API src

Found 358 results.

Related terms

Zur stochastischen Modellierung von Turbulenz in stabilen atmosphärischen Grenzschichten

Stabil geschichtete atmosphärische Strömungen sind typischerweise durch schwache, intermittierende und anisotrope Turbulenzen, Gravitationswellen, Low-Level-Jets und Kelvin-Helmholtz-Instabilitäten gekennzeichnet. Diese Phänomene erschweren maßgeblich sowohl zuverlässige numerische Simulationen als auch Messungen stabiler Grenzschichten (SBL). Auch wird die Physik der Intermittenz von Turbulenz nicht ausreichend verstanden. Das führt unter anderem zu speziellen Problemen in der Darstellung der stabilen atmosphärischen Grenzschicht in Wetter- oder Klimamodellen. Es ist das Ziel des Projekts, das physikalische Verständnis der Intermittenz von Turbulenz unter sehr stabilen Bedingungen zu verbessern. Dazu sollen neue statistische Methoden zur Analyse von existierenden Datensätzen mit stabil geschichtetem Hintergrund nebst neuen stochastischen Parametrisierungen für die SBL entwickelt und in Wetter- oder Klimamodellen genutzt werden. Die Identifikation spezifischer physikalischer Mechanismen intermittierender Turbulenz wird durch eine Vielzahl nichtturbulenter Bewegungen in stabil geschichteten atmosphärischen Strömungen erschwert. Letztere können beispielsweise Sägezahn-Konvektionsmuster, Wellen oder Mikrofronten aufweisen. Es gibt Hinweise darauf, dass solche Bewegungen Auslöser für Intermittenz von Turbulenz sein können, jedoch fehlen Kenntnisse über die Art der Bewegungen und in welchem Ausmaß sie turbulentes Mischen beeinflussen. Einige Fallstudien deuten darauf hin, dass es ein Wechselspiel zwischen großskaligen atmosphärischen Strömungsmerkmalen (auf sogenannten Submesoskalen) und dem Einsetzen von Turbulenz gibt. Um unterschiedliche physikalische Mechanismen turbulenten Mischens zu untersuchen, werden wir mit statistischen Methoden geeignete stochastische Parametrisierungen entwickeln. Ansätze wie Hidden-Markov-Modelle und nichtstationäre, multivariate, autoregressive Faktormodelle (VARX) sollen die Interaktion zwischen niederfrequenten und turbulenten Bewegungen bestimmen. Statistische Methoden erlauben eine Datentrennung in Hinblick auf metastabile Zustände, wie etwa ruhige und turbulente Perioden in einer geschichteten Atmosphäre. Unsere spezifischen Zielsetzungen sind:1. Neuartige Anwendung meteorologischer Zeitreihenanalysetechniken auf existierende Datensätze mit dem Ziel, die Nichtstationarität der Interaktion zwischen nichtturbulenten Bewegungen und Turbulenz in der sehr stabilen Grenzschicht zu untersuchen.2. Identifikation von Interaktions-Regimen zwischen verschiedenen Bewegungsskalen nebst Charakterisierung turbulenter Transporteigenschaften in verschiedenen Regimes.3. Entwicklung stochastischer Modelle für sehr stabile intermittierende Turbulenz. Hier sollen bisherige Erkenntnisse über physikalische Abhängigkeiten der Intermittenz verwendet werden.4. Verwendung der stochastischen Modelle zur Erzeugung realistischer Einströmungen als Eingabe von Large-Eddy-Simulationen mit dem Ziel intermittierende Turbulenz zu generieren.

Sonderforschungsbereich (SFB) 1357: MIKROPLASTIK - Gesetzmäßigkeiten der Bildung, des Transports, des physikalisch-chemischen Verhaltens sowie der biologischen Effekte: Von Modell- zu komplexen Systemen als Grundlage neuer Lösungsansätze; MICROPLASTICS - Understanding the mechanisms and processes of biological effects, transport and formation: From model to complex systems as a basis for new solut, Sonderforschungsbereich (SFB) 1357: MIKROPLASTIK - Gesetzmäßigkeiten der Bildung, des Transports, des physikalisch-chemischen Verhaltens sowie der biologischen Effekte: Von Modell- zu komplexen Systemen als Grundlage neuer Lösungsansätze

Die ubiquitäre Kontamination der Umwelt durch Mikroplastik (MP), die damit verbundenen potenziellen Risiken für Ökosysteme und letztendlich für unsere Gesundheit ist in letzter Zeit sehr stark in den Blickpunkt des öffentlichen und wissenschaftlichen Interesses gerückt. Das junge Forschungsfeld MP hat sich bis dato vorwiegend auf die Entwicklung geeigneter Monitoringverfahren, auf die quantitative Abschätzung der Kontamination der Umwelt, auf die Identifikation relevanter Eintragspfade und auf erste Eintragsminimierungsansätze beschränkt. Ökotoxikologische Fragestellungen wurden zumeist mit Hilfe fabrikneuer Kunststoffe untersucht. Bei all diesen Ansätzen fehlte jedoch bislang ein fundamentales Verständnis von den physikalischen, chemischen und biologischen Prozessen, denen MP in der Umwelt unterworfen ist. Die wissenschaftliche Komplexität der Thematik MP erfordert für ein ebensolches Verständnis jedoch einen interdisziplinären Ansatz, der die traditionellen Fachgrenzen überbrückt. Das Ziel dieser SFB-Initiative ist es daher - ausgehend von Modellsystemen für Kunststoffe, Organismen und Umweltkompartimente - ein grundlegendes Verständnis jener Prozesse und Mechanismen zu erlangen, die in Abhängigkeit von den physikalischen und chemischen Eigenschaften der Kunststoffe (A) die biologische Effekte von MP in limnischen und terrestrischen Ökosystemen bedingen, (B) die Migrationsbewegungen der MP-Partikel in und zwischen Umweltkompartimenten beeinflussen sowie (C) die Bildung von MP ausgehend von makroskopischen Kunststoffen verursachen. Diese Erkenntnisse werden erstmals eine wissenschaftlich fundierte Grundlage für die Bewertung der Umweltrisiken von MP existierender Massenkunststoffe bieten. Darauf aufbauend sollen - bereits in der ersten Antragsphase beginnend - neue umweltfreundliche Kunststoffe im Sinne einer nachhaltigen Polymerchemie entwickelt und anhand von Modellsystemen verifiziert werden. Diese neuen Kunststoffe werden unter anderem schnellere Abbauprozesse durch die Applikation von Beschleunigern und strukturellen Modifikationen aufweisen und werden zur Vermeidung bzw. Reduzierung von MP beitragen. Aufgrund der gewonnenen umfassenden Erkenntnisse aus Phase I sollen zudem auf längere Sicht (Phase II und III) Kunststoffe gezielt so modifiziert werden, dass sie aufgrund ihrer neuen Eigenschaften keine schädigenden Effekte auf Organismen und auf die Umwelt insgesamt mehr aufweisen. Die Komplexität der untersuchten Modellsysteme soll im Verlauf des SFB 1357 gesteigert werden, um eine möglichst hohe Relevanz in Bezug auf reale Ökosysteme zu erreichen.

EnEff:Wärme: Geoportal-basiertes Monitoring eines geothermisch gespeisten kalten Nahwärmenetzes als Beitrag zur Wärmewende mit aktiver Nutzereinbindung, Teilvorhaben: Entwicklung einer Planungsplattform für kalte Nahwärmenetze und oberflächennahe geothermische Systeme

ACTRIS-D Central Facilities, Teilprojekt 1 (TROPOS-CF): Aufbau der zentralen ACTRIS Kalibriereinrichtungen des TROPOS und Koordination des Verbundvorhabens

CO2 Mofetten - Überwachung natürlicher CO2 Emissionen unter Verwendung eines Netzwerks aus low-cost Sensoren

Im beantragten Forschungsvorhaben wird der natürliche Austritt von Kohlenstoffdioxid (CO2) aus Mofetten im Eyachtal zwischen Horb und Rottenburg untersucht. CO2 kann sich in der bodennahen Atmosphäre ansammeln und in entsprechender Konzentration für Mensch und Tier gefährlich werden. Die im Eyachtal austretenden Mengen wurden bislang nicht zuverlässig quantifiziert. Darüber hinaus ist CO2 ein Treibhausgas und steht im Zusammenhang mit dem weltweiten Klimawandel. Ähnliche und auch größere Quellgebiete existieren an verschiedenen Orten der Welt. Der quantitative Einfluss dieser natürlichen geologischen Gasquellen auf den Gashaushalt der Erde ist unbekannt, da auch die Menge des ausströmenden CO2 nicht bekannt ist.Ziel des Vorhabens ist die Überwachung der natürlichen CO2 Austrittsquellen sowie der umgebenden Atmosphäre im Eyachtal. Die Messdaten dienen der Bilanzierung der Austrittsmengen sowie die Ermittlung der horizontalen und vertikalen Flüsse im Versuchsgebiet. Hierbei wird auch die zeitliche Veränderung dieser Austritte erfasst.Zu diesem Zweck soll ein mikro-meteorologisches Messsystem (Eddy-Covariance Station) in Kombination mit einem verteilten Netzwerk aus vielen kostengünstigen CO2 Sensoren installiert werden. Ein solches Netzwerk kann die inhomogene Verteilung der Austritte sowohl zeitlich als auch räumlich erfassen. Die Verwendung von kostengünstigen Sensoren erlaubt den Betrieb einer größeren Anzahl von Sensoren und damit verbunden eine größere räumliche Abdeckung.In den letzten Jahren hat die Arbeitsgruppe Umweltphysik der Universität Tübingen eine neue Methode entwickelt, CO2 mit günstigen Sensoren in Bodennähe zu messen. Ein Nachteil der kostengünstigen Sensoren liegt in der (im Vergleich zu hochwertigen Sensoren) geringeren absoluten Messgenauigkeit. Die EC Station dient daher als Referenz, um die erreichbare Genauigkeit und Langzeitstabilität des Sensornetzes zu bewerten, die günstigen Sensoren zu kalibrieren und den turbulenten Transport des CO2 zumindest an einer Stelle direkt zu messen. Für ein vollständiges Netzwerk müssen die CO2 Sensoren noch mit geeigneten Feuchte- und Temperatursensoren ergänzt werden. Die entsprechende Hardware muss beschafft und schrittweise aufgebaut werden.Im Projekt soll ein Netzwerk aus z.B. 64 Sensoren aufgebaut werden, das die räumliche und zeitliche Verteilung des CO2 im Untersuchungsgebiet experimentell bestimmt. Die Beschaffung der Geräte ist bereits von der Alfred-Teufel Stiftung finanziert. Die Messungen werden über eine Datenbank mit Internet Schnittstelle auch der wissenschaftlichen Öffentlichkeit zur Verfügung gestellt.Das Vorhaben gliedert sich in zwei Projektphasen von je drei Jahren Dauer, beantragt wird die erste Phase. In der 2. Phase ist die numerische Simulation der CO2 Ausbreitung und die Übertragung der Methode auf andere Regionen vorgesehen.

Flood risk in a changing climate (CEDIM)

Aims: Floods in small and medium-sized river catchments have often been a focus of attention in the past. In contrast to large rivers like the Rhine, the Elbe or the Danube, discharge can increase very rapidly in such catchments; we are thus confronted with a high damage potential combined with almost no time for advance warning. Since the heavy precipitation events causing such floods are often spatially very limited, they are difficult to forecast; long-term provision is therefore an important task, which makes it necessary to identify vulnerable regions and to develop prevention measures. For that purpose, one needs to know how the frequency and the intensity of floods will develop in the future, especially in the near future, i.e. the next few decades. Besides providing such prognoses, an important goal of this project was also to quantify their uncertainty. Method: These questions were studied by a team of meteorologists and hydrologists from KIT and GFZ. They simulated the natural chain 'large-scale weather - regional precipitation - catchment discharge' by a model chain 'global climate model (GCM) - regional climate model (RCM) - hydrological model (HM)'. As a novel feature, we performed so-called ensemble simulations in order to estimate the range of possible results, i.e. the uncertainty: we used two GCMs with different realizations, two RCMs and three HMs. The ensemble method, which is quite standard in physics, engineering and recently also in weather forecasting has hitherto rarely been used in regional climate modeling due to the very high computational demands. In our study, the demand was even higher due to the high spatial resolution (7 km by 7 km) we used; presently, regional studies use considerably larger grid boxes of about 100 km2. However, our study shows that a high resolution is necessary for a realistic simulation of the small-scale rainfall patterns and intensities. This combination of high resolution and an ensemble using results from global, regional and hydrological models is unique. Results: By way of example, we considered the low-mountain range rivers Mulde and Ruhr and the more alpine Ammer river in this study, all of which had severe flood events in the past. Our study confirms that heavy precipitation events will occur more frequently in the future. Does this also entail an increased flood risk? Our results indicate that in any case, the risk will not decrease. However, each catchment reacts differently, and different models may produce different precipitation and runoff regimes, emphasizing the need of ensemble studies. A statistically significant increase of floods is expected for the river Ruhr in winter and in summer. For the river Mulde, we observe a slight increase of floods during summer and autumn, and for the river Ammer a slight decrease in summer and a slight increase in winter.

Hochaufgelöste numerische Untersuchungen des Turbulenzeffektes auf die Struktur von nächtlichen Strahlungsnebeln

Nebel als meteorologisches Phänomen kann große Auswirkungen für die Wirtschaft, aber auch auf die persönliche Sicherheit haben, indem er die Sichtweite in der atmosphärischen Grenzschicht reduziert. Wirtschaftliche Verluste für den Luft-, See-, und Landvekehr als Folge von Nebel sind dabei vergleichbar zu Verlusten durch Winterstürme. Trotz der Fülle an Literatur über Nebel bleibt unser Verständnis der physikalischen Prozesse die zu Nebelbildung und seiner Mikrophysik beitragen unvollständig. Dies ist dadurch begründet, dass mehrere komplexe Prozesse, wie z.B. Strahlungsabkühlung, turbulentes Durchmischen und die mikrophysikalischen Prozesse nichtlinear miteinander interagieren. Zusätzlich verkomplizieren Bodenheterogenitäten bezüglich Vegetation und Bodeneigenschaften die Vorhersagbarkeit von Nebel. Die Fähigkeit von numerischen Wettervorhersagemodellen Nebel vorherzusagen ist in Folge dessen noch dürftig. In diesem Projekt werden hochaufgelöste Grobstruktursimulationen (Large-Eddy Simulationen, LES) verwendet um den Effekt von Turbulenz auf nächtliche Strahlungsnebel zu untersuchen. Das LES Modell PALM wird dazu mit einer sehr hohen Auflösung von etwa 1 m verwendet. Dabei werden in den LES sowohl ein Euler'sches Bulk Wolkenphysikschema, als auch ein Lagrange'sches Partikelmodell, welches die explizite Behandlung von Aerosolen und Nebeltropfen erlaubt, verwendet. Dieser innovative Ansatz erlaubt die Nebeltropfen-Turbulenz-Interaktion zum ersten Mal mit LES zu untersuchen. Das Ziel dieser Studie ist es, einen umfassenden Überblick über die Schlüsselparameter zu erhalten, welche den Lebenszyklus sowie die dreidimensionale Makro- und Mikrostruktur von Strahlungsnebel bestimmen. Weiterhin wird der Effekt von nächtlichem Strahlungsnebel auf die morgendliche Übergangszeit und die Grenzschicht am Tag untersucht. Der Effekt von Bodenheterogenitäten auf nächtlichen Strahlungsnebel wird mit Hilfe von aufgeprägten regelmäßigen idealisierten und unregelmäßigen beobachteten Bodenheterogenitäten in den LES untersucht. Die LES Daten werden anhand von Messdaten der meteorologischen Messstandorte in Cabauw (Niederlande) und Lindenberg (Deutschland) validiert und mit Simulationsdaten des eindimensionalen Grenzschicht- und Nebelvorhersagemodells PAFOG (Universität Bonn) verglichen.

Wahrnehmung und Bewertung von Geraeuschen (Laerm) in unterschiedlichen Kulturbereichen

Im Besonderen geht es dabei um die Wahrnehmung, Verarbeitung und Wirkung von Schallereignissen sowie ihren Bewertungs- und Beurteilungsmethoden bis hin zur Analyse der Bedeutung von Begriffen wie 'Belaestigung'. Wir analysieren Gehoererscheinungen, wie beispielsweise Laerm, in kulturvergleichenden Studien oder auch das Thema 'Klangfarben von Maschinen'. Dazu gehoeren auch die seit 20 Jahren stattfindenden Oldenburger Symposien zur Psychologischen Akustik. Die Arbeitsgruppe legt besonderen Wert auf die interdisziplinaere Kooperation mit der Physik, Informatik und Medizin. Es bestehen vielerlei Verbindungen zu auswaertigen Forschergruppen, insbesondere in Japan.

Eine neue Bedrohung der stratosphärischen Ozonschicht durch anthropogene kurzlebige Halogenverbindungen

Die stratosphärische Ozonschicht bietet der Erde einen wirkungsvollen Schutzschild gegen den ultravioletten, schädigenden Anteil der solaren Strahlung. Der anthropogene Ozonabbau, verursacht durch Emissionen von langlebigen Fluorchlorkohlenwasserstoffen (FCKWs), war eines der größten Umweltprobleme der letzten Jahrzehnte. Emissionen von FCKWs wurden infolge des Montrealer Abkommens von 1987 stark reduziert und eine langsame Erholung der Ozonschicht wird im Laufe der nächsten Jahrzehnte erwartet. Im Gegensatz dazu werden die Emissionen von sehr kurzlebigen Halogenverbindungen (Very Short-Lived Halocarbons, VSLH), welche auch stratosphärisches Ozon zerstören, aufgrund von neuen Technologien ansteigen. Chemische Oxidationsprozesse in der marinen Umwelt, insbesondere die neuartigen Behandlungsverfahren von Ballastwasser, und anwachsende tropische Makroalgenkulturen beeinflussen biogeochemische Kreisläufe und können zu einem starken Anstieg der VSLH Produktion und Emission führen. Zusätzlich zu ihrem schädlichen Effekt auf die Ozonschicht, beeinflussen VSLH den atmosphärischen Strahlungsantrieb und das Vermögen der Atmosphäre viele natürliche und anthropogene Spurenstoffe zu entfernen (atmosphärische Oxidationspotential). Momentan ist nur sehr wenig über die zukünftig zu erwartenden anthropogenen VSLH Emissionen aus dem Ozean sowie ihre bedrohliche Wirkung auf die atmosphärische Chemie bekannt und fundierte wissenschaftliche Untersuchungen sind dringend erforderlich. Das Ziel dieses Antrages ist es, momentane und zukünftige Emissionen anthropogener VSLH und ihren Einfluss auf atmosphärische Zusammensetzung und Chemie zu quantifizieren. Ein besonderer Fokus liegt auf der Untersuchung einer möglichen neuen Bedrohung der stratosphärischen Ozonschicht. In einem ersten Schritt werden globale Karten der ozeanischen Emissionen von anthropogenen VSLH erstellt. Im zweiten Schritt wird, basierend auf atmosphärischer Chemie-Transport Modellierung, die Entwicklung der anthropogenen VSLH in der Atmosphäre quantifiziert. Zu diesem Zweck werden Küsten-auflösende Modellsysteme entwickelt, welche später dazu beitragen Parametrisierungen anthropogener VSLH Prozesse für globale Klima-Chemie Modelle zu erstellen. In einem dritten Schritt wird der globale Einfluss der anthropogenen VSLH auf Ozonabbau, Strahlungsantrieb und atmosphärisches Oxidationspotential bestimmt und mögliche Rückkopplungsmechanismen werden identifiziert. Der interdisziplinäre Forschungsplan umfasst die Synthese existierender Daten, Messungen, sowie Ozean-Zirkulation-, Biogeochemie- und atmosphärische Klima-Chemie Modellierung. Das Forschungsvorhaben wird die Frage beantworten, ob anthropogene Aktivitäten in der marinen Umwelt eine Bedrohung für die stratosphärische Ozonschicht darstellen. Solch eine Risikoabschätzung ist von großer gesellschaftlicher Bedeutung und liefert entscheidende Information für politische Entscheidungsträger bezüglich der Planung zukünftiger menschlicher Aktivitäten.

Lakes as components of the Tibetan Plateau climate system (LaTiCS): Internal mixing processes and lake-atmosphere interaction

Lakes of the Tibetan Plateau are the major components of the regional climate system. However, mechanisms of heat transport within the lakes and the lake-atmosphere interaction in the Tibetan Plateau remain largely unknown and limit the quantitative understanding of the contribution made by the Tibetan Plateau lake system into regional and global climate variability. The proposed project aims at (i) revealing specific features of the thermal and mixing regime of lakes on Tibetan Plateau at time scales from microturbulent to seasonal ones, and (ii) study the characteristics of energy and water cycle at the interface between atmosphere and lakes. By this, the project will provide unique information about the feedbacks and mechanisms between the thermal regime of lakes and climatic and hydrological factors in the Tibetan Plateau. The specific goals of the project are the following: (i) to understand the characteristics of the heat and mass exchange between lakes and the atmosphere, to qualify the influence factors; (ii) to estimate the thermal characteristics of lakes, their seasonal variability with respect to the heat and mass exchange at the lake-atmosphere interface; (iii) to improve and test the lake parameterization scheme applicable to conditions of the Tibetan Plateau area, and apply it into a regional atmospheric model; (iv) to investigate the feedbacks between Tibetan Plateau lakes and the atmosphere by means of coupled modeling. The outcomes of the project will provide a basis for further projections on the local water resources and regional climate conditions. To achieve the proposed goals the project will combine numerical models with field studies on the largest freshwater lake in the Yellow River source region of the Tibetan Plateau (Ngoring Lake) and the nearby salt lake (Hajiang Salt Pond). The project team joins together the leading group on lake physics from Germany with the meteorological research group from China intensively working on lakes as components of climatic system of the Tibetan Plateau, ensuring by this fundamental and interdisciplinary character of the proposed study.

1 2 3 4 534 35 36