Das Projekt "Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Küstenfernes Süßwasser: 3D numerische Simulationen von Grundwasserströmung am New Jersey Shelf" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: RWTH Aachen University, E.ON Energy Research Center (E.ON ERC) Institute for Applied Geophysics and Geothermal Energy (GGE).Ziel dieser Studie ist die Erforschung der Grundwasserbewegung im New Jersey Shelf (NJS). Ende der 1970er Jahre wurde Grundwasser mit deutlich geringerem Salzgehalt als Meerwasser in zahlreichen Bohrungen entlang der U.S. Ostküste nachgewiesen - teilweise mehr als 100 km vom Festland entfernt. Besonders detaillierte Daten zur Porenwassersalinität wurden im Rahmen von IODP Leg 313 am NJS gewonnen: Sie zeigen abrupte vertikale Salinitätskontraste an allen drei Bohrlokationen. Verschiedene Autoren erklären die Entstehung von küstenfernem Süßwasser im NJS durch rezenten meerwärts gerichteten Grundwasserfluss oder führen sie auf ein erhöhtes hydraulisches Potential während der letzten Eiszeit zurück. Zur Klärung welcher dieser Prozesse zur Entstehung von küstenfernem Süßwasser geführt hat, soll im Rahmen dieser Studie, auf der Basis eines detaillierten 3D hydrogeologischen Modells, die Grundwasserströmung im NJS numerisch simuliert werden. Es werden folgende Arbeitshypothesen aufgestellt: 1. Küstenfernes Süßwasser im NJS entstand während der letzten Eiszeit. 2. Ablandige Grundwasserströmung reicht gegenwärtig nicht bis zu 100 km von der Küste. 3. Küstenferne Süßwasservorkommen sind auf Sedimentschichten mit niedriger Permeabilität beschränkt. Die verfügbare Datengrundlage ist exzellent und besteht neben petrophysikalischen Messungen und Bohrlochdaten vergangener ODP/IODP Expeditionen aus zahlreichen 2D seismischen Profilen. Das gleichnamige Projekt wird seit Mitte 2015 an der TU Freiberg und seit Ende 2016 an der RWTH Aachen durch die DFG gefördert. Eine Tiefenmigration reflexionsseismischer Profile ist nahezu abgeschlossen und bildet die Grundlage zur Erstellung eines hydrogeologischen Modells. Auf Basis einer sequenz-stratigraphischen Interpretation der seismischen Daten und unter Berücksichtigung der aus Bohrlochdaten abgeleiteten Korngrößenverteilung am NJS, wurde mittels geostatistischer Verfahren ein komplexes, über 30 Millionen Gitterpunkte umfassendes und geologisch plausibles 2D Faziesmodell erstellt. Dabei ist jeder Faziestyp durch bohrloch- und literaturgestützte petrophysikalische Eigenschaften charakterisiert. Nach sorgfältiger Definition von Anfangs- und Randbedingungen, bildet dieses Modell die Grundlage für vorläufige numerischer Simulationen. Die Simulationsergebnisse sind vielversprechend und deuten auf eine Bestätigung der oben genannten Hypothesen hin. Zukünftig geplante Arbeiten umfassen eine Erweiterung des hydrogeologischen Modells in 3D unter Einbeziehung multiple-point-geostatistischer Methoden. Dabei sollen auch die durch eine AVO-Analyse der Seismik abgeleiteten petrophysikalischen Parameter berücksichtigt werden. Die Überprüfung der oben genannten Hypothesen wird durch numerische Simulationsrechnung auf Basis des finalen 3D Modells erfolgen. Die Ergebnisse dieser Studie können zu einem verbesserten Verständnis von meerwärts gerichtetem Grundwassertransport im Allgemeinen beitragen.
Das Projekt "Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Globale Relevanz von Gashydrat-gefüllten Rissen für Hangstabilität" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), Forschungsbereich 4 Dynamik des Ozeanbodens: Marine Geodynamik.Submarine Hangrutschungen stellen ein bedeutendes Risiko für Offshore-Infrastrukturen und Küstengebiete dar, da sie zum Beispiel gefährliche Tsunamis auslösen können, wie der Storegga Slide vor der Küste Norwegens. Neben anderen Präkonditionierung für Hangrutschungen, wie steile Hangneigung oder Überdruck in den Porenräumen der Sedimente verursach im Zusammenhang mit Eiszeiten, wurde die Auflösung von Gashydraten in vielen Studien diskutiert. Die weltweite räumliche Überscheidungen von submarinen Hangrutschungen und Gashydratvorkommen hat zu der Hypothese geführt, dass die Auflösung von Gashydraten in Zeiten von Meeresspiegelsenkung oder Erderwärmung eine Hangrutschung auslösen kann. Dieser Prozess entfernt die zementierenden Gasyhdrate aus den Porenräumen und das frei werdende Gas verursacht zusätzlichen Überdruck . Obwohl Studien mithilfe von numerischen Modellierungen gezeigt haben, dass diese Hypothese realistisch ist, konnte die Forschung keine geologischen oder geophysikalischen Beweise dafür finden, dass dieser Prozess wirklich eine Hangrutschung ausgelöst hat. Außerdem zeigen verschiedene Studien, dass viele submarine Hangrutschungen retrogressiv sind und auf dem mittleren bis unteren Kontinentalhang ausgelöst werden. Diese Beobachtung lässt vermuten, dass andere Prozesse die Rutschungen auslösen. Davon abgesehen gibt es keinen Zweifel, dass Gashydrate die geotechnischen Eigenschaften von Sedimenten stark beeinflussen. Daher ist es wichtig ihren Einfluss auf die Hangstabilität weiter zu untersuchen und neue Hypothesen zu testen. Das übergeordnete wissenschaftliche Ziel dieses Antrags ist es, (1) die globale Relevanz von Gashydratgefüllten Rissen für Hangstabilität zu ergründen und (2) den Einfluss von Scherfestigkeitsvariationen auf Störungsverläufe und Stressmerkmale, wie z.B. Bohrlochausbrüche, zu verstehen. Bis jetzt war es nicht möglich gewesen, den Zusammenhang zwischen Gashydraten und Hangstabilität herzustellen, da ein umfangreicher Datensatz aus geotechnischen, geologischen und geophysikalischen Daten aus einem Gebiet mit Gashydrate verursachten Rutschungen nicht verfügbar war. Die IODP Expedition 372 hat dies geändert. Uns stehen jetzt Logging-While-Drilling Daten und Sedimentkerne von dieser Expedition zur Verfügung, genauso wie ein hochauflösender 3D Seismik Datensatz, der mit dem GEOMAR P-Cable System im Jahre 2014 aufgezeichnet wurde. Diese Daten im Zusammenhang mit einer Scherzelle für Gashydrathaltige Sedimente auf dem neusten Stand der Technik am GEOMAR, die es erlaubt die Deformation der Probe live mit einem 4D X-ray CT zu beobachten, wird es uns ermöglichen, einen Entscheidenden Schritt vorwärts in der Gashydrat- und Hangstabilitätsforschung zu machen.
Das Projekt "Schwerpunktprogramm (SPP) 1488: Planetary Magnetism (PlanetMag), Co-estimation of the Earth main magnetic field and the ionospheric variation field" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Potsdam, Institut für Mathematik.The aim of this project is to co-estimate models of the core and ionosphere magnetic fields, with the longer-term view of building a 'comprehensive' model of the Earths magnetic field. In this first step we would like to take advantage of the progresses made in the understanding of the ionosphere by global M-I-T modelling to better separate the core and ionospheric signals in satellite data. The magnetic signal generated in the ionosphere is particularly difficult to handle because satellite data provide only information on a very narrow local time window at a time. To get around this difficulty, we would like to apply a technique derived from assimilation methods and that has been already successfully applied in outer-core flow studies. The technique relies on a theoretical model of the ionosphere such as the Upper Atmosphere Model (UAM), where statistics on the deviations from a simple background model are estimated. The derived statistics provided in a covariance matrix format can then be use directly in the magnetic data inversion process to obtain the expected core and ionospheric models. We plan to apply the technique on the German CHAMP satellite data selected for magnetically quiet times. As an output we should obtain a model of the ionospheric magnetic variation field tailored for the selected data and a core-lithosphere field model where possible leakage from ionospheric signals are avoided or at least reduced. The technique can in theory be easily extended to handle the large-scale field generated in the magnetosphere.
Das Projekt "Eine neuartige Beschreibung des Wärmetransports zwischen Flüssigkeiten und rauen Rissflächen in porösen Gesteinen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bochum, Institut für Geologie, Mineralogie und Geophysik, Arbeitsgruppe Hydrogeologie.Wärmetransfer in geklüfteten porösen Medien ist ein essentieller Prozess im Erdinnern. Er ist Triebkraft für zahlreiche Naturphänomene, wie Geysire, hydrothermische und vulkanische Systeme, als auch für Naturgefahren wie Gesteinsbrüche und Erdbeben. Er bildet die Grundlage für industrielle Anwendungen, etwa im Bereich Geothermie. Die Fließbewegung in Risssystemen kann recht gut beschrieben werden. Es existiert eine breite Auswahl an Ansätzen, u. a. aus der Kontinuumsmechanik, multiple Medien und die explizite Beschreibung von Klüften. Allerdings haben existierende Modelle für den Wärmetransfer zwei große Schwachpunkte: Oft wird ein thermisches Gleichgewicht zwischen Gestein und Fluid vorausgesetzt und die Rolle der Risse vernachlässigt. Beides ist eng miteinander verbunden, da Risse mit hohen Fließgeschwindigkeiten eine Ursache für ein thermisches Ungleichgewicht sind und eine passende Beschreibung des Wärmetransfers in Rissen fehlt. In diesem Projekt wird ein neuartiges Modell entwickelt, um Wärmetransfer in Klüften unter Berücksichtigung mikroskopischer Rissoberflächenmorphologie zu beschreiben. Aktuelle Laborexperimente erlauben eine Analyse dieser Prozesse in bisher unbekannter Genauigkeit und ermöglichen einen tief gehenden Vergleich mit theoretischen Modellen. Oberflächenrauhigkeit, Öffnungsweite und Kontaktfläche beeinflussen Fließfeld wie Wärmetransfer. Gleichzeitig verändert Temperatur die Fluideigenschaften, und Risscharakteristiken hängen vom Spannungsfeld ab, welches wiederum von Temperatur und Fluiddruck abhängt. Ein passendes Wärmemodell muss daher auch hydraulische und mechanische Prozesse berücksichtigen, was in einem vollständig gekoppelten thermisch-hydraulisch-mechanischen Modell resultiert. Die theoretische Modellentwicklung beginnt mit einfachen Geometrien, um gute Vergleichbarkeit mit Laborergebnissen von externen Projektpartnern im Centimeterbereich zu ermöglichen. Daran schließt sich die Erweiterung auf komplexe Kluftnetzwerke an. Um auch für Anwendungen mit hunderten Metern Ausdehnung geeignet zu sein, wird das Modell mit statistischen Methoden skaliert und durch andere Parameter beschrieben, wie der Rissdichte. Anwendung auf Feldskala und Vergleich mit Messungen dienen zur Evaluation. Eine Einbindung des entwickelten Modells in eine Auswahl an wissenschaftlichen Softwareprogrammen ist geplant. Dieser innovative Ansatz kann in unterschiedlichen Modellen unabhängig von der gewählten Rissrepräsentation verwendet werden. Das vorgeschlagene Projekt schließt die lang existierende Lücke einer über die Skalen konsistenten Beschreibung des Wärmetransfers in geklüfteten porösen Medien unter Berücksichtigung statischer wie dynamischer Größen. Erstmals wird es möglich sein den Einfluss und die Interaktion einzelner Bedingungen und Gegebenheiten auf den Wärmetransfer und -transport im Detail zu untersuchen. Die Bestimmung der transferierten Wärme in natürlichen und industriellen Anwendungen wird sich dadurch signifikant verbessern.
Das Projekt "Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Untersuchung einer möglichen Beziehung zwischen tektonischen und klimatischen Entwicklungen: Eozäne-Oligozäne Chronologie des Südwest Pazifiks" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bremen, Fachbereich 05: Geowissenschaften, Fachgebiet Marine Geophysik.IODP Expedition 371 (Tasman Frontier Subduction Initiation and Paleogene Climate, 27. Juli bis 26. September 2017) hat 2506 m kretazische bis pleistozäne Sedimente an sechs neuen Lokationen erbohrt. Hauptziel der Expedition ist die genaue Datierung seismischer Reflektoren im Gebiet der Tasmansee und Nord-Zealandia, die für das mittlere Eozän eine großräumige konvergente Deformation mit Aufschiebungen und Hebungen nachweisen. Im ausgehenden Eozän/Oligozän wurde diese von einer beträchtlichen ( größer als 1 km) Subsidenz abgelöst, welche als Vorläufer der beginnenden Tonga-Kermadec-Subduktion angesehen wird. Möglicherweise steht dieser grundlegende tektonische Regimewechsel in kausaler Beziehung mit der globalen Klimaabkühlung nach dem Klimaoptimum des frühen Eozäns (EECO). Entscheidend könnte hierbei sein, dass der tektonische Regimewechsel mit einer signifikanten pCO2-Abnahme einherging und somit die beobachtete weltweite Abkühlung bewirkt haben könnte.Im hier beantragten Vorhaben sollen Sedimentserien des Eozän und Oligozän untersucht werden. Primäre Ziele dieses Projekts sind (1) die Entwicklung einer auf Polaritätsumkehr basierenden Chronostratigraphie der IODP Exp. 371 und Cadart-Kernbohrung (Zentral-Neukaledonien), und (2) die Datierung der tektonischen Entwicklung des Südwestpazifiks anhand der neuen Chronostratigraphie. Erste magnetische Messungen an Bord konnten belegen insbesondere an den Sites U1507, U1508, und U1511, dass die paläomagnetischen Informationen vertrauenswürdig sind und sich für Polaritäts-Magnetostratigraphie eignen.Sekundäres Ziel des Vorhabens ist (3) eine genaue Erfassung der Hämatitgehalte in den eozänen Sedimenten des Tasmanbeckens, um die Raten der chemischen Verwitterung auf dem australischen Kontinent zu rekonstruieren. Vorläufige Daten von Bohrung U1511 (Tasman-Tiefseeebene) zeigen eine relative Anreicherung des, dem australischen Kontinent entstammenden, sedimentären Hämatits während des frühen Eozäns, gefolgt von dessen Abnahme im nachfolgenden Mittel- und Späteozän. Laut Dallanave et al. (2010, Geochem. Geophys. Geosyst. 11(7)) bilden die Variationen des detritischen Hämatiteintrags die Intensität der chemischen Verwitterung im Ursprungsgebiet der Sedimente wirksam ab. Die chemische Verwitterung von Silikatmineralen, gefolgt von mariner Karbonatablagerung, ist der einzige Langzeitmechanismus, der den atmosphärischen CO2-Gehalt puffern und somit die globale Durchschnittstemperatur modulieren kann. Daher sollen in diesem Projekt die während Exp. 371 erbohrten Sedimente genutzt werden, die Intensität der chemischen Verwitterung an Land in Zeiten globalen Klimawandels zu erfassen.Erst der in diesem Projekt geplante integrale Datensatz wird ein vollständiges Bild der tektonischen und klimatischen Entwicklung auf einer gemeinsamen Zeitbasis schaffen und Licht in die Zusammenhänge zwischen Großtektonik und Globalklima werfen.
Das Projekt "Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm (ICDP); International Continental Drilling Program (ICDP), Teilprojekt: Kern-Log-Seismik Integration in kristallinem Gestein am Beispiele des ICDP Bohrprojektes COSC-1, Schweden" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), Forschungsbereich 4 Dynamik des Ozeanbodens: Marine Geodynamik.Ziel des Projektes ist die detaillierte Untersuchung der geologischen Strukturen und petrophysikalischen Eigenschaften der skandinavischen Kaledoniden. Im Rahmen des ICDP Projektes Collisional Orogeny in the Scandinavian Caledonides (COSC) werden wichtige gebirgsbildende Prozesse, wie die Entstehung von tektonischen Decken, näher untersucht. Mit den neu gewonnenen Kenntnissen soll ein Vergleich der Kaledoniden mit modernen Analoga, wie dem Himalaja, möglich sein. Hauptziel dieses Projektantrages ist die Entwicklung einer hoch auflösenden seismischen Stratigraphie des Seve Nappe Complex (SNC) mittels Kern-Log-Seismik Intergration (Core-Log-Seismic Integration, CLSI) im Bereich der COSC-Bohrung und deren Umgebung. Dadurch können markante petrophysikalische Eigenschaften des SNC und seiner Umgebungsgesteine bestimmt und somit die Entstehung des Komplexes besser verstanden werden. Abschließend sollen die gewonnen Informationen vom Bohrloch in ein großräumiges Modell extrapoliert werden. Dazu werden hochauflösende seismische 2D und 3D Migrationsergebnisse verwendet, die dank Bohrlochseismik teufenkalibriert sind. Die reflexionsseismische Abbildung des Untergrundes reicht jedoch nicht für eine detaillierte seismische Stratigraphie aus. Zusätzlich müssen hochauflösende petrophysikalische Messungen an Bohrkernen und im Bohrloch beachtet werden. Daher ist die gemeinsame Betrachtung und gegenseitige Kalibrierung aller Daten notwendig, um die Zusammensetzung und Entstehung der primären Scherzonen (wahrscheinlich umgewandelt in Mylonite) zwischen den Decken umfassender zu beleuchten. Unser Projektantrag konzentriert sich auf die Untersuchung geo- und petrophysikalischer Eigenschaften der Gesteine, unter Verwendung eines interdisziplinären Ansatzes basierend auf CLSI. Dabei nutzen wir Kernmessungen, Logging und seismische Daten, welche verschiedene räumliche Auflösungen besitzen. Die CLSI-Methode wurde bereits erfolgreich im marinen und lakustrinen Umfeld eingesetzt. Mit den Mitteln aus diesem Projektantrag soll die Methode erstmalig auf Hartgestein angewandt werden, wodurch der Ansatz erweitert werden muss, um den Anforderungen im Kristallin gerecht zu werden. Das COSC-Projekt wurde als Fallbeispiel ausgewählt, da in dem Projekt qualitativ hochwertige Daten aus allen benötigten Bereichen vorhanden sind. Der umfassende seismische Datensatz (2D und 3D) wird durch eine hochauflösende Bohrlochseismik komplettiert und die Logging-Daten zeichnen sich durch eine sehr gute Qualität aus. Zusätzlich zu bohrbegleitenden Kernmessungen arbeiten verschiedene Gesteinslabore an einer Vielzahl der erbohrten Kerne. Alle Wissenschaftler, die bereits an Daten und Proben des COSC Projektes arbeiten, haben zugestimmt, sich an diesem Projekt zu beteiligen bzw. dieses zu unterstützen.
Das Projekt "Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm (ICDP); International Continental Drilling Program (ICDP), Teilprojekt: MagmaCourse: Fluidwegsamkeiten im Eger Rift identifiziert durch gemeinsame numerische und analoge Modellierungen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum.Das Ziel des Antrags ist ein Modell der tiefen Fluidbewegung und ihrer Wegsamkeiten in dem Eger Rift zu entwickeln. Wir planen zum ersten Mal mechanische Modellierung (numerische Simulationen und unterstützende analoge Laborexperimente) mit sogenannten constrained Magnetotellurischen Inversionen und mit geochemischen Modellen zu verbinden. Dieser Prozess soll interaktiv geschehen, so dass das Resultat der einen Methode als Rahmenbedingung der anderen verwendet werden kann.Die Schwarmbeben im Vogtland/Westböhmen sind ein Beispiel für krustale Seismizität, bei der Fluide eine bedeutende Rolle spielen. Bezüglich der Schwarmbeben und ihrer Prozesse gibt es kontroverse Ansichten und unbeantwortete Fragen: F1) Welche Rolle spielt die regionale intrakontinentale Tektonik? Die Umgebung stellt eine Paleozoische Suturzone da, die in der Erdneuzeit durch post-orogene Extension reaktiviert wurde und dabei die Eger und Cheb-Domazlice Graben gebildet hat. Starke und räumlich verbreiteter alkalischer Vulkanismus ist ebenso mit dieser Region assoziiert. Durch was wurden die räumliche Ausbreitung und die geochemische Zusammensetzung des Vulkanismus kontrolliert? Welche Verbindung gibt es zwischen der Seismizität und dem Vulkanismus?F2) Welche Rolle spielen tiefe Fluidwegsamkeiten? Isotopenverhältnisse zeigen einen hohen aus dem oberen Erdmantel stammenden CO2 Fluss, der die Erdoberfläche in Form von CO2 angereicherten Mofetten und hydrothermaler Aktivität erreicht. Welche Wegsamkeiten existieren, entlang derer Magma und andere Fluide aufsteigen können; durch welche Faktoren werden sie kontrolliert? Welche Zusammensetzung und physikalisch- chemische Eigenschaften haben diese Fluide insbesondere auch während des Aufstiegs?F3) Welche Rolle spielen existierende Störungszonen, um Fluide zu kanalisieren und Seismizität zu triggern? Wie lassen sich die mechanischen Eigenschaften dieser Hochdruckfluide beschreiben, die in diese Störungszonen eindringen? Welche Prozesse und welche Mechanismen unterstützen diese Fluidbewegung? Wie ist die Zusammensetzung dieser krustalen Fluide, die in die seismisch aktiven Regionen vordringen? Was sind ihre physikalischen Eigenschaften und wie ist ihre zeitliche Entwicklung?Diese miteinander verbundenen Fragen stehen im Zentrum des ICDP Eger Rift Projekts. Wir werden numerische und analoge mechanische und geochemische Simulationen entwickeln. Dazu soll der Modellraum von 2D/3D MT Inversionsmodelle über das Gebiet der Schwarmbeben und Mofetten durch constrained Inversionen durch mechanische Simulationsergebnisse eingeschränkt werden. Vorhandene tiefe krustale Seismikdaten sowie MT Daten, die entlang von 2 senkrecht zueinander stehenden Profilen (Herbst 2015) und auf einem dichten Gitter (Frühjahr 2016) gemessen wurden, bilden hierbei die Datenbasis. Ein solcher Ansatz ist neu und zukunftsweisend für eine bessere Integration der Ergebnisse.
Das Projekt "Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Die Öffnung der Fram-Straße und ihr Einfluss auf Sedimenttransport, Klima und Ozeanzirkulation zwischen Arktis und Nordatlantik" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung.Die Öffnung im frühen Neogen und anschließende Verbreiterung und Vertiefung der Fram-Straße, der einzigen Tiefenwasserverbindung zwischen Arktischem und Atlantischem Ozean, stellt ein grundlegendes tektonisches Ereignis dar, das weitreichende Konsequenzen fuer die globale Ozeanzirkulation und die Klimaentwicklung sowie fuer Sedimentationsprozesse in den angrenzenden Ozeanbecken und entlang der Kontinentalränder hatte. Die entstandenen Sedimentarchive erlauben es in der Kombination von seismischen Kartierungen mit stratigraphischen Untersuchungen an existierenden DSDP/ODP-Bohrkernen, Rueckschluesse auf die Entwicklungsgeschichte dieser tiefen Meeresstrasse auf tektonischen Zeitskalen (100.000-1.000.000 Jahre) zu ziehen. Die seismostratigraphische Untersuchung von sedimentären Strukturen anhand teilweise neu zu bearbeitender reflexionsseismischer Profile in der Fram-Straße und den Antragstellern neu zugänglich gemachter externer Daten von den angrenzenden bzw. konjugierten Kontinentalrändern von Grönland und Norwegen (Daten von BGR, NPD, GEUS) stellt somit wertvolle Informationen ueber die regionale tektonische, ozeanographische und klimatische Entwicklung bereit, u.a der Vereisungsgeschichte der nördlichen Hemisphäre. Unser Ziel ist es, aus den Reflexionsmustern und internen Sedimentstrukturen seismischer Profile auf die Ablagerungsmechanismen zu schließen, um damit wiederum tektonische Prozesse sowie Veränderungen der ozeanischen Zirkulation in der Fram-Straße zu rekonstruieren. Einen wesentlichen Beitrag dazu leisten veröffentlichte und geplante Überarbeitungen der Chronostratigraphie der DSDP/ODP-Bohrkerne der Lokationen 343, 642/643, 909, 910, 912 und 913, die eine Datierung der seismischen Grenzflächen (Reflektoren) und eine sedimentologische Charakterisierung der seismischen Einheiten ermöglichen.
Das Projekt "Schwerpunktprogramm (SPP) 1488: Planetary Magnetism (PlanetMag), Evolution of geomagnetic dipole moment and South Atlantic Anomaly" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum.The geomagnetic field shields our habitat against solar wind and radiation from space. Due to the geometry of the field, the shielding in general is weakest at high latitudes. It is also anomalously weak in a region around the south Atlantic known as South Atlantic Anomaly (SAA), and the global dipole moment has been decreasing by nearly 10 percent since direct measurements of field intensity became possible in 1832. Due to our limited understanding of the geodynamo processes in Earths core, it is impossible to reliably predict the future evolution of both dipole moment and SAA over the coming decades. However, lack of magnetic field shielding as would be a consequence of further weakening of dipole moment and SAA region field intensity would cause increasing problems for modern technology, in particular satellites, which are vulnerable to radiation damage. A better understanding of the underlying processes is required to estimate the future development of magnetic field characteristics. The study of the past evolution of such characteristics based on historical, archeo- and paleomagnetic data, on time-scales of centuries to millennia, is essential to detect any recurrences and periodicities and provide new insights in dynamo processes in comparison to or in combination with numerical dynamo simulations. We propose to develop two new global spherical harmonic geomagnetic field models, spanning 1 and 10 kyrs, respectively, and designed in particular to study how long the uninterrupted decay of the dipole moment has been going on prior to 1832, and if the SAA is a recurring structure of the field.We will combine for the first time all available historical and archeomagnetic data, both directions and intensities, in a spherical harmonic model spanning the past 1000 years. Existing modelling methods will be adapted accordingly, and existing data bases will be complemented with newly published data. We will further acquire some new archeomagnetic data from the Cape Verde islands from historical times to better constrain the early evolution of the present-day SAA. In order to study the long-term field evolution and possible recurrences of similar weak field structures in this region, we will produce new paleomagnetic records from available marine sediment cores off the coasts of West Africa, Brazil and Chile. This region is weakly constrained in previous millennial scale models. Apart from our main aim to gain better insights into the previous evolution of dipole moment and SAA, the models will be used to study relations between dipole and non-dipole field contributions, hemispheric symmetries and large-scale flux patterns at the core-mantle boundary. These observational findings will provide new insights into geodynamo processes when compared with numerical dynamo simulation results.Moreover, the models can be used to estimate past geomagnetic shielding above Earths surface against solar wind and for nuclide production from galactic cosmic rays.
Das Projekt "Emmy Noether-Nachwuchsgruppen, Die Quelle der Lovewellen im ozeangenerierten Rauschfeld" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Ludwig-Maximilians-Universität München, Department für Geo- und Umweltwissenschaften, Sektion Geophysik.Rauschkorrelationen (Noise correlations) haben die Seismologie revolutioniert, indem sie es ermöglichen, die gewaltigen Datenmengen an kontinuierlich aufgezeichnetem seismischem Hintergrundrauschen zu verwenden. Letztendlich erlauben sie es, mit diesem Rauschen Seismologie ohne Erdbeben zu betreiben. Die dadurch ermöglichten hochaufgelösten tomographischen Bilder dienen besserer Hypozentrumsbestimmung, besserer Vorhersage maximaler Bodenbeschleunigungen und einem tieferen Verständnis tektonischer Prozesse in der Erdkruste. All dies hat wichtige Folgen für die seismische Risikoabschätzung.Rauschkorrelationen wurden ebenfalls verwendet, um geologische Gefahrenobjekte wie instabile Hänge, Vulkane und Störungszonen auf zeitliche Veränderungen hin zu überwachen. Die meisten Anwendungen haben sich dafür bisher auf die Vertikalkomponente beschränkt, aber zunehmend gewinnt auch die Nutzung der Horizontalkomponenten an Interesse.Mit den Fortschritten und der zunehmenden Anwendung der Methode werden ihre Beschränkungen deutlicher. Ein Problem der Rauschkorrelation ist, dass die resultierende 'Greensche Funktion' nicht nur Information über das von der Welle durchlaufene Medium, sondern auch über die Rauschquellen enthält. Um die Rauschkorrelationsmethode zu verbessern, ist es folglich notwendig, ein hinreichendes Verständnis der Quellen und ihres Verhaltens zu erlangen.Die Quellen der Vertikalbewegung und damit der mikroseismischen Rayleighwellen ist weitgehend erforscht, wohingegen die Quellen der Horizontalbewegung durch Lovewellen weitgehend unbekannt sind. Dieser Antrag zielt darauf ab, Lovewellen im seismischen Hintergrundrauschen und damit auch ihren Beitrag zur Rauschkorrelationsmethode zu charakterisieren und zu verstehen. Dazu wird an grundlegenden Fragen bearbeitet:- Wie werden mikroseismische Lovewellen erzeugt?- Wo werden sie erzeugt? Gibt es geograpische Unterschiede im Vergleich zu den Herkunftsregionen von Rayleighwellen?- Wie sehr tragen Lovewellen zur Energie des mikroseismischen Rauschens bei? Wie hängt dieser Anteil von der Frequenz ab?- Wann werden die stärksten Lovewellen erzeugt? Ändert sich ihr Frequenzgehalt mit der Zeit?Die bisherigen Nutzungen der Rauschkorrelationen sind alle in irgendeiner Weise von den räumlichen und zeitlichen Eigenschaften der Rauschquellen beeinflusst. Ein besseres Verständnis mikroseismischer Lovequellen wird daher den Anwendern der Rauschkorrelationsmethode helfen, indem es bessere Modelle der Erdkruste und ein präziseres Überwachen erlaubt. Dieses Projekt zielt darauf ab, die Ergebnisse der Rauschkorrelationsmethode zu verbessern, indem man die genutzten Rauschquellen versteht. Dazu wird eine datenbasierte Charakterisierung der Lovequellen verbunden mit numerischer Simulation der Erzeugung von Lovewellen.
Origin | Count |
---|---|
Bund | 220 |
Type | Count |
---|---|
Förderprogramm | 220 |
License | Count |
---|---|
offen | 220 |
Language | Count |
---|---|
Deutsch | 162 |
Englisch | 101 |
Resource type | Count |
---|---|
Keine | 11 |
Webseite | 209 |
Topic | Count |
---|---|
Boden | 217 |
Lebewesen & Lebensräume | 157 |
Luft | 60 |
Mensch & Umwelt | 220 |
Wasser | 138 |
Weitere | 220 |