Der Umgang mit Nichtlinearitäten und die Frage des Upscaling stellen eine der größten Herausforderungen für technische und umweltrelevante Anwendungen im Gebiet der Strömungs- und Transportphänomene in porösen Medien dar. Eine Vielzahl hierarchischer (räumlicher und zeitlicher) Skalen können in porösen Medien identifiziert werden, die im Allgemeinen mit deren Heterogenitätsstrukturen zusammenhängen. Strömungs- und Transportphänomene können von gekoppelten Mechanismen verursacht oder beeinflusst werden, die von einem nichtlinearen Zusammenspiel von physikalischen, (geo-)chemischen und/oder biologischen Prozessen herrühren. Um Probleme auf diesem Feld sinnvoll angehen zu können, ist eine interdisziplinäre Umgebung unerlässlich. Die beteiligten Wissenschaftlerinnen und Wissenschaftler zeichnen sich in den unterschiedlichsten Arbeitsgebieten aus: angewandte Mathematik, Umwelt- und Bauingenieurwesen, Geowissenschaften und Erdölingenieurwissenschaften. Die gemeinsamen niederländisch-deutschen Forschungsprojekte werden an der TU Delft, der TU Eindhoven, der Universität Utrecht und der Universität Stuttgart durchgeführt. Grundlagenforschung, so wie etwa die Anwendung stochastischer Modelle und die Entwicklung effizienter numerischer Methoden, soll mit angewandter Forschung auf Feldern wie der Optimierung von Brennstoffzellen, Sequestrierung von CO2 oder der Vorhersage von Hangrutschungen verbunden werden. Als mögliche weiterführende Themen werden auch Anwendungen in der Papierherstellung oder der Biomechanik angestrebt. Ein zentraler Aspekt des Internationalen Graduiertenkollegs ist ein Lehrprogramm, das die Unterstützung von Lehre und Forschung von jungen Wissenschaftlerinnen und Wissenschaftlern zum Ziel hat. Dies soll erreicht werden, indem anspruchsvolle Kurse angeboten werden, die typischerweise die Fragestellungen der jungen Wissenschaftler abdecken. Außerdem soll alle vier Wochen via Videokonferenz ein Graduiertenseminar zur Diskussion von Forschungsergebnissen stattfinden. Es soll weiterhin ein Austauschprogramm geben, das Doktorandinnen und Doktoranden erlaubt, sechs bis neun Monate im Partnerland zu verbringen. Das somit entstehende internationale und interdisziplinäre Umfeld wird es Doktorandinnen und Doktoranden ermöglichen, effizient Spitzenforschung auf dem Feld der Nichtlinearitäten und des Upscaling im Untergrund durchzuführen.
Im Besonderen geht es dabei um die Wahrnehmung, Verarbeitung und Wirkung von Schallereignissen sowie ihren Bewertungs- und Beurteilungsmethoden bis hin zur Analyse der Bedeutung von Begriffen wie 'Belaestigung'. Wir analysieren Gehoererscheinungen, wie beispielsweise Laerm, in kulturvergleichenden Studien oder auch das Thema 'Klangfarben von Maschinen'. Dazu gehoeren auch die seit 20 Jahren stattfindenden Oldenburger Symposien zur Psychologischen Akustik. Die Arbeitsgruppe legt besonderen Wert auf die interdisziplinaere Kooperation mit der Physik, Informatik und Medizin. Es bestehen vielerlei Verbindungen zu auswaertigen Forschergruppen, insbesondere in Japan.
Forschungsschwerpunkt: - Entwicklung differenzierter Materialien und E-Learning-Konzeptionen zur Qualifizierung von Zielgruppen, die in energiebezogenen Bereichen tätig sind bzw. entsprechende Qualifikationen anstreben - systematische mediendidaktische Fortentwicklung bestehender Blended-Learning-Konzeptionen. Ziele: - Vermittlung grundlegende energiewirtschaftliche Zusammenhänge für Nicht-Ökonomen, die in der Energiebranche tätig sind bzw. entsprechende Qualifikationen anstreben - Ziel ist das Erlangen vertiefter Einsichten in die verschiedenen Facetten der Energieversorgung und -nutzung, um ein breiteres Verständnis für die vielschichtigen Aufgaben und Anforderungen an Unternehmen in der Branche. Beschreibung: - Im Rahmen der ersten Projektphase wurde ein internetgestützter Qualifizierungsbaustein 'Energy Economics' entwickelt und eine internetgestützte Lehreinheit konzipiert. Diese wurde im Wintersemester 2013/2014 im Studiengang 'Engineering Physics' erprobt und evaluiert. Das Feedback der Teilnehmer fiel sehr positiv aus. - In der zweiten Projektphase (2014) ein weiterer internetgestützter Qualifizierungsbaustein entwickelt, auf dessen Basis ebenfalls eine Veranstaltung konzipiert, durchgeführt und evaluiert wird. Im Mittelpunkt steht darin die Auseinandersetzung mit den erneuerbaren Energien, insbesondere im Hinblick auf ihren Einsatz in Entwicklungs- und Schwellenländern. Die Lehrveranstaltung wird ausschließlich onlinebasiert durchgeführt werden. Ergebnisse/Materialien: Qualifizierungsbaustein 'Energy Economics', der sich thematisch mit den Schwerpunkten - grundlegende Strukturen internationaler Energiemärkte (insb. Erdöl, Erdgas, Kohle), - Besonderheiten der Märkte für leitungsgebundene Energieversorgung, - Bedeutung energiepolitischer Rahmensetzung auf den Märkten sowie - Förderung erneuerbarer Energien und ihrer Wirkung auf Märkten auseinandersetzt.
Schwerewellen (GWs) sind zu kleinskalig, um in den heutigen Wetter- und Klimamodellen aufgelöst zu werden. Sie müssen daher parametrisiert werden, da sie einen starken Einfluss auf die Dynamik der großen Skalen haben. Parametrisierungen existieren für orographisch und konvektiv erzeugte GWs, während für die GW-Quellen entlang großskaliger Jets noch keine etablierte Parametrisierung vorliegt. Die Quellen resultieren aus einer spontanen Imbalance (SI) der großskaligen quasi-geostrophischen Strömung. Die Untersuchung von Schwerewellenabstrahlung durch SI ist schwierig, da die GWs in ein sehr komplexes zeitabhängiges Strömungsfeld eingebettet sind, mit einer großen Zahl von interagierenden Prozessen. Auch die Validierung von Parametrisierungen wird dadurch erschwert. Daher kombinieren wir Theorie und numerische Modellierung mit ergänzenden Laborexperimenten. Laborexperimente garantieren eine Reproduzierbarkeit der betrachteten großskaligen Strömungssituation. Die direkte Korrespondenz zwischen den experimentellen Daten und den Modelldaten und die erwähnte Reproduzierbarkeit machen das Laborexperiment zu einem idealen Prüfstand für Parametrisierungen und für die Untersuchung klimarelevante Prozesse. Das differenziell beheizte rotierende Zylinderspalt-Experiment, welches an der BTU (Brandenburg Technische Universität Cottbus-Senftenberg) aufgebaut und betrieben wird, stellt die Referenzdaten für Benchmark-Simulationen an der GU-F (Goethe Universität Frankfurt) und dem IAP (Leibniz Institut für Atmosphärische Physik, Kühlungsborn) bereit. Dabei stehen Experimente im Vordergrund, die zeigen sollen, welche baroklinen Strömungen eine besonders ausgeprägte GW-Abstrahlung aufweisen. Ergänzend dazu werden idealisierte numerische Simulationen an der GU-F und dem IAP durchgeführt, um die Variabilität der GWs und den Abstrahlungsprozess zu untersuchen. Wichtig ist dabei, einen Zusammenhang zwischen verschiedenen großskaligen Strömungen und der mesoskaligen GW-Quelle herzustellen und diesen Zusammenhang mittels grob aufgelöster Wellenstrahlenmodelle zu validieren. Ziel ist es, eine skalenabhängige SI-Parametrisierung zu konstruieren. Diese Parametrisierung soll mit Hilfe der Labor-Referenzdaten validiert werden. Begleitet wird dies von einer Analyse grob- und feinaufgelöster Daten aus UA-ICON Simulationen. Schließlich soll die Parametrisierung an das Wellenstrahlenmodell MS-GWaM angekoppelt werden, welches in UA-ICON implementiert ist.
Die Nukleation von Eispartikeln spielt eine wichtige Rolle bei der Wolken- und Niederschlagsbildung, mit Konsequenten für die atmosphärische Chemie, die Wolkenphysik und das Erdklima. Für eine Quantifizierung und Vorhersage des Einflusses von Wolken in Wettervorhersage- und Klimamodellen muss die Bildung von Eispartikeln daher in einer realistischen Art und Weise beschrieben werden. Einer der wichtigen Bildungsmechanismen ist dabei die heterogene Eisnukleation im Immersionsmodus, bei dem Eis an der Oberfläche eines in einem wässrigen Tröpfchen suspendierten Eiskeims - zum Beispiel eines Mineralstaub- Partikels - gebildet wird. Wir werden im Rahmen dieses Forschungsprojekts zahlreiche Gefrierexperimente im Immersionsmodus durchführen. So werden eine Reihe verschiedener, als Aerosolpartikel in der Atmosphäre vorkommende Materialien auf ihre Eisnukleationseigenschaften hin untersucht werden. Insbesondere sollen hier die Temperatur- und Zeitabhängigkeit der von diesen Materialien ausgelösten Eisnukleation quantifiziert werden. Dabei werden wir spezielles Augenmerk auf die systematische Untersuchung der von porösen Materialien ausgelösten Eisnukleation legen. Es sollen sowohl synthetische Materialien wie beispielsweise mesoporöse Silikate untersucht werden, als auch natürlich vorkommende Materialien wie etwa mikroporöse Zeolithe.
Peroxyradikale sind kurzlebige Spezies, die an den meisten Oxidationsprozessen in der Atmosphäre beteiligt sind, die zur Bildung von langlebigeren und chemisch oder toxikologisch wichtigen Schadstoffen wie Ozon führen. Insbesondere in Gebieten, die von komplexen Emissionsquellen betroffen sind, sind Peroxyradikal-Messmethoden mit ausreichender Genauigkeit, Reproduzierbarkeit und Empfindlichkeit erforderlich, um die chemische Umwandlung der städtischen Umweltverschmutzung zu verstehen. In dieser Hinsicht ermöglichen Vergleiche von state-of-the-art Sensoren in chemischen Reaktorkammern deren Charakterisierung unter kontrollierten Bedingungen und verbessern das Vertrauen in die Messung von Peroxyradikalen.SPRUCE strebt ein besseres Verständnis der Rolle der Peroxyradikale bei atmosphärischen chemischen Umwandlungen an, die aus der Wechselwirkung zwischen urbanen anthropogenen und ländlichen biogenen Emissionen resultieren. Im Rahmen der vorgeschlagenen Arbeit wird das vorhandene PeRCEAS-Instrument (Peroxy Radical Chemical Enhancement and Absorption Spectrometer) an der Messkampagne des internationalen Projekts ACROSS (Atmospheric ChemistRy Of the Suburban Forest) zur Untersuchung des Schadstoffausflusses von Paris über ein Waldgebiet, und in der internationalen Vergleichsstudie ROxCOMP22 für wissenschaftliche Instrumente, die atmosphärische Peroxyradikale teilnehmen. Diese beiden Messkampagnen befassen sich mit zwei Hauptaspekten von SPRUCE. Sie bieten eine einzigartige Gelegenheit für a) die Messung von Peroxyradikalen in der spezifischen Umgebung von Interesse und in Verbindung mit einer umfangreichen Reihe von Beobachtungen, die für die Interpretation der Radikalchemie von wesentlicher Bedeutung sind, und b) die Bewertung der Datenqualität und Leistungsfähigkeit von PeRCEAS, insbesondere die Überprüfung der Sensitivität und Effizienz für die Speziation der Radikale unter kontrollierten Bedingungen.Ein Schwerpunkt der Studie wird auf der Untersuchung von Oxidationsreaktionen und Ozonausbeuten in Luftmassen mit unterschiedlicher anthropogener/biogener Signatur in Abhängigkeit von der Menge und Zusammensetzung von Peroxyradikalen liegen. Numerische Berechnungen und Modelle werden durch die Beobachtungen von Vorläuferspezies eingeschränkt, um die Budgets von Peroxyradikalen abzuschätzen. Der Vergleich mit den PeRCEAS-Messungen wird verwendet, um das Verständnis der Oxidationsmechanismen in urbanen Plumes gemischt mit biogenen Emissionen zu testen. Es wird erwartet, dass die Analyse des resultierenden Datensatzes das aktuelle Wissen über die chemische Transformation von Megacity-Emissionen während des atmosphärischen Transports ergänzt.
Interne Schwerewellen (SW) verbinden verschiedene Schichten der Atmosphäre von der Troposphäre bis zur Thermosphäre und treiben die großskalige Zirkulation der mittleren Atmosphäre an. Viele der für SW relevanten Prozesse, von ihrer Entstehung über die Ausbreitung bis zur Dissipation sind jedoch unvollständig verstanden und, wegen der geringen typischen Wellenlänge, meist schlecht in numerischen Wettervorhersage- und Klimamodellen repräsentiert. GWING ist eines der Projekte der Forschergruppe MS-GWaves, die darauf abzielt, unser Verständnis der oben angesprochenen multi-skalaren dynamischen Schwerewellenprozesse zu verbessern, um letztendlich eine einheitliche Parametrisierung der in Atmosphärenmodellen nicht auflösbaren Schwerewellen (und ihrer Effekte) von der Entstehung bis zur Dissipation zu entwickeln. Um hierzu beizutragen, ist das zentrale Ziel von GWING die Entwicklung und Anwendung des atmosphärischen Zirkulationsmodells UA-ICON. Mit diesem Modell integriert GWING das in der Forschergruppe MS-GWaves entwickelte Wissen. In der zweiten Phase von GWING stehen zwei übergeordnete wissenschaftliche Fragen im Fokus: a) Welche Bedeutung haben Eigenschaften von Schwerewellen, die in klassischen Parametrisierungen nicht berücksichtigt werden, also insbesondere horizontale und nicht-inständige Propagation sowie die Wechselwirkung transienter Wellen mit dem Grundstrom? b) Welche Rolle spielen Schwerewellen für die globale Zirkulation und ihre Variabilität? Um diese Fragen zu beantworten, werden wir UA-ICON global sowohl mit einer Maschenweite von etwa 20 km (d.h. mit Auflösung von SW bis etwa 100 km Wellenlänge) als auch mit grober Auflösung, dafür aber mit der State-of-the-art Parametrisierung MS-GWaM nutzen. Weiterhin werden spezielle Beobachtungsepisoden mit sehr hoch (ca. 1,5 km) aufgelösten Nestern simuliert. Zur Evaluation und Analyse werden diese Modellsimulationen mit Beobachtungen der Partnerprojekte zusammengeführt. Die wesentlichen Entwicklungsziele für UA-ICON in Phase 2 des Projekts sind dementsprechend die Implementierung von MS-GWaM (entwickelt im Partnerprojekt 3DMSD), die Einführung physik-basierter Schwerewellenquellen (zusammen mit 3DMSD und SV) und eine verbesserte Behandlung von SW bei sehr hoher Modellauflösung. Die Nutzung der verschiedenen UA-ICON-Konfigurationen wird schließlich erlauben, die Bedeutung bisher vernachlässigter Eigenschaften von SW zu untersuchen, d.h. die erste der oben genannten Fragestellungen zu beantworten. Ein spezielles Ziel im Rahmen von GWING ist diese Untersuchung für Episoden plötzlicher Stratosphärenerwärmungen, die durch sich schnell ändernde und zonal nicht symmetrische Bedingungen des Grundstroms gekennzeichnet sind. Im Hinblick auf die zweite übergeordnete Fragestellung, wird sich GWING auf a) die Rolle der SW und einer hohen Modellausdehnung für die Simulation von Zirkulationsänderungen bei globaler Erwärmung und b) die Rolle für die Güte von Wettervorhersagen konzentrieren.
Gletscher haben im 20. Jh. weltweit starke Rückgänge erfahren, was auch für Gletscher in den Tropen gilt. Obwohl die Gletscher am Kilimanjaro (Tansania) ähnliche Charakteristika wie andere tropische Gletscher aufweisen (starke Empfindlichkeit auf Klimaelemente, die von der Luftfeuchtigkeit gesteuert werden), verlangt die Untersuchung ihres Verhaltens eine spezielle Sichtweise. Diese ist notwendig, da am Kilimanjaro zwei verschiedene Gletschersysteme existieren: die tafelförmigen Gletscher auf dem Gipfelplateau und die Hanggletscher unterhalb des Gipfelplateaus auf den steilen Flanken des Berges. Plateaugletscher sind von seitlich zurückweichenden, vertikalen Eiskliffs umrandet, die zu einer stetigen Abnahme der Ausdehnung von Plateaugletschern führen - selbst wenn sich auf deren horizontalen Oberflächen Schnee und folglich Gletschermasse ansammelt. Ein Vorprojekt konnte belegen, dass die klimatische Hauptursache für den seit 1880 andauernden Rückgang der Gletscher am Kilimanjaro ein regional trockeneres Klima seit dem späten 19. Jh. ist. Ebenso wurde klar, dass das gegenwärtige Klima die Gletscher nahe an das vollständige Verschwinden drängt. Dies wirft wiederum die Frage auf, unter welchen Klimabedingungen sie überhaupt existieren und sich bilden konnten. Das beantragte Projekt setzt sich daher das Ziel, eine mindestens 500 Jahre umfassende Zeitreihe des Gletscherverhaltens am Kilimanjaro zu rekonstruieren. Da andere Rekonstruktionen (v.a. Seespiegelstände) andeuten, dass die regionalen Klimaschwankungen vor 1880 größer als nachher waren, scheint es möglich, dass die Gletscher am Kilimanjaro eine relativ kurze Lebenszeit und daher ein zyklisches Verhalten aufweisen. Im vorgeschlagenen Projekt werden meteorologische Messungen im Gipfelbereich des Kilimanjaro dazu dienen, ein Massenbilanzmodell anzutreiben, zu kalibrieren und zu validieren. Dieses an der Physik der Gletscher orientierte Modell quantifiziert den Massenaustausch zwischen Gletscher und Atmosphäre. Input-Daten, die mehrere Jahrhunderte umfassen, sollen schließlich aus Simulationen des Paläoklimas mit gekoppelten Zirkulationsmodellen (globale Klimamodelle) kommen. Um den Klimamodell-Output auf die lokalen Verhältnisse am Kilimanjaro zu transferieren, ist eine Regionalisierungstechnik (statistisches Downscaling) notwendig. Durch die Anwendung des regionalisierten Datensatzes auf das Massenbilanzmodell entsteht im letzten Schritt eine mindestens 500-jährige Reihe des Gletscherverhaltens (und potenzieller Zyklizität) am Kilimanjaro, die mit (a) anderen Rekonstruktionen von klimaempfindlichen Umweltsystemen (Seestände, Eisbohrkerne) und (b) der großräumigen Klimadynamik im Zirkulationsmodell verglichen werden kann. Der experimentelle Teil des Projekts betrifft die Modellierung der vertikalen Eiskliffs sowie die Erzeugung zeitlich hochaufgelöster lokaler Daten aus dem globalen Klimamodell. usw.
Aims: Floods in small and medium-sized river catchments have often been a focus of attention in the past. In contrast to large rivers like the Rhine, the Elbe or the Danube, discharge can increase very rapidly in such catchments; we are thus confronted with a high damage potential combined with almost no time for advance warning. Since the heavy precipitation events causing such floods are often spatially very limited, they are difficult to forecast; long-term provision is therefore an important task, which makes it necessary to identify vulnerable regions and to develop prevention measures. For that purpose, one needs to know how the frequency and the intensity of floods will develop in the future, especially in the near future, i.e. the next few decades. Besides providing such prognoses, an important goal of this project was also to quantify their uncertainty. Method: These questions were studied by a team of meteorologists and hydrologists from KIT and GFZ. They simulated the natural chain 'large-scale weather - regional precipitation - catchment discharge' by a model chain 'global climate model (GCM) - regional climate model (RCM) - hydrological model (HM)'. As a novel feature, we performed so-called ensemble simulations in order to estimate the range of possible results, i.e. the uncertainty: we used two GCMs with different realizations, two RCMs and three HMs. The ensemble method, which is quite standard in physics, engineering and recently also in weather forecasting has hitherto rarely been used in regional climate modeling due to the very high computational demands. In our study, the demand was even higher due to the high spatial resolution (7 km by 7 km) we used; presently, regional studies use considerably larger grid boxes of about 100 km2. However, our study shows that a high resolution is necessary for a realistic simulation of the small-scale rainfall patterns and intensities. This combination of high resolution and an ensemble using results from global, regional and hydrological models is unique. Results: By way of example, we considered the low-mountain range rivers Mulde and Ruhr and the more alpine Ammer river in this study, all of which had severe flood events in the past. Our study confirms that heavy precipitation events will occur more frequently in the future. Does this also entail an increased flood risk? Our results indicate that in any case, the risk will not decrease. However, each catchment reacts differently, and different models may produce different precipitation and runoff regimes, emphasizing the need of ensemble studies. A statistically significant increase of floods is expected for the river Ruhr in winter and in summer. For the river Mulde, we observe a slight increase of floods during summer and autumn, and for the river Ammer a slight decrease in summer and a slight increase in winter.
Im beantragten Forschungsvorhaben wird der natürliche Austritt von Kohlenstoffdioxid (CO2) aus Mofetten im Eyachtal zwischen Horb und Rottenburg untersucht. CO2 kann sich in der bodennahen Atmosphäre ansammeln und in entsprechender Konzentration für Mensch und Tier gefährlich werden. Die im Eyachtal austretenden Mengen wurden bislang nicht zuverlässig quantifiziert. Darüber hinaus ist CO2 ein Treibhausgas und steht im Zusammenhang mit dem weltweiten Klimawandel. Ähnliche und auch größere Quellgebiete existieren an verschiedenen Orten der Welt. Der quantitative Einfluss dieser natürlichen geologischen Gasquellen auf den Gashaushalt der Erde ist unbekannt, da auch die Menge des ausströmenden CO2 nicht bekannt ist.Ziel des Vorhabens ist die Überwachung der natürlichen CO2 Austrittsquellen sowie der umgebenden Atmosphäre im Eyachtal. Die Messdaten dienen der Bilanzierung der Austrittsmengen sowie die Ermittlung der horizontalen und vertikalen Flüsse im Versuchsgebiet. Hierbei wird auch die zeitliche Veränderung dieser Austritte erfasst.Zu diesem Zweck soll ein mikro-meteorologisches Messsystem (Eddy-Covariance Station) in Kombination mit einem verteilten Netzwerk aus vielen kostengünstigen CO2 Sensoren installiert werden. Ein solches Netzwerk kann die inhomogene Verteilung der Austritte sowohl zeitlich als auch räumlich erfassen. Die Verwendung von kostengünstigen Sensoren erlaubt den Betrieb einer größeren Anzahl von Sensoren und damit verbunden eine größere räumliche Abdeckung.In den letzten Jahren hat die Arbeitsgruppe Umweltphysik der Universität Tübingen eine neue Methode entwickelt, CO2 mit günstigen Sensoren in Bodennähe zu messen. Ein Nachteil der kostengünstigen Sensoren liegt in der (im Vergleich zu hochwertigen Sensoren) geringeren absoluten Messgenauigkeit. Die EC Station dient daher als Referenz, um die erreichbare Genauigkeit und Langzeitstabilität des Sensornetzes zu bewerten, die günstigen Sensoren zu kalibrieren und den turbulenten Transport des CO2 zumindest an einer Stelle direkt zu messen. Für ein vollständiges Netzwerk müssen die CO2 Sensoren noch mit geeigneten Feuchte- und Temperatursensoren ergänzt werden. Die entsprechende Hardware muss beschafft und schrittweise aufgebaut werden.Im Projekt soll ein Netzwerk aus z.B. 64 Sensoren aufgebaut werden, das die räumliche und zeitliche Verteilung des CO2 im Untersuchungsgebiet experimentell bestimmt. Die Beschaffung der Geräte ist bereits von der Alfred-Teufel Stiftung finanziert. Die Messungen werden über eine Datenbank mit Internet Schnittstelle auch der wissenschaftlichen Öffentlichkeit zur Verfügung gestellt.Das Vorhaben gliedert sich in zwei Projektphasen von je drei Jahren Dauer, beantragt wird die erste Phase. In der 2. Phase ist die numerische Simulation der CO2 Ausbreitung und die Übertragung der Methode auf andere Regionen vorgesehen.
| Origin | Count |
|---|---|
| Bund | 350 |
| Wissenschaft | 8 |
| Type | Count |
|---|---|
| Förderprogramm | 350 |
| Repositorium | 8 |
| License | Count |
|---|---|
| geschlossen | 3 |
| offen | 354 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 279 |
| Englisch | 149 |
| Resource type | Count |
|---|---|
| Keine | 202 |
| Webseite | 156 |
| Topic | Count |
|---|---|
| Boden | 228 |
| Lebewesen und Lebensräume | 277 |
| Luft | 248 |
| Mensch und Umwelt | 358 |
| Wasser | 204 |
| Weitere | 355 |