Temperatur (02.01.2) Die Temperatur ist eine bedeutende Einflussgröße für alle natürlichen Vorgänge in einem Gewässer. Biologische, chemische und physikalische Vorgänge im Wasser sind temperaturabhängig , z.B. Zehrungs- und Produktionsprozesse, desgleichen Adsorption und Löslichkeit für gasförmige, flüssige und feste Substanzen. Dies gilt auch für Wechselwirkungen zwischen Wasser und Untergrund oder Schwebstoffen und Sedimenten sowie zwischen Wasser und Atmosphäre. Die Lebensfähigkeit und Lebensaktivität der Wasserorganismen sind ebenso an bestimmte Temperaturgrenzen oder -optima gebunden wie das Vorkommen unterschiedlich angepasster Organismenarten und Fischbesiedelungen nach Flussregionen in Mitteleuropa. Die Darstellung der Heizkraftwerke in der Karte sowie deren Einfluss auf die Gewässertemperatur sind bei der Betrachtung zu berücksichtigen. Aus der Temperaturverteilungskarte wird deutlich sichtbar, dass die Wärmeeinleitungen in die Berliner Gewässer in den letzten Jahren rückläufig war, vor allem im Bereich der Spreemündung und der Havel. Die kritische Schwelle von 28° C wurde nicht überschritten, die Maxima bzw. 95-Perzentile liegen im Bereich um 25° C. Ende der neunziger Jahre wurden sporadisch noch Temperaturen über 28° C gemessen. Der Rückgang der Wärmefrachten der Berliner Kraftwerke in die Gewässer beträgt seit 1993 ca. 13 Mio. GJ und ist im Wesentlichen auf den Anschluss des Berliner Stromnetzes an das westeuropäische Verbundnetz zurückzuführen. Durch die Liberalisierung des Strommarktes bedingte sinkende Strombeschaffungskosten und damit verbundene geringere Erzeugung in den Berliner Kraftwerken hat zur Stilllegung bzw. Teilstilllegung von Kraftwerken geführt, die zum Teil mit Modernisierungen zur Effizienzsteigerung verbunden waren. Die derzeitige Wärmefracht beträgt ca. 10 Mio. GJ. Sauerstoffgehalt (02.01.1) Der Sauerstoffgehalt des Wassers ist das Ergebnis sauerstoffliefernder und -zehrender Vorgänge . Sauerstoff wird aus der Atmosphäre eingetragen, wobei die Sauerstoffaufnahme vor allem von der Größe der Wasseroberfläche, der Wassertemperatur, dem Sättigungsdefizit, der Wasserturbulenz sowie der Luftbewegung abhängt. Sauerstoff wird auch bei der Photosynthese der Wasserpflanzen freigesetzt, wodurch Sauerstoffübersättigungen auftreten können. Beim natürlichen Abbau organischer Stoffe im Wasser durch Mikroorganismen sowie durch die Atmung von Tieren und Pflanzen wird Sauerstoff verbraucht . Dies kann zu Sauerstoffmangel im Gewässer führen. Der kritische Wert liegt bei 4 mg/l, unterhalb dessen empfindliche Fischarten geschädigt werden können. Sowohl aus den Werten der Messstationen als auch aus den Stichproben ist eine Verbesserung des Sauerstoffgehaltes der Berliner Gewässer nur teilweise ablesbar. Kritisch sind nach wie vor die Gewässer, in die Mischwasserüberläufe stattfinden. In der Mischwasserkanalisation werden Regenwasser und Schmutzwasser in einem Kanal gesammelt und über Pumpwerke zu den Klärwerken gefördert. Dieses Entwässerungssystem ist in der gesamten Innenstadt Berlins präsent. (vgl. Karte 02.09) Im Starkregenfall reicht die Aufnahmekapazität der Mischkanalisation nicht aus und das Gemisch aus Regenwasser und unbehandeltem Abwasser tritt in Spree und Havel über. Infolge dessen kann es durch Zehrungsprozesse zu Sauerstoffdefiziten kommen. Besonders extreme Ereignisse lösen in einigen Gewässerabschnitten (v.a. Landwehrkanal und Neuköllner Schifffahrtskanal) sogar Fischsterben aus. Um die Überlaufmengen künftig deutlich zu verringern, werden im Rahmen eines umfassenden Sanierungsprogramms zusätzliche unterirdische Speicherräume aktiviert bzw. neu errichtet. Die kritischen Situationen im Tegel Fließ sind auf nachklingende Rieselfeldeinflüsse bzw. Landwirtschaft zurückzuführen. TOC (02.01.10) und AOX (02.01.7) Die gesamtorganische Belastung in Oberflächengewässern wird mit Hilfe des Leitparameters TOC (total organic carbon) ermittelt. Die Summe der “Adsorbierbaren organisch gebundenen Halogene” wird über die AOX -Bestimmung wiedergegeben. Bei der Bestimmung des Summenparameters AOX werden die Halogene (AOJ, AOCl, AOBr) in einer Vielfalt von Stoffen mit ganz unterschiedlichen Eigenschaften erfasst. Dieser Parameter dient insofern weniger der ökotoxikologischen Gewässerbewertung, sondern vielmehr in der Gewässerüberwachung dem Erfolgsmonitoring von Maßnahmen zur Reduzierung des Eintrags an “Adsorbierbaren organisch gebundenen Halogenen”. Beide Messgrößen lassen prinzipiell keine Rückschlüsse auf Zusammensetzung und Herkunft der organischen Belastung zu. Erhöhte AOX – Befunde in städtischen Ballungsräumen wie Berlin dürften jedoch einem vornehmlich anthropogenen Eintrag über kommunale Kläranlagen zuzuschreiben sein. TOC-Einträge können sowohl anthropogenen Ursprungs als auch natürlichen Ursprungs z.B. durch den Eintrag von Huminstoffen aus dem Einzugsgebiet bedingt sein, was die ökologische Aussagefähigkeit des Parameters teilweise einschränkt. Bewertungsmaßstab ist für beide Messgrößen das 90-Perzentil. Unter Anwendung dieses strengen Maßstabs wird die Zielgröße Güteklasse II für den TOC bereits in den Zuflüssen nach Berlin und im weiteren Fließverlauf durch die Stadt in sämtlichen Haupt- und Nebenfließgewässern überschritten . Für AOX liegen die Messwerte nicht durchgängig für alle Fließabschnitte der Berliner Oberflächengewässer vor. Dennoch lässt sich ableiten, dass lediglich in den Gewässerabschnitten, die unmittelbar den Klärwerkseinleitungen ausgesetzt sind (Neuenhagener Fließ, Wuhle, Teltowkanal, Nordgraben), leicht erhöhte AOX – Messwerte auftreten und die Zielvorgabe knapp überschritten wird (Güteklasse II bis III). Ammonium-Stickstoff (02.01.3), Nitrit-Sickstoff (02.01.5), Nitrat-Stickstoff (02.01.4) Stickstoff tritt im Wasser sowohl molekular als Stickstoff (N 2 ) als auch in anorganischen und organischen Verbindungen auf. Organisch gebunden ist er überwiegend in pflanzlichem und tierischem Material (Biomasse) festgelegt. Anorganisch gebundener Stickstoff kommt vorwiegend als Ammonium (NH 4 ) und Nitrat (NO 3 ) vor. In Wasser, Boden und Luft sowie in technischen Anlagen (z.B. Kläranlagen) finden biochemische (mikrobielle) und physikalisch-chemische Umsetzungen der Stickstoffverbindungen statt (Oxidations- und Reduktionsreaktionen). Eine Besonderheit des Stickstoffeintrages ist die Stickstofffixierung, eine biochemische Stoffwechselleistung von Bakterien und Blaualgen (Cyanobakterien), die molekularen gasförmigen Stickstoff aus der Atmosphäre in den Stoffwechsel einschleusen können. Innerhalb Berlins ist der Eintrag über die Kläranlagen die Hauptbelastungsquelle . Durch die Regenentwässerungssysteme werden sporadisch kritische Ammoniumeinträge verursacht. Ammonium kann in höheren Konzentrationen erheblich zur Belastung des Sauerstoffhaushalts beitragen, da bei der mikrobiellen Oxidation (Nitrifikation) von 1 mg Ammonium-Stickstoff zu Nitrat rd. 4,5 mg Sauerstoff verbraucht werden. Dieser Prozess ist allerdings stark temperaturabhängig. Erhebliche Umsätze erfolgen nur in der warmen Jahreszeit . Bisweilen überschreitet die Sauerstoffzehrung durch Nitrifikationsvorgänge die durch den Abbau von Kohlenstoffverbindungen erheblich. Toxikologische Bedeutung kann das Ammonium bei Verschiebung des pH-Wertes in den alkalischen Bereichen erlangen, wenn in Gewässern mit hohen Ammoniumgehalten das fischtoxische Ammoniak freigesetzt wird. Nitrit-Stickstoff tritt als Zwischenstufe bei der mikrobiellen Oxidation von Ammonium zu Nitrat ( Nitrifikation ) auf. Nitrit hat eine vergleichsweise geringere ökotoxikologische Bedeutung. Mit zunehmender Chloridkonzentration verringert sich die Nitrit-Toxizität bei gleichem pH-Wert. Während für die Spree, Dahme und Havel im Zulauf nach Berlin die LAWA – Qualitätsziele (Güteklasse II) für NH 4 -N eingehalten werden, werden die Ziele überall dort überschritten, wo Gewässer dem Ablauf kommunaler Kläranlagen und Misch- und Regenwassereinleitungen ausgesetzt sind. Die Ertüchtigung der Nitrifikationsleistungen in den Klärwerken der Berliner Wasserbetriebe seit der Wende führte stadtweit zu einer signifikanten Entlastung der Gewässer mit Gütesprüngen um drei bis vier Klassen . Viele Gewässerabschnitte konnten den Sprung in die Güteklasse II schaffen. Die Werte für die Wuhle und in Teilen für die Vorstadtspree sind für den jetzigen Zustand nicht mehr repräsentativ, da mit der Stilllegung des Klärwerkes Falkenberg im Frühjahr 2003 eine signifikante Belastungsquelle abgestellt wurde. Mit der Stillegung des Klärwerkes Marienfelde (Teltowkanal, 1998) und der Ertüchtigung von Wassmansdorf konnte die hohe Belastung des Teltowkanals ebenfalls deutlich reduziert werden. Das Neuenhagener Mühlenfließ ist nach wie vor sehr hoch belastet. Hier besteht Handlungsbedarf beim Klärwerk Münchehofe . Die Stadtspree (von Köpenick bis zur Mündung in die Havel) weist durchgängig die Güteklasse II bis III auf und verfehlt damit die LAWA – Zielvorgabe ebenso wie die Unterhavel , der Teltowkanal und die mischwasserbeeinflussten innerstädtischen Kanäle . In 2001 ist eine Überschreitung der LAWA – Zielvorgabe für Nitrit-Stickstoff (90-Perzentil) in klärwerksbeeinflussten Abschnitten von Neuenhagener Fließ und Wuhle (s. Anmerkung oben) sowie in drei Abschnitten des Teltowkanals zu verzeichnen. Die Nitratwerte der Berliner Gewässer sind durchgehend unkritisch. Chlorid (02.01.8) In den Berliner Gewässern liegt der natürliche Chloridgehalt unter 60 mg/l. Anthropogene Anstiege der Chloridkonzentration erfolgen durch häusliche und industrielle Abwässer sowie auch durch Streusalz des Straßenwinterdienstes. Einem typischen Jahresverlauf unterliegt das Chlorid durch den sommerlichen Rückgang des Spreewasserzuflusses und der damit verbundenen Aufkonzentrierung in der Stadt. Bei Chloridwerten über 200 mg/l können für die Trinkwasserversorgung Probleme auftauchen. Die Chloridwerte der Berliner Gewässer stellen kein gewässerökologisches Problem dar. Sulfat (02.01.9) Der Beginn anthropogener Beeinträchtigungen im Berliner Raum wird mit etwa 120 mg/l angegeben. Die Güteklasse II (< 100 mg/l) kann somit für unsere Region nicht Zielgröße sein. Die Bedeutung des Parameters Sulfat liegt im Spree-Havel-Raum weniger in seiner ökotoxikologischen Relevanz, als vielmehr in der Bedeutung für die Trinkwasserversorgung. Der Trinkwassergrenzwert liegt bei 240 mg/l (v.a. Schutz der Nieren von Säuglingen vor zu hoher Salzfracht). Die Zuläufe nach Berlin weisen Konzentrationen von 150 bis 180 mg/l auf. Hier ist in Zukunft mit einer Zunahme der Sulfatfracht aus den Bergbauregionen der Lausitz zu rechnen. Folgende Einträge in die Gewässer sind im Spreeraum von Relevanz: Eintrag über Sümpfungswässer aus Tagebauen Direkter Eintrag aus Tagebaurestseen, die zur Wasserspeicherung genutzt werden indirekter Eintrag über Grundwässer aus Tagebaugebieten Einträge des aktiven Bergbaus Atmosphärischer Schwefeleintrag (Verbrennung fossiler Brennstoffe) Diffuse und direkte Einträge (Kläranlageneinleitungen, Abschwemmungen, Landwirtschaft) In gewässerökologischer Hinsicht können erhöhte Sulfatkonzentrationen eutrophierungsfördernd sein. Sulfat kann zur Mobilisierung von im Sediment festgelegten Phosphor führen. Gesamt-Phosphor (02.01.6) Phosphor ist ein Nährstoffelement, das unter bestimmten Bedingungen Algenmassenentwicklungen in Oberflächengewässern verursachen kann (nähere Erläuterungen siehe Karte 02.03). Unbelastete Quellbäche weisen Gesamt-Phosphorkonzentrationen von weniger als 1 bis 10 µg/l P, anthropogen nicht belastete Gewässeroberläufe in Einzugsgebieten mit Laubwaldbeständen 20-50 µg/l P auf. Die geogenen Hintergrundkonzentrationen für die untere Spree und Havel liegen in einem Bereich um 60 bis 90 µg/l P. Auf Grund der weitgehenden Verwendung phosphatfreier Waschmittel und vor allem auch der fortschreitenden Phosphatelimination bei der Abwasserbehandlung ist der Phosphat-Eintrag über kommunale Kläranlagen seit 1990 deutlich gesunken , vor allem in den Jahren bis 1995. Der Eintrag über landwirtschaftliche Flächen ist ebenfalls rückgängig. Die Phosphorbelastung der Berliner Gewässer beträgt für den Zeitraum 1995-1997: Zuflüsse nach Berlin 188 t/a Summe Kläranlagen 109 t/a Misch- und Trennkanalisation 38 t/a Summe Zuflüsse und Einleitungen 336 t/a Summe Abfluss 283 t/a In den Zuflüssen nach Berlin überwiegen die diffusen Einträge mit ca. 60 %. Der Grundwasserpfad ist mit ca.50 % der dominante Eintragspfad (diffuser Eintrag 100 %). Beim Gesamtphosphor wird der Mittelwert der entsprechenden Jahre zugrundegelegt. Deutlich wird die erhöhte P-Belastung der Berliner Gewässer etwa um den Faktor 2 bis 3 über den Hintergrundwerten. Eine Ausnahme bildet der Tegeler See . Der Zufluss zum Hauptbecken des Tegeler Sees wird über eine P-Eliminationsanlage geführt und somit der Nährstoffeintrag in den See um ca. 20 t/a entlastet.
Three common plant species (Dieffenbachia maculata, Spathiphyllum wallisii, and Asparagus densiflorus) were tested against their capacity to remove the air pollutants toluene (20.0 mg m-3) and 2-ethylhexanol (14.6 mg m-3) under light or under dark in chamber experiments of 48-h duration. Results revealed only limited pollutant filtration capabilities and indicate that aerial plant parts of the tested species are only of limited value for indoor air quality improvement. The removal rate constant ranged for toluene from 3.4 to 5.7 L h-1 m-2 leaf area with no significant differences between plant species or light conditions (light/dark). The values for 2-ethylhexanol were somewhat lower, fluctuating around 2 L h-1 m-2 leaf area for all plant species tested, whereas differences between light and dark were observed for two of the three species. In addition to pollutant removal, CO2 fixation/respiration and transpiration as well as quantum yield were evaluated. These physiological characteristics seem to have no major impact on the VOC removal rate constant. Exposure to toluene or 2-ethylhexanol revealed no or only minor effects on D. maculata and S. wallisii. In contrast, a decrease in quantum yield and CO2 fixation was observed for A. densiflorus when exposed to 2-ethylhexanol or toluene under light, indicating phytotoxic effects in this species. Quelle: Verlagsinformation
Antifouling für Sportboote belastet Gewässer Das Wasser in deutschen Freizeithäfen ist teilweise stark belastet und gefährdet die natürliche Flora und Fauna der Gewässer. Auffällig sind die Schadstoffkonzentrationen so genannter Antifouling-Wirkstoffe. Diese übersteigen laut Stichproben des Umweltbundesamts (UBA) vielfach die Umweltqualitätsnorm der EU-Wasserrahmenrichtlinie. Die Antifouling-Wirkstoffe stammen im Wesentlichen aus den Schutzanstrichen für Sport- und Freizeitboote, die den Aufwuchs kleiner Tiere und Algen auf den Bootsrümpfen verhindern sollen. Die Stoffe können von der Schiffshaut ins Wasser übergehen und dort weiter auf Wasserpflanzen und -tiere einwirken. Das Umweltbundesamt rät dazu, Anstriche mit Antifouling-Wirkstoffen, insbesondere im Süßwasser, möglichst ganz zu vermeiden. Auf dem Ratzeburger See dürfen bereits seit Jahren Sportboote mit Antifouling-Anstrichen nicht mehr fahren. Mit seiner Untersuchung legt das Umweltbundesamt erstmalig eine gesamtdeutsche Übersicht zu Sport- und Freizeithäfen vor. Antifouling-Wirkstoffe werden in den Beschichtungen für Sportbootrümpfe vielfach eingesetzt. Sie wirken wie ein Pestizid und verhindern bei Booten den Aufwuchs von Algen, kleinen Muscheln und Krebsen. In der Regel sind diese Beschichtungen im ein- bis zwei-jährigen Rhythmus zu erneuern, da sich die Wirkstoffe mit der Zeit auswaschen. Eine besonders große Menge an Wirkstoffen gelangt in die Hafenbecken, wenn frisch gestrichene Bootskörper zu Wasser gelassen werden. Antifouling-Wirkstoffe können sich auch außerhalb der Sportboothäfen anreichern und die Fauna und Flora der Gewässer direkt schädigen. Die Wahrscheinlichkeit dafür ist in Deutschland hoch, denn fast 80 Prozent der deutschen Binnensportboothäfen sind zum angrenzenden Gewässer offen bzw. sind Bestandteil desselben. Das UBA ließ daher 50 Sportboothäfen von Flensburg bis zum Bodensee auf alle derzeit erlaubten Antifouling-Wirkstoffe stichprobenartig untersuchen. Im Visier stand dabei der Wirkstoff Cybutryn, der unter dem Handelsnamen Irgarol bekannt ist. In Antifouling-Anstrichen kommt er häufig vor. Irgarol ist ein Biozid kann unter anderem die Photosynthese von Pflanzen hemmen. Da sich Irgarol nur sehr langsam in der Umwelt abbaut, ist es in Gewässern lange wirksam. Bei der einmaligen Messung im Sommer 2013 lagen die Konzentrationen von Irgarol an 35 von 50 Sportboothäfen über der Umweltqualitätsnorm , den die EU- Wasserrahmenrichtlinie für diesen Stoff vorsieht. Der darin festgelegte Wert von 0,0025 Mikrogramm pro Liter darf im Jahresdurch-schnitt nicht überschritten werden. An fünf Standorten lagen die Messwerte sogar über der zulässigen Höchstkonzentration der Umweltqualitätsnorm für Irgarol. Diese beträgt 0,016 Mikrogramm pro Liter und darf nie überschritten werden. Ein Fünftel der untersuchten Standorte wies zudem erhöhte Kupfer- und Zinkkonzentrationen auf. Das Ergebnis bestätigt andere Untersuchungen, bei denen sich der Stoff sowohl in Küsten- als auch in Binnengewässern bereits in wirkungsrelevanten Konzentrationen nachweisen ließ. Eigene Untersuchungen des UBA haben gezeigt, dass für einen Teil der gemessenen Umweltkonzentrationen bereits negative Folgen für Wasserorganismen eintreten können. Das UBA rät generell davon ab, im Privatbereich Antifouling-Anstriche zu verwenden. Insbesondere an vielen Süßwasserstandorten können Bootsrümpfe auch ohne Antifouling-Wirkstoffe in einem guten Zustand bleiben. Wer solche Schutzanstriche dennoch verwenden möchte, sollte darauf achten, dass sich die darin enthaltenen Wirkstoffe schnell in der Umwelt abbauen. Mehrere europäische Länder haben bereits Anwendungsbeschränkungen oder Verbote von irgarolhaltigen Bootsanstrichen durchgesetzt, beziehungsweise ein generelles Anwendungsverbot für biozidhaltige Antifouling-Anstriche in Binnengewässern erlassen. Dazu zählen Dänemark, Schweden und Großbritannien. In Deutschland gelten bisher nur vereinzelt regionale Anwendungsverbote für diese Art von Anstrichen, zum Beispiel in Schleswig-Holstein am Ratzeburger See. Aktuelle Bestandszahlen von Sportbooten wurden durch das Umweltbundesamt anhand von Luftbildern erhoben. Insgesamt wurde bundesweit ein Gesamtbestand von ca. 206.000 Liegeplätzen in 3091 Sportboothäfen erfasst. Nicht eingerechnet wurden Kleinsthäfen unter sechs Booten und Einzelliegeplätze. Deren Anzahl wird auf max. 20.000 geschätzt. Die Zulassung von Unterwasserbeschichtungen mit biozidhaltigen Antifouling-Wirkstoffen unterliegt EU-weit der Biozid-Verordnung (EU) Nr. 528/2012. Um solche Produkte zu vermarkten, müssen Hersteller oder Importeure ein zwei-stufiges Zulassungsverfahren erfolgreich abschließen: Erstens muss der im Biozid-Produkt enthaltene Wirkstoff auf EU-Ebene grundsätzlich für die vorgesehene Verwendung zugelassen werden. Zweitens muss das Biozid-Produkt selbst entweder im Mitgliedstaat oder auf Unionsebene zugelassen sein, bevor es in den Verkehr gebracht und verwendet werden darf. In der 1. Stufe ist daher ein umfangreiches Dossier zum Wirkstoff vorzulegen, in dem u.a. Stoffeigenschaften, Verhalten in der Umwelt und Wirkung auf Mensch und Organismen dokumentiert werden. Auf Grundlage dieses Dossiers führt ein EU-Mitgliedsstaat federführend eine Risikobewertung des Wirkstoffs durch. Auf der Grundlage dieser Bewertung entscheidet die EU-Kommission über die Zulassung des Wirkstoffs. Zentraler Bestandteil für den Umweltbereich ist u.a. ein Vergleich der erwarteten Umweltkonzentration im Wasser (z.B. in Sportboothäfen) mit den aus ökotoxikologischen Tests abgeleiteten Wirkungsschwellen an Organismen (z.B. Algen, Wasserflöhe oder Fische). Werden insgesamt die Risiken für Mensch und Umwelt als gering bewertet und erzielt der Wirkstoff seine bestimmungsgemäße Wirkung, so kann er prinzipiell in Antifouling-Produkten eingesetzt werden, die dann in der 2. Stufe national zugelassen werden müssen. Bisher ist noch kein Antifoulingprodukt zugelassen. Alle Antifoulings sind derzeit noch aufgrund von Übergangsregeln ungeprüft auf dem Markt.
Zusammenfassung „In der vorliegenden Arbeit wurde das Phänomen der „grünen Sände“ erforscht, welches seit 1999 im niedersächsischen Wattenmeer im Rahmen von Überwachungsflügen beobachtet wurde. Bei diesem Phänomen handelt es sich um deutlich grün gefärbte Watt- und Strandsedimente. Die Grünfärbung wird durch einen Flagellaten der Gattung Euglena hervorgerufen, der derzeit aufgrund morphologischer Bestimmungskriterien als Euglena viridis var. maritima bezeichnet wird. Er besiedelt zu Millionen das Sandlückensystem. Das Hauptziel der vorliegenden Studien war es, grundlegende Kenntnisse über die Verbreitung, Ökologie und Physiologie dieses Flagellaten zu erlangen, um abzuschätzen, welche Bedeutung Euglena viridis var. maritima im Wattenmeer zukommt und inwieweit das Massenauftreten als Warnsignal aus dem System zu werten ist. Um die großflächige interannuelle und saisonale Verbreitung von Euglena zu erfassen, wurden Daten der Flugüberwachung der Jahre 2000 bis 2003 ausgewertet sowie die saisonale Bestandsentwicklung des Jahres 2003 exemplarisch im Bereich der Insel Norderney verfolgt. Um das Habitat von Euglena genauer charakterisieren zu können, wurden im Sommer 2003 entlang von vier Transekten (Strand Norderney, Strand Memmert, Watt Mellum, Watt Norderney) einmalige Sedimentproben bzw. dreimalige am Strand Norderney entnommen und im Hinblick auf verschiedene sedimentologische, chemische und biologische Parameter analysiert. Laborversuche sollten zusätzlich Auskunft geben über die Toleranz von Euglena gegenüber unterschiedlichen Lebensbedingungen hinsichtlich der Parameter Salzgehalt, pH-Milieu und Temperatur. Die Vertikalverteilung von Euglena und einiger chemischer Parameter wurde am Weststrand von Norderney in der Zeit von Juli bis September 2003 untersucht. Ergänzend wurden Laboruntersuchungen und Feldversuche zur Photosynthese und Pigmentzusammensetzung durchgeführt. […]“
Zusammenfassung „Die vorliegende Arbeit beschäftigt sich mit der Vertikalwanderung und der Photosynthese von Euglena viridis var. maritima. Der benthisch lebende Augenflagellat ist seit 1999 mit hoher Dichte in den Sedimenten des Niedersächsischen Wattenmeeres zu finden. Die Untersuchungen wurden in der Zeit von Juli bis Oktober 2003 mit Proben vom Weststrand Norderneys durchgeführt. […]“
Misteln breiten sich seit einigen Jahren auch im Stadtgebiet Berlin verstärkt aus. Als Ursachen werden bessere klimatische Bedingungen für die Mistel und die Mistelbeeren fressenden Vögel diskutiert. Starker Mistelbesatz führt bei bereits gestressten Bäumen zu einer vorzeitigen Vergreisung, die häufig in einer Fällung endet. Sollen die Bäume erhalten werden, werden meist zuerst die Misteln entfernt und somit auch stark in den Habitus des Baumes eingegriffen. Die Mistel gehört zu den Halbschmarotzern und ist für ihre Entwicklung auf Wirtsbäume angewiesen. Misteln können zwar selbständig über ihre grünen Blätter Photosynthese betreiben, sind aber bezüglich der Wasser- und Nährstoffversorgung auf ihren Wirtsbaum angewiesen, dem diese Nährstoffe in der Folge fehlen. Das führt je nach Anzahl, Größe und Alter der Misteln zu einer fortschreitenden Vergreisung der Bäume. Oftmals sind es gerade die Bäume, die bereits unter Trockenheit, starker Besonnung und anderen negativen Standortbedingungen zu leiden haben. Solche Gehölze sind in ihrer Vitalität geschwächt und somit anfällig für weitere Schadorganismen (u.a. Borkenkäfer) und können nicht mehr oder nur sehr eingeschränkt zur Regulierung des Stadtklimas beitragen. Desweiteren können Misteln durch ihr Gewicht zur Belastung in alten Kronen werden und zum Bruch im Kronenbereich führen. Misteln – Möglichkeiten zur Vitalisierung von Wirtsbäumen Lebensweise / Entwicklung der Mistel Monitoring Neben den Vögeln, die nur die Früchte fressen, den Samen wieder ausscheiden und somit den Mistelsamen verbreiten, u.a. Misteldrossel, Mönchsgrasmücke, Wacholderdrossel und Seidenschwanz, gibt es Vögel, die den Samen fressen, u.a. Blaumeise, Kleiber, Sumpfmeise und Tannenmeise. (Nierhaus-Wunderwald, D.; Lawrenz, P., 1997: Zur Biologie der Mistel. Merkblatt für die Praxis, 28. Birmensdorf, Eidg. Forschungsanstalt WSL. 8 p.) Im Südwesten der Stadt wurden seit den 1980er Jahren Erhebungen zum Vorkommen der Misteln durchgeführt. An ausgewählten Standorten wurden u.a. an Ahorn, Baumhasel, Birke, Eberesche, Linde, Pappel, Robinie und Rotdorn die Misteln erfasst. Im Gesamtdurchschnitt zeigt sich eine deutliche Zunahme besiedelter Bäume von ca. 4 % im Jahr 1987 bis auf ca. 39 % im Jahr 2019. Werden nur die mit Misteln besiedelten Bäume betrachtet ist deutlich sichtbar, dass der Anteil der Bäume mit mehr als 10 Misteln stark zugenommen hat.
Umweltatlas-Methode Die nach der ”Umweltatlas-Methode” berücksichtigten Parameter sollen die lokale und regionale Wasserqualität der Oberflächengewässer charakterisieren. Anders als bei der Gewässercharakterisierung nach der ”LAWA-Methode” (Länderarbeitsgemeinschaft Wasser 1991), bei der eine Vielzahl von Parametern zugrundegelegt und zu einer Gesamtbewertung zusammengefaßt wird, werden hier fünf der für die Eutrophierungs-Problematik der Berliner Gewässer maßgeblichen Parameter berücksichtigt und getrennt voneinander bewertet und dargestellt. Dies sind Orthophosphat-Phosphor, Ammonium-Stickstoff, Sauerstoff-Sättigungsindex, Sauerstoff-Minimum und Titer für Escherichia coli. Hiermit läßt sich das relativ kleine Untersuchungsgebiet Berlin differenziert und übersichtlich darstellen. Die Klassifizierung erfolgt in Anlehnung an die Gewässergütekarte der Bundesrepublik Deutschland in vier Güteklassen mit drei Zwischenstufen. Die Klassengrenzen für die beiden Sauerstoff-Parameter wurden in Anlehnung an die in der Gewässergütekartierung der LAWA gewählten Klassen gesetzt. Die Konzentration der Nährstoffe Orthophosphat-Phosphor und Ammonium-Stickstoff wird den entsprechenden Güteklassen so zugeordnet, daß die Belastungsstufen der verschiedenen Parameter miteinander vergleichbar sind. Für das Algenwachstum ist der Phosphatgehalt im Gewässer der begrenzende Faktor. Die Schwelle zur Eutrophierung wird für rückgestaute Fließgewässer allgemein mit 0,01 – 0,03 mg/l angegeben. Der Wert 0,01 mg/l bildet daher die Obergrenze der Güteklasse 2 ”mäßig belastet”. Die Klassifikation für Ammonium-Stickstoff wurde aus dem Rheinbericht von 1978 übernommen, in dem Ammonium-Stickstoff bereits 7-stufig klassifiziert vorlag (IWAR 1978). Da viele Gewässerabschnitte in Berlin als Badegewässer genutzt werden, findet der bakteriologische Parameter Escherichia coli hier Berücksichtigung bei der Darstellung der Gewässergüte. In die vorliegende Karte wurden nur die wichtigsten Fließgewässer in Berlin sowie einige Brandenburger Fließstreckenabschnitte im direkten Umland von Berlin einbezogen. Die Gewässer wurden in 99 Abschnitte unterteilt, mit in der Regel jeweils einer Meßstelle in der Mitte des Streckenabschnittes. Die Untersuchungsergebnisse dieser Meßstellen wurden als repräsentativ für den gesamten Abschnitt angesehen. Um den für belastete Gewässer besonders kritischen Zeitraum mit der größten biologischen Aktivität zu erfassen, wurden für die Darstellung die Werte des Sommerhalbjahres (1. 5. bis 31. 10.) berücksichtigt, und zwar für die Parameter Orthophosphat-Phosphor, Ammonium-Stickstoff und Sauerstoff-Sättigungsindex das Mittel des Sommerhalbjahres sowie für Sauerstoffgehalt und Titer für E. coli der jeweils ungünstigste Einzelwert in diesem Zeitraum. Analog zu den früheren Darstellungen anderer Abflußjahre im Umweltatlas wurden die Meßergebnisse nach einer 7-stufigen Skala von ”praktisch unbelastet” bis ”übermäßig verschmutzt” bewertet und entsprechend farblich dargestellt. Orthophosphat-Phosphor (PO 4 -P) Phosphat kann im Wasser in verschiedenen Formen vorhanden sein; von den Pflanzen kann der Phosphor jedoch nur in Form des gelösten Orthophosphat-Ions aufgenommen und zum Aufbau körpereigener Biomasse genutzt werden. Der überwiegende Teil der Phosphate in den Berliner Gewässern stammt aus den häuslichen Abwässern und hier vor allem aus dem Fäkalbereich. Die Verwendung von phosphathaltigen Reinigungsmitteln trägt ebenfalls zur Phosphatbelastung bei. Ein großer Teil des in Berlin anfallenden Abwassers wird bereits heute in den Klärwerken durch biologische Phosphat-Elimination bzw. durch chemische Phosphatfällung weitgehend entphosphatet. Ammonium-Stickstoff (NH 4 -N) Neben den Phosphaten sind es vor allem die Stickstoffverbindungen, die den Nährstoffgehalt des Wassers bestimmen. Im Wasser ist Stickstoff sowohl in elementarer als auch in Form von anorganischen und organischen Verbindungen enthalten. Der organisch gebundene Stickstoff liegt in den Gewässern in Form von Eiweißen vor, die aus abgestorbenen Organismen stammen. Pflanzen können den zum Aufbau ihrer körpereigenen Proteine erforderlichen Stickstoff normalerweise aber nur in Form von Nitrat- und Ammoniumionen aufnehmen. Die im Wasser vorhandenen Stickstoffverbindungen müssen deshalb zunächst entsprechend umgewandelt werden. Diese Aufgabe übernehmen Mikroorganismen, die dafür sorgen, daß die im Wasser vorhandenen Eiweißstoffe abgebaut werden. Andere Mikroorganismen wandeln das dabei entstehende Ammonium unter aeroben Bedingungen (bei Anwesenheit von Sauerstoff) über Nitrit schließlich zu Nitrat um. In der Zeit mit einer hohen biogenen Aktivität (Frühjahr bis Herbst) verlaufen die Stoffumwandlungsprozesse im Gewässer schneller, so daß analog zum geringeren Ammoniumgehalt ein höherer Nitratgehalt im Gewässer vorliegt. Da Nitrit nur ein Zwischenprodukt bei dieser Umwandlung ist, bleibt der Nitritgehalt im Gewässer meist niedrig. Abbildung 1 zeigt die Gehalte von Ammonium, Nitrit und Nitrat an der Meßstelle Teltow-Werft Schönow. Die geschilderten Stoffumwandlungsprozesse im Gewässer werden an dieser Meßstelle jedoch durch die Einleitungen der Klärwerke maßgeblich beeinflußt. Die geringe Ammoniumbelastung im Sommer ist an dieser Probenahmestelle (hinter Klärwerkszulauf Ruhleben) vor allem auf die im Sommer bessere Reinigungsleistung der Klärwerke zurückzuführen. Die Tatsache, daß der Ammoniumgehalt im Sommer darüberhinaus stärker sinkt als der Nitratgehalt steigt, ist mit der Bindung von Nitrat durch die Algen erklärbar. In den Berliner Gewässern stammt der überwiegende Teil der Stickstoffverbindungen aus den häuslichen Abwässern. Besonders belastend für den Sauerstoffhaushalt der Gewässer sind Klärwerke, über die ein hoher Anteil Ammonium-Stickstoff eingeleitet wird, da der Abbauprozeß bis zum Nitrat dann im Gewässer selbst stattfindet. Für die Umwandlung von 1 mg/l Ammonium-Stickstoff zu Nitrat-Stickstoff werden ca. 4,4 mg/l Sauerstoff benötigt. Sauerstoff-Sättigungsindex Der Gehalt an gelöstem Sauerstoff im Gewässer wird vor allem von der Wassertemperatur beeinflußt; mit zunehmender Wassertemperatur nimmt die Aufnahmefähigkeit des Wassers für Sauerstoff ab. Neben hohen Temperaturen im Sommer führt die Aufwärmung der Gewässer durch Kühlwassereinleitungen zu einer weiteren Belastung des Sauerstoffhaushaltes: Alle chemischen und biologischen Prozesse werden beschleunigt; der Sauerstoffbedarf steigt, während die Aufnahmefähigkeit von Sauerstoff sinkt. Gerade langsam fließende und eine große Oberfläche bildende, seenartig erweiterte Fließgewässer weisen dann zunehmend kritische Sauerstoffgehalte auf. Der Sauerstoff-Sättigungsindex gibt an, wieviel Prozent der physikalisch möglichen Sauerstoffsättigung zum Zeitpunkt der Probenahme erreicht wird. In unbelasteten Gewässern treten normalerweise keine größeren Schwankungen beim Sauerstoff-Sättigungsindex auf und der Sauerstoffgehalt entspricht etwa dem theoretisch möglichen (Sauerstoff-Sättigungsindex ca. 100 %). Da bei den meisten Abbauvorgängen im Gewässer Sauerstoff verbraucht, bei starkem Algenwachstum über die Photosynthese aber Sauerstoff produziert wird, können in nährsalzreichen Gewässern beträchtliche Schwankungen auftreten. So sind nicht nur geringe Sauerstoff-Sättigungsindizes, sondern auch ein starker biogener Sauerstoff-Eintrag und damit eine Sauerstoff-Übersättigung ein Indiz für eine Gewässerbelastung. Abbildung 2 zeigt für das Abflußjahr 1991 den Verlauf von Wassertemperatur und gemessenem Sauerstoffgehalt beispielhaft für die Meßstelle Sophienwerder (Spree). Daneben wurde der aufgrund der Temperatur mögliche Sauerstoffgehalt bei 100 % Sättigung abgebildet, um Über- und Untersättigung sichtbar zu machen. Während im Winter und Frühjahr der gemessene Sauerstoffgehalt im wesentlichen dem aufgrund der Temperatur zu erwartenden entspricht, ist das Wasser im Sommer nicht gesättigt, was auf das Überwiegen von Sauerstoff verbrauchenden Abbauvorgängen im Sommer zurückgeführt werden kann. Sauerstoff-Minimum Der für die Atmung aller Organismen notwendige Sauerstoff wird dem Wasser über die Luft bzw. durch die Photosynthese der Wasserpflanzen zugeführt. Der Sauerstoffgehalt belasteter, langsam fließender Gewässer unterliegt damit nicht nur klimatischen (Windgeschwindigkeit, Temperatur, Lichteinstrahlung usw.), sondern auch jahres- und tageszeitlichen Schwankungen, die auf übermäßiges Algenwachstum zurückzuführen sind. Zusätzlicher Sauerstoff durch die Assimilationstätigkeit der Algen kann aber nur in den oberen Wasserschichten erzeugt werden. Maßgebend ist die Eindringtiefe des Sonnenlichts in ein Gewässer. Die einzelnen Fischarten benötigen für ihre Lebensfähigkeit jeweils bestimmte Umweltbedingungen. Hierzu gehört auch ein Mindestgehalt an gelöstem Sauerstoff, der im Gewässer nicht unterschritten werden darf. Besonders kritische Sauerstoffverhältnisse können sich stets bei Gewässern mit großen Regenwasser- oder Mischwassereinleitungen nach Starkregenfällen einstellen. Die mit dem Einleitungswasser eingebrachten organischen Stoffe werden im Gewässer mit Hilfe von Bakterien unter erheblichem Sauerstoffbedarf abgebaut. Hierbei kann mehr Sauerstoff im Gewässer verbraucht werden als über die Luft und durch biogene Produktion wieder ergänzt werden kann. Sinkt der Sauerstoffgehalt unter eine bestimmte Grenze (ca. 4 mg/l für Karpfenfische) ist ein für Fische kritischer Zustand erreicht. Bei einer weiteren Abnahme des Sauerstoffgehalts kommt es zum Fischsterben. Die komplexen und rasch ablaufenden Wechsel im Sauerstoffhaushalt in Gewässern mit hohen Nährstofffrachten und intensiver Phytoplanktonentwicklung lassen sich durch monatliche bzw. 14-tägige Messungen nur unvollständig erfassen. Die an den kontinuierlichen Untersuchungsstellen gemessenen, teilweise erheblichen tageszeitlichen Schwankungen im Sauerstoffgehalt spiegeln die angespannten Sauerstoffverhältnisse der Berliner Gewässer wider. Titer für Escherichia coli Zur Kontrolle der bakteriologischen Beschaffenheit eines Gewässers – insbesondere um die Eignung als Badegewässer zu prüfen – werden Untersuchungen auf Escherichia coli (E. coli) durchgeführt. E. coli selbst ist in der Regel kein Krankheitserreger; sein Vorkommen gibt jedoch einen Anhalt über die Belastung eines Gewässers mit tierischen und menschlichen Fäkalien. Sind viele Coli-Bakterien enthalten, so liegt eine starke Belastung mit Fäkalwasssern vor; d.h. die Wahrscheinlichkeit, daß auch Krankheitskeime vorhanden sind, steigt mit der Zunahme von E. coli. Angegeben wird bei der Bestimmung diejenige Menge Wasser, in der gerade noch das Bakterium E. coli nachgewiesen werden kann (Coli-Titer). Für Oberflächengewässer, die zum Baden geeignet sind, gilt nach der EG-Badewasserrichtlinie ein E. coli-Titer von 10 -1 ml als gerade noch tolerabel. Chlorophyll a Ergänzend zur Darstellung der Gütebeschaffenheit der Berliner Gewässer nach dem Umweltatlas-Verfahren ist im Hinblick auf das Hauptproblem in den Berliner Gewässern – die hohe Nährstoffbelastung – gesondert der Chlorophyll a-Gehalt der Gewässer dargestellt. Chlorophyll a ist der blaugrüne Anteil des Chlorophyll (Blattgrün). Die Bestimmung des Chlorophyll a-Gehaltes im Gewässer gibt Hinweise auf die Algendichte. Als absolutes Maß für die Phytoplanktonbiomasse kann der Chlorophyll a-Gehalt nicht gelten; jedoch gibt dieser Pigmentgehalt gemeinsam mit anderen Biomasse- und Bioaktivitätsparametern Auskunft über das mengenmäßige Vorkommen und die potentielle Stoffwechselleistung des Phytoplanktons in Gewässern. Die Pigmentausbeute der im Frühjahr und Spätherbst auftretenden Kieselalgen liegt bei gleicher Wellenlänge im Meßverfahren etwas höher, als bei den sich vorwiegend im Sommer bildenden Blaualgen. An speziellen Meßpunkten ist daher der Vergleich der Chlorophyll a-Werte mit den über Zählung ermittelten Algenbiomassen geboten. Die Entwicklung der Phytoplankton-Zusammensetzung ist jahreszeitlich unterschiedlich und hängt von verschiedenen Faktoren ab, u.a. Temperatur, Lichteinstrahlung, Zooplankton-Entwicklung und Nährstoffangebot/-zusammensetzung. Während sich im Frühjahr vorwiegend die Kieselalgen (Bacillariophyceae) entwickeln, bestimmen im Hochsommer überwiegend die Blaualgen (Cyanophyceae) die Zusammensetzung des Phytoplanktons (vgl. Abb. 3). Gerade die hohen Temperaturen und die intensive Lichteinstrahlung im Hochsommer begünstigen das Algenwachstum. Bei gleichzeitigem Überangebot an Nährstoffen im Gewässer kann es dann zur Massenentwicklung der Algen kommen. Das vornehmlich in den Monaten Mai/Juni auftretende Phytoplanktonminimum hängt von vielen Faktoren ab, wie Witterung, Algenarten-Zusammensetzung und insbesondere von der Zooplankton-Struktur. Wird die Frühjahrsalgengemeinschaft von freßbaren Arten (v.a. Kieselalgen) dominiert, kann es zu einer Massenentwicklung des Zooplanktons kommen, das in der Lage ist, große Mengen an Algenbiomasse zu filtrieren. Somit wird eine hohe Sichttiefe erreicht (vgl. Abb. 4). Dieses ”Klarwasserstadium” wird verstärkt in den Gewässern der Spree, der Oberhavel und teilweise in der Unterhavel beobachtet, nicht aber in den Gewässern der Dahme, wo bereits im Frühjahr fädige, kaum freßbare Blaualgen auftreten. Für die Kartendarstellung wurden die Meßwerte der Monate April bis September 1991 berücksichtigt. Für die einzelnen Gewässerabschnitte sind neben dem Mittelwert das Maximum und Minimum dieses Zeitraumes dargestellt. Die Bänder für die Mittelwertdarstellung der Monate April bis Juni sowie Juli bis September sollen einerseits die Frühjahrs-, andererseits die Hochsommerentwicklung des Phytoplanktons widerspiegeln. Da die Algenentwicklung u.a. die Trübung des Wassers beeinflußt, ist im 6. Band die Sichttiefe (Mittelwert des Sommerhalbjahres, April bis September) dargestellt. Die Meßwerte wurden einer 7-stufigen Bewertungsskala zugeordnet. Der für die Berliner Gewässer als Sanierungsziel betrachtete Wert von max. 30 µg Chlorophyll a pro Liter wird als oberer Wert der Güteklasse 1 bis 2 angesehen. Für die Güteklassen 1 bis 3 erfolgt eine lineare Einteilung der Meßwerte; die Abkehr von der linearen Einteilung in der Güteklasse 3 bis 4 erfolgt aufgrund einer größeren Ungenauigkeit des Meßverfahrens bei hohen Meßwerten.
Vorbemerkung Jeder kennt die wohltuende Wirkung von Licht und Wärme der Sonne auf Körper und Seele. Richtig dosiert, regt die Sonne Kreislauf und Stoffwechsel an und steigert unsere Vitalität. Doch im Über- maß können die UV-Strahlen der Sonne gefährliche Folgen haben. Übermäßige UV-Belastung und Sonnenbrände, vor allem in der Kindheit und der Jugend, erhöhen das Risiko erheblich, Jahre später an dem so genannten „schwarzen Hautkrebs“ (malignes Melanom), der gefährlichsten Form von Hautkrebs, zu erkranken. Neben weiteren akuten (Sonnenbrand, Sonnenallergie etc.) und chro- nischen Hautschäden (Hautalterung, Hautkrebserkrankungen etc.) verursacht UV-Strahlung auch akute (Entzündung der Hornhaut etc.) und chronische (Grauer Star) Augenschäden und verringert die Immunabwehr. Dabei ist wichtig zu wissen: • Kinder verbringen viel Zeit im Freien und können damit in den ersten 18 Jahren viel der UV- Lebensdosis aufnehmen. • UV-Strahlung kann DNS-Schäden und infolge davon Zellschäden induzieren, die bei fortgesetz- ten, übermäßigen UV-Belastungen zur Krebsentstehung beitragen. • Die Kinder tragen das größte Risiko. Trotzdem wird das richtige Verhalten in der Sonne meist vernachlässigt. Dies kann später Hautkrebs zur Folge haben. • Erwachsene sind oft schlechte Vorbilder, denen Kinder bereitwillig folgen. Auch heute noch ist die Meinung weit verbreitet, dass eine stark gebräunte Haut ein Zeichen für Gesundheit sei. Aber leider ist das Gegenteil der Fall. Das Thema Sonnenschutz kann ganz einfach in den Alltag und den Urlaub integriert werden und wird zum „Kinderspiel“, wenn schon die Kinder damit aufwachsen und es von der Schule nach Hau- se tragen. Deshalb ist es so wichtig, bereits in der Grundschule auf die Gefahren der UV-Strahlung hinzuweisen. Anwendbarkeit der Arbeitsunterlagen Das Thema Sonnenschutz ist in viele Fächer integrierbar. Zum Beispiel kann die Wirkung von UV- Strahlung im Sachkunde-Unterricht diskutiert oder das Thema Sonnenschutz mit anderen Gesund- heitsthemen wie Verkehrssicherheit, Hygiene und Essverhalten verbunden werden. Idealerweise wird Sonnenschutz auch in Schulveranstaltungen mit Außenaktivitäten eingebunden. Unterrichtsstrategien Das Thema Sonnenschutz in der Schule und der konsequente Schutz vor der schädlichen UV-Strah- lung helfen Kindern und ihren Familien, bewusster mit der Sonne umzugehen. Inhalte können am effektivsten vermittelt werden, wenn die Themen und Aktivitäten einen praktischen Fokus haben und mit den eigenen Erfahrungen korrespondieren. Die folgenden Lehrmodule basieren auf einer Vielzahl unterschiedlicher Lehrstrategien. 3 Lernziele – Wissen Die Kinder sollen lernen, dass • die Sonne sowohl wohltuende als auch schädigende Wirkungen auf die Menschen hat. • die UV-Strahlung zu bestimmten Tages- und Jahreszeiten am stärksten ist und zu Hautschäden wie Sonnenbrand und vorzeitiger Hautalterung sowie zu Augenschäden führen kann. • Sonnenbräune und Sonnenbrand ein Zeichen für Hautschäden sind. • Sonnenbrillen helfen, Augenschäden durch die Sonne zu vermeiden. • Sonnencreme die UV-Strahlung nie vollständig blockt, sondern nur das Auftreten eines Sonnen- brandes verlangsamt. • sie sich am besten gegen die UV-Strahlung schützen, indem sie eine schützende Kopfbedeckung mit Nackenschutz, lange leichte Kleidung und eine Sonnenbrille tragen. • sie sich zusätzlich reichlich mit einer Sonnencreme eincremen müssen, die mindestens einen Lichtschutzfaktor (LSF) von 20 hat. • sie sich im Sommer bei strahlendem Sonnenschein mittags am besten im Haus und ansonsten möglichst oft im Schatten aufhalten sollen. • die künstliche UV-Strahlung in Solarien genauso schaden kann wie die natürliche UV- Strahlung. • dass auch Fensterscheiben schädliche UV-Strahlung durchlassen. Gegebenenfalls können Sie den Schülerinnen und Schülern noch vermitteln, dass • sich die Sonnenstrahlung aus sichtbarem Licht, Wärmestrahlung und aus nicht sichtbarer UV-Strahlung zusammensetzt. • die Erde von einer Ozonschicht umgeben ist, die zwar die meisten schädigenden Strahlen der Sonne abhält, aber dennoch einen Teil zu uns durchlässt. Lernziele – Verhalten Die Kinder sollen lernen, • Sonnenschutzmaßnahmen zu gebrauchen. • andere zu ermutigen, sich auch vor der Sonne zu schützen. • Verantwortung für die eigene Gesundheit zu übernehmen. • dem gesellschaftlichen Druck braun sein zu müssen, zu widerstehen. Lernziele – fähigkeiten Die Kinder sollen lernen, • ihr Wissen über die Risiken der Sonnenbestrahlung und ihre persönliche Einstellung zur Mini- mierung dieser Risiken auszudrücken. • Strategien zur Minimierung der Sonnenbestrahlung zu benennen. • Zeiten, Orte und Situationen zu benennen, die Sonnenschutz erfordern. • bestimmte Sonnenschutz-Maßnahmen für bestimmte Situationen auszuwählen. • Sonnencreme richtig aufzutragen. • Zeichen strahlenbedingter Schädigungen zu erkennen. • andere zu ermutigen, ihr Sonnenverhalten zu optimieren 4 Hinweise zu den Arbeitsblättern Arbeitsblatt 1: Die Strahlen der Sonne Die Sonne brauchen wir für unser Leben. Sie ermöglicht die Fotosynthese bei Pflanzen und ver- sorgt die Menschen mit Wärme und Licht. Sonnenstrahlung beinhaltet aber auch UV-Strahlung, die Gesundheit und Wohlbefinden gefährden kann. UV-Strahlung ist unsichtbar, unabhängig von der Lufttemperatur und auch dann vorhanden, wenn es wolkig ist. Die einzige gut untersuchte positive Wirkung der UV-Strahlung besteht darin, dass ein bestimmter Anteil der UV-Strahlung, die UV-B-Strahlung, in der Haut die Bildung des Prävitamins D auslöst, das im Körper zu Vitamin D umgewandelt wird. Vitamin D reguliert die Kalziumkonzentration im Blut und ist von entschei- dender Bedeutung für den Knochenaufbau und -erhalt in der Kindheit sowie im Erwachsenenleben und Alter. Für die Bildung der für die menschliche Gesundheit erforderlichen Menge von Vitamin D reicht bereits eine geringe Strahlungsmenge aus; je nach Alter und Jahreszeit genügen ca. 10 bis 30 Minuten normales Sonnenlicht pro Tag auf Gesicht und Hände, um eine ausreichende Versorgung mit Vitamin D zu gewährleisten. Zudem kann die Versorgung des Körpers mit Vitamin D auch über eine geeignete Ernährung sichergestellt werden. Zuviel UV-Strahlung ist dagegen schädlich. Die Folgen übermäßiger UV-Bestrahlung spürt man erst, wenn es zu spät ist. Zu viel UV-Strahlung kann kurzfristig zu Sonnenbränden und Augenentzündun- gen, langfristig zu frühzeitiger Hautalterung, Hautkrebs und Augenschäden wie dem Grauen Star führen. UV-Strahlung schwächt das Immunsystem. Arbeitsblatt 2: Die Sonnentipps Gesundheitsschäden durch UV-Strahlung sind vermeidbar, wenn Sonnenschutz frühzeitig und kontinuierlich beachtet wird. Die Kernbotschaft dabei ist: Sonnenbrand vermeiden, Verhaltenswei- sen ändern! Wichtig ist es, alle Sonnenschutzmaßnahmen gleichzeitig zu nutzen. Viele Menschen bekommen einen Sonnenbrand, weil sie Sonnenschutz in manchen Momenten unnötig finden: Beispiele hierfür sind Kinder auf dem Balkon, beim Ausflug, auf dem Spielplatz oder während der Pausen in der Schule. Arbeitsblatt 3: Vergiss mein nicht! Kinder können stärker der Sonne ausgesetzt sein, weil sie oftmals viel Zeit im Freien verbringen. Zusätzlich zu geeigneter Kleidung sollte ca. 30 Minuten bevor man ins Freie geht, reichlich Sonn- creme aufgetragen werden. Dabei sollte ein Sonnenschutzmittel verwendet werden, das mindestens einen Lichtschutzfaktor von 20 und einen ausgewiesenem Schutz vor UV-A- und UV-B-Strahlung aufweist. Bei empfindlicher Haut und extremen Sonnensituationen wie in den Bergen, am Wasser, in süd- lichen Ländern etc., sollte der LSF der Sonnencreme noch höher liegen. Kinder vergessen gerne gewisse Körperstellen, auf die besonders aufmerksam gemacht werden soll. Das Nachcremen darf nicht vergessen werden, vor allem nach dem Baden. Aber Achtung: Das Nachcremen verlängert nicht die Schutzwirkung, es erhält sie nur. Und: Sonnenschutzmittel sind kein vollkommener Schutz gegen chronische Hautschäden. 5
Origin | Count |
---|---|
Bund | 766 |
Land | 32 |
Wissenschaft | 1 |
Type | Count |
---|---|
Förderprogramm | 738 |
Taxon | 1 |
Text | 45 |
unbekannt | 9 |
License | Count |
---|---|
geschlossen | 52 |
offen | 738 |
unbekannt | 3 |
Language | Count |
---|---|
Deutsch | 790 |
Englisch | 154 |
Resource type | Count |
---|---|
Archiv | 1 |
Bild | 4 |
Datei | 2 |
Dokument | 14 |
Keine | 615 |
Multimedia | 1 |
Webseite | 171 |
Topic | Count |
---|---|
Boden | 596 |
Lebewesen & Lebensräume | 793 |
Luft | 536 |
Mensch & Umwelt | 793 |
Wasser | 557 |
Weitere | 785 |