich nicht genau eingrenzen. Man geht davon aus, dass etwa 10 bis 15 Prozent der Bevölkerung (quer durch alle Bevölkerungsgruppen) besonders empfindlich auf Ozon reagieren. Vor allem die Atemwege sind von der Ozonwirkung betroffen. Neben Reizungen der Schleimhäute in den oberen Atemwegen kann Ozon bei tiefer oder häufiger Einatmung (etwa bei körperlicher Aktivität) verstärkt bis in die tiefen Lungenabschnitte gelangen und dort durch seine hohe Reaktionsbereitschaft Gewebe schädigen und entzündliche Prozesse auslösen. Vor allem nach reger körperlicher Aktivität im Freien wurde bei Schulkindern und Erwachsenen eine verminderte Lungenfunktion nachgewiesen. Diese funktionellen Veränderungen und Beeinträchtigungen normalisierten sich im Allgemeinen spätestens 48 Stunden nach Expositionsende. Im Gegensatz zur Veränderung der Lungenfunktionswerte bildeten sich entzündliche Reaktionen des Lungengewebes nur teilweise zurück. Die Reizwirkungen sind im Sinne einer Vorschädigung des Lungengewebes zu verstehen, durch die sowohl eine Sensibilisierung durch chemische oder biologische Allergene ermöglicht als auch die Auslösung von allergischen Symptomen begünstigt werden kann. Messdaten Die Ozonkonzentration wird an rund 260 Messstationen in Deutschland überwacht. An den Messstellen, die das Umweltbundesamt im ländlichen Hintergrund betreibt, wurde im Zeitraum 1980 bis zum Ende der 1990er-Jahre ein Anstieg der Jahresmittelwerte der Ozonkonzentration registriert, der sich in den folgenden Jahren nicht fortsetzte.

Ozon-Grenzwert erstmals überschritten

Ozon-Grenzwert erstmals überschritten Im Raum Worms werden Ozonwerte über der Informationsschwelle von 180 Mikrogramm pro Kubikmeter Luft gemessen. Im Raum Worms werden Ozonwerte über der Informationsschwelle von 180 Mikrogramm pro Kubikmeter Luft gemessen. In diesem Jahr ist dies landesweit zum ersten Mal der Fall. Ozon unterscheidet sich von den andern Luftschadstoffen dadurch, dass es nicht unmittelbar als solches von Anlagen emittiert wird, sondern aus Vorläufern, nämlich Stickoxiden und organischen Gasen und Dämpfen in einem komplexen photochemischen Prozess unter Einwirkung des Sonnenlichts entsteht. Im Gegensatz zu diesem bodennahen Bildungsmechanismus entsteht Ozon in der Stratosphäre durch energiereiche UV-Strahlung direkt aus Sauerstoff. Ozon ist mit einem Anteil von 70-80% die Hauptkomponente des als "Sommersmog" bezeichneten Photooxidantiengemisches. Wegen des Einflusses der Witterung zeigt die Ozonkonzentration ausgeprägte Tages- und Jahresgänge. Die höchsten Konzentrationen werden in den Nachmittagsstunden während ausgeprägter sommerlicher Schönwetterperioden erreicht. In ländlichen Zonen und Waldgebieten werden im Jahresmittel höhere Konzentrationen als in Städten gemessen. Die gesundheitlichen Wirkungen von Ozon bestehen in einer verminderten Lungenfunktion, entzündlichen Reaktionen in den Atemwegen und Atemwegsbeschwerden. Bei körperlicher Anstrengung, also bei erhöhtem Atemvolumen, können  sich diese Auswirkungen verstärken. Empfindliche oder vorgeschädigte Personen, zum Beispiel Asthmatiker, sind besonders anfällig und sollten bei  hohen Ozonwerten körperliche Anstrengungen im Freien am Nachmittag vermeiden. Von besonderen sportlichen Ausdauerleistungen in den Nachmittagsstunden wird abgeraten. Weitergehende Informationen bietet das Umweltbundesamt . Aktuelle Luftmesswerte der rheinland-pfälzischen ZIMEN-Messstationen finden Sie auf www.luft.rlp.de .

Emission flüchtiger organischer Verbindungen ohne Methan (NMVOC)

Der Ausstoß flüchtiger organischer Verbindungen ohne Methan konnte zwischen 1990 und 2022 um fast 74 % gesenkt werden. Entwicklung seit 1990 Von 1990 bis 2022 konnten die ⁠ NMVOC ⁠-Emissionen von 3,9 Millionen Tonnen (Mio. t) auf 1,0 Mio. t gesenkt und somit um 73,7 % zurückgeführt werden (siehe Abb. „Emissionen flüchtiger organischer Verbindungen ohne Methan (NMVOC) nach Quellkategorien“). Der Rückgang lässt sich in erster Linie mit der Entwicklung der Emissionen aus dem Straßenverkehr sowie bei den Lösemittelanwendungen im industriellen und gewerblichen Bereich erklären. Entwicklungen im Verkehrssektor Die Emissionen im Straßenverkehr aus Antrieb und ⁠ Verdunstung ⁠ (nur Ottokraftstoff) wurden von 1,5 Millionen Tonnen (Mio. t) (1990) auf 82 Tausend Tonnen (Tsd. t) (2022) gemindert. Durch die Einführung und Weiterentwicklung der geregelten Katalysatoren bei Otto-Pkw und die Verringerung der Zahl der Zweitakt-Fahrzeuge in den neuen Ländern ist der Anteil der Emissionen des Straßenverkehrs von 39 % im Jahr 1990 auf unter 8 % im Jahr 2022 gesunken. Die Menge der durch Verdunstung aus den Fahrzeugtanks freigesetzten ⁠ NMVOC ⁠ nahm – parallel zur Menge der verbrauchsbedingten Emissionen – zwischen 1990 und 2022 um fast 90 % ab. Ihr Anteil an den Emissionen des Straßenverkehrs stieg dabei von 13,9 auf 29,6 %. Gegenüber den deutschen NMVOC-Gesamtemissionen schrumpfte der Anteil fahrzeugseitiger verdunstungsbedingter Emissionen von rund 5,4 auf 2,3 %. Die Verteilungsverluste von Kraftstoffen sanken - insbesondere durch die fortschreitende Ausstattung der Tankstellen mit Gaspendel- und Gasrückführungssystemen - von 87,8 auf rund 15,8 Tsd. t. Der Anteil der Verteilungsverluste an den NMVOC-Gesamtemissionen sank damit von rund 2,3 % im Jahr 1990 auf knapp über 1,5 % im Jahr 2022. Entwicklung in Industrie und Gewerbe Die unter den Industrieprozessen berichteten Lösemittelanwendungen dominieren die ⁠ NMVOC ⁠-Emissionen in Deutschland. Die NMVOC-Emissionen durch die Verwendung von Lacken und Reinigungsmitteln konnten zwar mit geringerem Lösemittelgehalt beziehungsweise durch die teilweise Umstellung auf wasserbasierende Systeme vor allem in Lackierereien, Druckereien und Metallbe- und verarbeitenden Betrieben seit 1990 mehr als halbiert werden. Der prozentuale Anteil an den Gesamtemissionen stieg im Zeitraum von 1990 bis 2022 jedoch, da die Minderung gegenüber den anderen Quellkategorien nur unterdurchschnittlich ausfiel. Die Emissionen der gesamten industriellen Produktionsprozesse sank in den letzten Jahren auf 0,54 Mio. t, der Anteil an den NMVOC-Gesamtemissionen stieg aber ebenfalls zwischen den Jahren 1990 (33 %) und 2022 (53 %) (siehe Tab. „Emissionen ausgewählter Luftschadstoffe nach Quellkategorien“). Entwicklung in der Landwirtschaft Die ⁠ NMVOC ⁠-Emissionen aus der Landwirtschaft stammen zu über 95 % aus dem Bereich Wirtschaftsdüngermanagement (vornehmlich aus der Rinderhaltung) und der verbleibende Rest wird von Pflanzen bei der Getreideproduktion emittiert. Die Emissionen sind zwischen 1990 und dem Jahr 2006 von ca. 0,40 Mio. t auf 0,31 Mio. t gesunken, stiegen anschließend bis 2014 wieder leicht an und sanken bis zum Jahr 2022 unter das Niveau von 2006. Im Jahr 2022 betrugen die NMVOC-Emissionen aus der Landwirtschaft wieder 0,29 Mio. t, dies entspricht einer Reduktion um 28 % seit 1990. Da die anderen großen Quellen von NMVOC deutlich stärker zurückgegangen sind, stieg der Anteil der Landwirtschaft an den Gesamtemissionen von 10 % in 1990 auf 28 % im Jahr 2022. Wirkung von flüchtigen organischen Substanzen Flüchtige organische Substanzen (⁠ VOC ⁠) umfassen eine Vielzahl von Stoffen, deren Molekülstruktur auf einem Kohlenstoffgrundgerüst aufbaut. Sie können die unterschiedlichsten Einwirkungen auf die Umwelt haben, etwa großräumig über die Bildung von Photooxidantien, lokal als Geruchsbelästigung oder sogar als krebserregende Substanzen (zum Beispiel Benzol). Allein aus der Gesamtemission kann daher nicht auf das Wirkungspotenzial geschlossen werden. Die Gesamtmenge der Emissionen ist jedoch in Hinblick auf die Rolle der VOC als Vorläufer sekundärer Luftverunreinigungen von Bedeutung: zusammen mit Stickstoffoxiden führen sie zur Bildung von bodennahem Ozon, zum Beispiel „Sommersmog“ (siehe „Ozon-Belastung“ ). Verursacher Emissionen flüchtiger organischer Verbindungen ohne Methan (⁠ NMVOC ⁠) entstanden noch 1990 zu mehr als der Hälfte bei unvollständig ablaufenden Verbrennungsvorgängen, wovon wiederum gut zwei Drittel auf Kraftfahrzeuge entfielen. Neben dem Ausstoß von Abgasen stammen aus dem Verkehr auch Emissionen durch ⁠ Verdunstung ⁠ am Fahrzeug bei der Tankbelüftung, durch Undichtigkeiten (vor allem am Vergaser) sowie bei der Verteilung des leichtflüchtigen Ottokraftstoffes (Lagerung, Umschlag und Betankung). Bis heute ist der Anteil der verbrennungsbedingten Emissionen am Gesamtausstoß auf gut 16 % zurückgegangen. Auch bei industriellen Produktionsprozessen, dem Einsatz von Dünger in der Landwirtschaft sowie durch Kleinfeuerungsanlagen kommt es zu nennenswerten Emissionen. Größere Kraftwerksanlagen und Industriefeuerungen setzen hingegen nur sehr wenig NMVOC frei. Die mit Abstand wichtigste Quellkategorie ist heute jedoch, bedingt durch den starken Rückgang der verkehrsbedingten Emissionen, die Verwendung von Lösemitteln und lösemittelhaltigen Produkten. Erfüllungsstand der Emissionsminderungsbeschlüsse Im Göteborg-Protokoll zur ⁠ UNECE ⁠-Luftreinhaltekonvention und in der ⁠ NEC-Richtlinie ⁠ ( EU 2016/2284 ) der EU wird festgelegt, dass die jährlichen ⁠ NMVOC ⁠-Emissionen ab 2020 um 13 % niedriger sein müssen als 2005. Diese Ziele wurden 2021 und 2022 eingehalten. Auf EU-Ebene legt die NEC-Richtlinie ( EU 2016/2284 ) auch fest, dass ab 2030 die jährlichen Emissionen 28 % niedriger gegenüber 2005 sein sollen. Auch dieses Ziel konnte 2021 und 2022 erreicht werden.

Faltblätter (Flyer)

Informationen zum "Dosenpfand" | 2021 Wohin mit dem Elektroschrott? | 2020 Wolfskompetenzzentrum Iden - WZI | 2022 (pdf-Datei, 828 KB) NATURA 2000 in Sachsen-Anhalt: Artenschutz im Wald | 2012 NATURA 2000 in Sachsen-Anhalt: Beschreibung der in Sachsen-Anhalt vorkommenden Waldlebensraumtypen nach Anhang I der FFH-Richtlinie | 2012 NATURA 2000 in Sachsen-Anhalt: Bewirtschaftungshinweise für die in Sachsen-Anhalt vorkommenden Waldlebensraumtypen nach Anhang I der FFH-Richtlinie | 2012 OZON-Information "Bodennahes Ozon und Sommersmog" | 2004 Staatliche Vogelschutzwarte im Landesamt für Umweltschutz | 2000 Boden-Dauerbeobachtungsflächen im Land Sachsen-Anhalt, 1997 Entladungslampen | 1993 Trinkwasserschutzgebiete | 1992 Salzlaststeuerung | 1992

Straßenverkehr - Emissionen und Immissionen 2014

Ausgangslage Zur Beurteilung der verkehrsbedingten Luftverschmutzung stellen die aus dem Kfz-Verkehr stammenden bodennahen Emissionen die wichtigste Einflussgröße dar. Ursachen und Wirkungen werden daher in zwei thematisch eng verwandten Karten dargestellt: Verkehrsbedingte Emissionen (Umweltatlas 03.11.1) und Verkehrsbedingte Luftbelastung (Umweltatlas 03.11.2). Die Beschreibung der Ausgangslage ist für beide Karten identisch, daher wird an dieser Stelle auf das entsprechende Unterkapitel der Karte 03.11.2 verwiesen. Wirkungen Stickoxide sind Säurebildner. Sie sind schädlich für die menschliche Gesundheit, bewirken Schäden an Pflanzen, Bauwerken und Denkmälern und sind wesentlich an der übermäßigen Bildung von bodennahem Ozon und anderen gesundheitsschädlichen Oxidantien während sommerlicher Hitzeperioden beteiligt. Bei Menschen und Tieren führen Stickoxide und insbesondere Stickstoffdioxid zu Reizungen der Schleimhäute im Atemtrakt und können das Infektionsrisiko erhöhen (vgl. Kühling 1986). Auch Zellveränderungen wurden beobachtet (BMUNR 1987). Verschiedene epidemiologische Untersuchungen haben einen Zusammenhang zwischen Verschlechterungen der Lungenfunktion, Atemwegssymptomen und erhöhter Stickstoffdioxidkonzentration gezeigt (vgl. Nowak et al. 1994). Dieselruß ist ein wesentlicher Bestandteil von Feinstaub (PM 10 ) in den Abgasen der Kraftfahrzeuge und birgt zum einen als Trägerstoff für polyzyklische aromatische Kohlenwasserstoffe (PAK) ein Krebsrisiko, gilt aber auch für sich gesehen als mögliche Ursache für Lungen- und Blasenkarzinome (vgl. Kalker 1993). Außerdem stehen ultrafeine Partikel wie Dieselrußpartikel, die kleiner als 0,1 µm sind, im Verdacht, das Risiko für Herz-Kreislauferkrankungen zu erhöhen. Gesetzliche Regelungen und Grenzwerte Die Beurteilung der Luftbelastung durch den Kraftfahrzeugverkehr ist für die Immissionsschutzbehörden erst ab 1985 konkretisierbar geworden, nachdem die Europäische Gemeinschaft in der “Richtlinie des Rates vom 7. März 1985 über Luftqualitätsnormen für Stickstoffdioxid” (Richtlinie 85/203/EWG) Grenz- und Leitwerte für diesen Schadstoff festgelegt hat, außerdem schrieb sie vor, dass die Konzentration in Straßenschluchten und an Verkehrsbrennpunkten gemessen werden soll. Aufgrund einer Vielzahl neuer Erkenntnisse zu diesem und den anderen Luftschadstoffen entstand die 1996 in Kraft getretene “Richtlinie 96/62/EG über die Beurteilung und Kontrolle der Luftqualität“ (die so genannte “Rahmenrichtlinie”). In dieser Richtlinie wird die Kommission aufgefordert, innerhalb eines bestimmten Zeitrahmens so genannte “Tochterrichtlinien” vorzulegen, in denen Grenzwerte und Details zu Mess- und Beurteilungsvorschriften für eine vorgegebene Liste von Komponenten festgelegt werden. Inzwischen sind vier Tochterrichtlinien in Kraft getreten: am 19. Juli 1999 die Richtlinie 99/30/EG mit Grenzwerten für Schwefeldioxid, Feinstaub(PM 10 ), Stickstoffdioxid und Blei am 13. Dezember 2000 die Richtlinie 2000/69/EG mit Grenzwerten für Benzol und Kohlenmonoxid am 9. Februar 2002 die Richtlinie 2002/3/EG über bodennahes Ozon zur Anzahl und Höhe der Überschreitung der Grenzwerte am 15. Dezember 2004 die Richtlinie 2004/107/EC mit Grenzwerten für Arsen, Kadmium, Quecksilber, Nickel und polyzyklischen aromatischen Kohlenwasserstoffen. Zur Überführung der ersten beiden Tochterrichtlinien in deutsches Recht blieben jeweils zwei Jahre Zeit, die mit der 7. Novelle zum Bundes-Immissionsschutzgesetz (BImSchG) vom September 2002, bezüglich der 1. Tochterrichtlinie deutlich überschritten wurde. Die Ozonrichtlinie ist mit der 33. Verordnung zum BImSchG in deutsches Recht übernommen worden. Kernstück der Luftqualitätsrichtlinien sind die Immissionsgrenzwerte, die “innerhalb eines bestimmten Zeitraumes erreicht werden müssen und danach nicht überschritten werden” dürfen. Die einzuhaltenden Schadstoffkonzentrationen und der Zeitpunkt, bis zu dem die Grenzwerte eingehalten werden müssen, sind in den Tochterrichtlinien bzw. in der 22. Verordnung zum Bundes-Immissionsschutzgesetz festgelegt. Tabelle 1 zeigt die entsprechenden Werte für die Luftschadstoffe mit dem größten Problempotential für Berlin, PM 2,5 , PM 10 und Stickstoffdioxid. Auf europäischer Ebene regelt die EU-Richtlinie 2008/50 die Beurteilung der Luftqualität anhand festgelegter Grenz- und Zielwerte für alle relevanten Schadstoffe einschließlich der Bestimmung einheitlicher Methoden und Kriterien. Erstmals werden Luftqualitätswerte für die besonders gesundheitsschädlichen kleinen Feinstäube (Durchmesser kleiner als 2,5 Mikrometer; PM2.5) festgesetzt. National dient die 39. BImSchV – Verordnung über Luftqualitätsstandards und Emissionshöchstmengen – der Umsetzung der EU-Luftqualitätsrichtlinie 2008/50/EG. Gleichzeitig wurden die Verordnung über Immissionswerte für Schadstoffe in der Luft (22. BImSchV) und die Verordnung zur Verminderung von Sommersmog, Versauerung und Nährstoffeinträgen (33. BImSchV) durch die 39. BImSchV aufgehoben. Berlin gilt nach § 11 der 39. BImSchV als Ballungsraum, für den die Luftqualität jährlich beurteilt und gegebenenfalls Maßnahmen zur Einhaltung der Grenzwerte ergriffen werden müssen. Als Plangebiet für die mögliche Aufstellung eines Luftreinhalteplanes wurde das ganze Stadtgebiet festgelegt. Grenzwertüberschreitungen treten im Stadtgebiet überall, insbesondere an Hauptverkehrsstraßen auf. Daher macht eine Beschränkung des Plangebietes auf Teile des Stadtgebietes oder die Aufteilung in mehrere Plangebiete keinen Sinn. Umsetzungsprobleme der Richtlinie 99/33/EG und der 39. BImSchV am Beispiel der PM10-Belastung in der Stadt In der Nähe hoher Schadstoffemissionen, wie z.B. in verkehrsreichen Straßenschluchten, treten auch hohe Immissionskonzentrationen auf. Anders als in den meisten Industriegebieten sind in verkehrsreichen Straßen viele Menschen – ob als Anwohner, Kunden oder Beschäftigte – einer erhöhten Schadstoffbelastung ausgesetzt. Um der Vorgabe der Europäischen Richtlinien nach Einhaltung der Grenzwerte am Ort der höchsten Exposition Rechnung zu tragen, ist eine möglichst lückenlose Quantifizierung der Schadstoffbelastung notwendig. Dazu wurden in Berlin die im letzten Abschnitt beschriebenen Messungen mit Modellrechnungen in allen verkehrsreichen Straßen, in denen Grenzwerte potentiell überschritten werden, ergänzt. Allerdings spielt selbst in einer verkehrsbelasteten Straßenschlucht der Anteil der durch die übrigen Quellen in der Stadt oder durch Ferntransport von Schadstoffen erzeugten Vorbelastung eine wichtige Rolle. Deshalb wurde für die Planung von Maßnahmen zur Verbesserung der Luftqualität in Berlin ein System von Modellen angewandt, das über die Ebenen Straßenschlucht städtische und regionale Hintergrundbelastung sowohl den großräumigen Einfluss weit entfernter Quellen als auch den Beitrag aller Emittenten im Stadtgebiet bis hinein in verkehrsreiche Straßenschluchten berechnen kann. Aus den oben genannten Untersuchungen zur Herkunft der Feinstaubbelastung in Berlin entstand das wiedergegebene vereinfachte Schema in Abbildung 1, das die räumliche Verteilung der PM 10 -Konzentration in Berlin und Umgebung verdeutlichen soll. Es existiert ein großräumig verteilter Hintergrundpegel (grüne Fläche), der anhand von Messungen an mehreren ländlichen Stationen in Brandenburg im Jahr 2016 knapp 16 µg/m³ beträgt. Dieser als regionale Hintergrundbelastung bezeichnete Anteil ist, wie die großräumigen Modellergebnisse zeigen, außerhalb der Städte relativ gleichmäßig verteilt. Darauf addiert sich der hausgemachte, durch Berliner Schadstoffquellen verursachte Teil der PM 10 -Belastung. Er lässt sich unterteilen: in den Beitrag, der durch Überlagerung der Emissionen aller Berliner Quellen (Verkehr, Kraftwerke, Industrie, Wohnungsheizung) zustande kommt (blaue Fläche). Zusammen mit dem regionalen Hintergrund entspricht dies der Feinstaubkonzentration, die in innerstädtischen Wohngebieten fernab von Straßenverkehr und Industrie gemessen wird; in den zusätzlichen Beitrag, den lokale Emittenten, wie z.B. der Autoverkehr in der Frankfurter Allee, in der unmittelbaren Umgebung der Quelle verursachen (rote Spitzen). In der Summe zeigt sich für Berlin, dass über die Hälfte der PM10-Belastung an verkehrsnahen Messstellen in der Innenstadt aus dem regionalen Hintergrund und der übrige (hausgemachte) Anteil der Feinstaubbelastung jeweils zur Hälfte durch einen Beitrag des lokalen Verkehrs und die Schadstoffquellen im übrigen Stadtgebiet verursacht wird. Nur dieser Anteil kann durch lokale Maßnahmen in Berlin beeinflusst werden.

1 2 3 4 59 10 11