API src

Found 2 results.

Neuartige Altersbestimmung alpiner Gletscher durch 39Ar-ATTA

Das Eis der höchsten Alpengipfel enthält bislang nicht untersuchte, aber überaus wertvolle Klimainformationen. Die interne Altersstruktur der Gipfelgletscher resultiert aus der Reaktion auf Klimabedingungen, die sie Masse gewinnen, verlieren oder stagnieren lassen. Dieses Klimaarchiv ist noch unerforscht, aber akut bedroht von der gegenwärtigen Erwärmung und Extremereignissen. Zum Beispiel ist unzureichend verstanden wie Klimafluktuationen der letzten 1000 Jahre, speziell die so genannte "kleine Eiszeit", die Gipfelgletscher beeinflusst haben. Um diese Frage zu beantworten braucht es Altersinformation über die Gletscherschichtung. Da Abzählen von Jahresschichten nicht möglich ist, muss die Datierung über radiometrische Verfahren erfolgen. Im Altersbereich zwischen 100 und 1000 Jahre vor heute hat nur das Radioisotop des Edelgases Argon, 39Ar, eine passende Halbwertszeit von 269 Jahren, um als Datierungswerkzeug eingesetzt werden zu können. Allerdings ist das Vorkommen von 39Ar in der Natur so gering, dass 1 kg modernes Eis nur etwa 10.000 Atome an 39Ar beinhaltet. Technische Durchbrüche in der Messung von 39Ar in einer Atomfalle (ArTTA) haben es ermöglicht, die benötigte Probenmenge von Tonnen auf ein paar Kilogramm zu reduzieren. Erst dadurch wird die Anwendung zur Gletschereisdatierung durchführbar. Dieses Projekt wird die Methode der ArTTA Datierung für Gletschereis entwickeln, validieren und zur Entschlüsselung neuartiger Klimaarchive anwenden. Bereits bestehende Forschung an der ÖAW und der Uni Heidelberg bieten eine einzigartige Möglichkeit, dieses Vorhaben umzusetzen. Eine in Zusammenarbeit durchgeführte Pilotstudie hat bereits die Machbarkeit des Vorhabens belegt. Daran anschließend soll nun systematisch das Potential der Methode beurteilt werden. Zur Validierung werden Gletscher mit bereits bekannter Altersinformation und zusätzliche radiometrische Datierungen (z.B. über 14C) eingesetzt. Das 39Ar-Datierungsverfahren wird exemplarisch angewendet, um die Klimainformation in der Altersstruktur eines Gipfelgletschers zu rekonstruieren. Die Kenntnis der heutigen Energie- und Massenbilanz ermöglicht die Zuordnung von Akkumulationsänderungen der Vergangenheit zu den ursächlichen Klimaänderungen. Ihre Infrastruktur und hohe Informationsdichte machen die Alpen ein ideales Forschungsfeld für dieses Vorhaben. Schlussendlich wird das 39Ar-Datierungsverfahren für die Paläoklimaforschung erschlossen, mit einem möglicherweise ähnlichen Innovationsschub wie die Anwendung von 14C zur Eisdatierung. Den Einfluss vergangener Klimaschwankungen auf Gipfelgletscher besser zu verstehen wird auch ihre Zukunft besser vorhersagbar machen, mit direkter Relevanz zur Adaption an die sich ändernden Klimabedingungen, aber auch als Beitrag zum Verständnis kleinräumiger Klimaschwankungen und zur Bewusstseinsbildung im Hinblick auf den Klimawandel im Alpenraum.

Der arktische Ozean 2020 - Ventilationszeitskalen, anthropogener Kohlenstoff und Variabilität in einer sich verändernden Umgebung

In der Arktis tritt der der Klimawandel am offensichtlichsten zu Tage. Dies zeigt sich zum Beispiel im starken Rückgang der Meereisbedeckung des arktischen Ozeans, mit Auswirkungen auf die Wärmebilanz der Region und indirekt die Zirkulation in Ozean und Atmosphäre. Die Bildung von Tiefenwasser geht einher mit dem Transport von gelösten Gasen von der Oberfläche in das Innere der Ozeane, auch Ventilation genannt. Die entsprechende Aufnahme von Kohlendioxid, die im arktischen Ozean überproportional ausgeprägt ist, stellt einen wichtigen Puffer für Treibhausgasemissionen dar. Ihre Kenntnis ist entscheidend für aussagekräftige Klimaszenarien.Die Ventilationszeitskalen können über die Messung gewisser Spurenstoffe (Tracer) bestimmt werden, die einem zeitlich variablen Eintrag oder dem radioaktiven Zerfall unterliegen. Allerdings sind klassische Tracer wie Freon-12 und Schwefelhexafluorid (SF6) sowie eine Reihe moderner so genannter „Medusa Tracer“ in den tiefsten Bereichen des arktischen Ozeans nicht nachweisbar. Mit der neuen Atom Trap Trace Analysis (ATTA) Methode ist es nun möglich, das Radioisotop 39Ar in Meerwasser zu messen und damit genau die Zeitskala abzudecken, welche bisher nicht präzise bestimmt werden konnte. Im Zusammenspiel mit den genannten Tracern sowie dem Radiokohlenstoff 14C können somit Altersverteilungsfunktionen und letztlich die Ventilationszeitskalen der gesamten Wassersäule bestimmt werden. Dieser Ansatz wird ergänzt durch Messungen von Edelgasen zur Bestimmung von Sättigungsanomalien an der Oberfläche sowie der langlebigen anthropogenen Radioisotope 236U und 129I, die als Markierung von Atlantikwasser das Studium des Austausches zwischen Nordatlantik und Arktischem Ozean ermöglichen. In diesem Projekt sollen Proben für alle genannten Tracer während einer Expedition auf dem Eisbrecher ODEN im Jahr 2021 in der Zentralarktis genommen und gemessen werden. Die Daten dienen zur Bestimmung von Modellparametern von Aufenthaltszeitverteilungen, die wiederum die Grundlage zur Berechnung des Wassersäuleninventars des anthropogenen Kohlenstoffes bilden. Die Resultate werden mit biogeochemischen Ansätzen verglichen und zur Abschätzung der Ozeanversauerungsrate verwendet. Die weiteren Tracerdaten geben Aufschluss über die Zirkulation im nordatlantischen Raum sowie die Prozesse an der Ozeanoberfläche. Um die aufgrund der klimatischen Effekte zu erwartenden Veränderungen der letzten Jahrzehnte zu bestimmen, werden wir zusätzlich historische Tracermessungen aus der Arktis analysieren.Aus der Kombination unterschiedlicher innovativer Methoden versprechen wir uns darüber hinaus wichtige methodische Erkenntnisse sowie datenbasierte Randbedingungen für Ozeanmodelle. Die Ergebnisse dieses Projekts werden somit umfangreiche Beiträge liefern zum besseren Verständnis der Zirkulation und Ventilation des arktischen Ozeans, der Kohlenstoffaufnahmekapazität der Ozeane und der Konsequenzen des sich ändernden arktischen und globalen Klimas.

1