API src

Found 227 results.

Schwerpunktprogramm (SPP) 1889: Regional Sea Level Change and Society (SeaLevel), Teilprojekt: Holozäne Meeresspiegelschwankungen in Südostasien

Relative Meeresspiegelschwankungen resultieren aus dem Zusammenspiel von Eustasie, Isostasie, Tektonik und Subsidenz. Die Rekonstruktion des holozänen Meeresspiegels erlaubt es sowohl vertikale Landbewegungen als auch geophysikalische Modelle zu Glazialen Isostatischen Ausgleichsbewegungen (GIA) zu definieren, welche im Gegenzug benutzt werden um instrumentelle Meeresspiegelmessungen an Gezeitenpegeln zu korrigieren. Dementsprechend repräsentieren regionale Daten zu relativen Meeresspiegelschwankungen während des Holozäns, welche auf der Grundlage von standardisierten Protokollen erhoben wurden, den Ausgangspunkt für weitere Untersuchungen zu Meeresspiegelschwankungen des vergangenen Jahrhunderts und die Grundlage für eine Bewertung von lokalen und regionalen Meeresspiegelschwankungen während des 21ten Jahrhunderts. Obwohl es für einige Gebiete genaue Daten zu holozänen Meeresspiegelschwankungen gibt sind Rekonstruktionen für Südostasien, einer vom zukünftigen Meeresspiegelanstieg hoch gefährdeten Region, noch immer begrenzt und im Bezug auf die korrekte Interpretation von Meeresspiegelanzeigern, deren Höhenbezug zu Normalnull und die Qualität der Altersbestimmungen, fragwürdig. Das übergeordnete Ziel dieses Antrags ergibt sich daher aus der Frage: Wie können wir unser Verständnis über relative Meeresspiegelschwankungen während des Holozäns in Südostasien und die damit in Zusammenhang stehenden Prozesse verbessern? Um diese Frage zu beantworten werden wir veröffentlichte Meeresspiegeldaten neu Auswerten und einem standardisierten Ansatz entsprechend in einer Datenbank zusammentragen. Diesen Datensatz werden wir anschließend mit den Forschungsergebnissen von einigen Inseln im Spermonde Archipel, einer vom zukünftigen Meeresspiegelanstieg hoch gefährdeten Region, ergänzen. Im Anschluss an die Geländearbeit werden wir einen umfassenden Datensatz an geophysikalischen Modellen erstellen welche sowohl auf den Ergebnissen der Datenbank, als auch auf den neu erhobenen Geländedaten beruhen und welche statistische Unsicherheiten im Bezug auf das gewählte Eismodell und die Mantelviskosität beinhalten. Dies wird es uns ermöglichen die volle Bandbreite von GIA Signalen zu erfassen und den Bereich zu definieren welcher am besten zu den geologischen Geländedaten passt. Die Geländedaten werden außerdem auf der Grundlage eines Bayes'schen Ansatzes statistisch ausgewertet um potentielle Muster innerhalb der holozänen Meeresspiegelschwankungen zu entdecken. Die Resultate der statistischen Auswertung werden mit den Ergebnissen einer Satellitenbildauswertung bezüglich der Bevölkerungsdichte und Landnutzungsmustern auf den Inseln im Spermonde Archipel gegengeprüft. Nicht zuletzt durch die enge Zusammenarbeit mit weltweit führenden Experten auf internationaler Ebene wird innerhalb dieses Projekts ein Doktorand in allen Bereichen der Meeresspiegelforschung ausgebildet, von Labor und Geländetechniken bis hin zur geophysikalischen Modellierung und Datenauswertung.

Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm, Teilprojekt: Kern-Log-Seismik Integration in kristallinem Gestein am Beispiele des ICDP Bohrprojektes COSC-1, Schweden

Ziel des Projektes ist die detaillierte Untersuchung der geologischen Strukturen und petrophysikalischen Eigenschaften der skandinavischen Kaledoniden. Im Rahmen des ICDP Projektes Collisional Orogeny in the Scandinavian Caledonides (COSC) werden wichtige gebirgsbildende Prozesse, wie die Entstehung von tektonischen Decken, näher untersucht. Mit den neu gewonnenen Kenntnissen soll ein Vergleich der Kaledoniden mit modernen Analoga, wie dem Himalaja, möglich sein. Hauptziel dieses Projektantrages ist die Entwicklung einer hoch auflösenden seismischen Stratigraphie des Seve Nappe Complex (SNC) mittels Kern-Log-Seismik Intergration (Core-Log-Seismic Integration, CLSI) im Bereich der COSC-Bohrung und deren Umgebung. Dadurch können markante petrophysikalische Eigenschaften des SNC und seiner Umgebungsgesteine bestimmt und somit die Entstehung des Komplexes besser verstanden werden. Abschließend sollen die gewonnen Informationen vom Bohrloch in ein großräumiges Modell extrapoliert werden. Dazu werden hochauflösende seismische 2D und 3D Migrationsergebnisse verwendet, die dank Bohrlochseismik teufenkalibriert sind. Die reflexionsseismische Abbildung des Untergrundes reicht jedoch nicht für eine detaillierte seismische Stratigraphie aus. Zusätzlich müssen hochauflösende petrophysikalische Messungen an Bohrkernen und im Bohrloch beachtet werden. Daher ist die gemeinsame Betrachtung und gegenseitige Kalibrierung aller Daten notwendig, um die Zusammensetzung und Entstehung der primären Scherzonen (wahrscheinlich umgewandelt in Mylonite) zwischen den Decken umfassender zu beleuchten. Unser Projektantrag konzentriert sich auf die Untersuchung geo- und petrophysikalischer Eigenschaften der Gesteine, unter Verwendung eines interdisziplinären Ansatzes basierend auf CLSI. Dabei nutzen wir Kernmessungen, Logging und seismische Daten, welche verschiedene räumliche Auflösungen besitzen. Die CLSI-Methode wurde bereits erfolgreich im marinen und lakustrinen Umfeld eingesetzt. Mit den Mitteln aus diesem Projektantrag soll die Methode erstmalig auf Hartgestein angewandt werden, wodurch der Ansatz erweitert werden muss, um den Anforderungen im Kristallin gerecht zu werden. Das COSC-Projekt wurde als Fallbeispiel ausgewählt, da in dem Projekt qualitativ hochwertige Daten aus allen benötigten Bereichen vorhanden sind. Der umfassende seismische Datensatz (2D und 3D) wird durch eine hochauflösende Bohrlochseismik komplettiert und die Logging-Daten zeichnen sich durch eine sehr gute Qualität aus. Zusätzlich zu bohrbegleitenden Kernmessungen arbeiten verschiedene Gesteinslabore an einer Vielzahl der erbohrten Kerne. Alle Wissenschaftler, die bereits an Daten und Proben des COSC Projektes arbeiten, haben zugestimmt, sich an diesem Projekt zu beteiligen bzw. dieses zu unterstützen.

Emmy Noether-Nachwuchsgruppen, Die Quelle der Lovewellen im ozeangenerierten Rauschfeld

Rauschkorrelationen (Noise correlations) haben die Seismologie revolutioniert, indem sie es ermöglichen, die gewaltigen Datenmengen an kontinuierlich aufgezeichnetem seismischem Hintergrundrauschen zu verwenden. Letztendlich erlauben sie es, mit diesem Rauschen Seismologie ohne Erdbeben zu betreiben. Die dadurch ermöglichten hochaufgelösten tomographischen Bilder dienen besserer Hypozentrumsbestimmung, besserer Vorhersage maximaler Bodenbeschleunigungen und einem tieferen Verständnis tektonischer Prozesse in der Erdkruste. All dies hat wichtige Folgen für die seismische Risikoabschätzung.Rauschkorrelationen wurden ebenfalls verwendet, um geologische Gefahrenobjekte wie instabile Hänge, Vulkane und Störungszonen auf zeitliche Veränderungen hin zu überwachen. Die meisten Anwendungen haben sich dafür bisher auf die Vertikalkomponente beschränkt, aber zunehmend gewinnt auch die Nutzung der Horizontalkomponenten an Interesse.Mit den Fortschritten und der zunehmenden Anwendung der Methode werden ihre Beschränkungen deutlicher. Ein Problem der Rauschkorrelation ist, dass die resultierende 'Greensche Funktion' nicht nur Information über das von der Welle durchlaufene Medium, sondern auch über die Rauschquellen enthält. Um die Rauschkorrelationsmethode zu verbessern, ist es folglich notwendig, ein hinreichendes Verständnis der Quellen und ihres Verhaltens zu erlangen.Die Quellen der Vertikalbewegung und damit der mikroseismischen Rayleighwellen ist weitgehend erforscht, wohingegen die Quellen der Horizontalbewegung durch Lovewellen weitgehend unbekannt sind. Dieser Antrag zielt darauf ab, Lovewellen im seismischen Hintergrundrauschen und damit auch ihren Beitrag zur Rauschkorrelationsmethode zu charakterisieren und zu verstehen. Dazu wird an grundlegenden Fragen bearbeitet:- Wie werden mikroseismische Lovewellen erzeugt?- Wo werden sie erzeugt? Gibt es geograpische Unterschiede im Vergleich zu den Herkunftsregionen von Rayleighwellen?- Wie sehr tragen Lovewellen zur Energie des mikroseismischen Rauschens bei? Wie hängt dieser Anteil von der Frequenz ab?- Wann werden die stärksten Lovewellen erzeugt? Ändert sich ihr Frequenzgehalt mit der Zeit?Die bisherigen Nutzungen der Rauschkorrelationen sind alle in irgendeiner Weise von den räumlichen und zeitlichen Eigenschaften der Rauschquellen beeinflusst. Ein besseres Verständnis mikroseismischer Lovequellen wird daher den Anwendern der Rauschkorrelationsmethode helfen, indem es bessere Modelle der Erdkruste und ein präziseres Überwachen erlaubt. Dieses Projekt zielt darauf ab, die Ergebnisse der Rauschkorrelationsmethode zu verbessern, indem man die genutzten Rauschquellen versteht. Dazu wird eine datenbasierte Charakterisierung der Lovequellen verbunden mit numerischer Simulation der Erzeugung von Lovewellen.

Hydraulische Konnektivität in oberflächennahen, unverfestigten Porengrundwasserleitern

Für die Charakterisierung und Quantifizierung der Konnektivität von hydrostratigraphischen Einheiten in Porengrundwasserleitern ist im Vergleich zur Erfassung und Quantifizierung der räumlichen Verteilung hydraulischer Leitfähigkeiten bisher nur wenig Forschung betrieben worden. Dies trifft nicht nur auf die theoretische Betrachtung der Konnektivität von Aquiferstrukturen verschiedener Größenordnungen zu, sondern insbesondere auch auf deren Erfassung und Quantifizierung durch Feldversuche. Die Unsicherheiten bezüglich der Kontinuität hydrostratigraphischer Einheiten genauso wie die bisher noch größere Unsicherheit bezüglich ihrer Konnektivität, führen immer noch zu teils erheblichen Problemen bei der Betrachtung, Modellierung und Vorhersage des realen, natürlichen Stofftransports insbesondere in heterogenen Grundwasserleitern. Daher glauben wir, dass eine genauere Betrachtung und Erforschung von Konnektivität von wesentlicher Relevanz für die Erfassung der Stofftransporteigenschaften in heterogenen Aquiferen ist. In diesem Zusammenhang basiert unsere initiale Arbeitshypothese auf einer Verbindung zwischen Konnektivität und Signalimpulsen verschiedener Frequenzbereiche von hydraulischen Messungen als auch für Messungen der Spektralen Induzierten Polarisation (SIP). Dabei soll der Zusammenhang zwischen Signalfrequenz und Signalamplitudendämpfung (für SIP zusätzlich Phasenverschiebung) als möglicher Indikator (oder als Maß) für verschiedenartige Konnektivitäten untersucht werden. Ausgangspunkt dieses Projektes ist zunächst die Entwicklung eines oder mehrerer theoretischer Konnektivitätskonzepte. Weiterhin soll das Potential geophysikalischer (SIP) und hydraulischer Messungen (z.B. Direct Push gestützte Cross-Hole oder Slug Interference Tests) sowie eine Kopplung von hydraulischen und geophysikalischen Messungen untersucht werden. Dabei soll vor allem die erwähnte Frequenzabhängigkeit der gemessenen Signale für verschiedene Konnektivitätsszenarien näher betrachtet werden um deren Eignung für die Erfassung der Konnektivität zu prüfen. Dafür werden direkt vergleichbare und simultan durchgeführte Laborversuche und numerische Simulationen der unterschiedlichen Konnektivitätsszenarien betrachtet. Die Experimente und Simulationen werden dabei mit steigender Komplexität, auf unterschiedlichen Größenordnungen und dementsprechend mit unterschiedlichen Konnektivitätsszenarien realisiert. Die Ergebnisse der Simulationen und Experimente sollen dann genutzt werden, das entwickelte theoretische Konzept (bzw. die Konzepte) iterativ anzupassen und zu optimieren. Das Hauptziel des Projektes besteht darin, dass auf der Basis des optimierten theoretischen Konnektivitätskonzepts die Ergebnisse der (simulierten) Labor- und Feldexperimente nutzen zu können, um Konnektivität messen und diese neue Information letztendlich in Strömungs- und Transportmodelle einfließen lassen zu können.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - International Ocean Discovery Program, Teilprojekt: Seismische Voruntersuchungen für eine IODP Bohrung auf dem Kapverden Plateau

Hauptfragestellungen des IODP-Vorschlags 'Cenozoic climate, productivity, and sediment transport at the NW African continental margin' sind: i) das NW-Afrikanische Klima in einer wärmeren Welt und ii) die Reaktion hochproduktiver Ökosysteme auf andere Klimabedingungen als heute. Dazu sollen Sedimentkerne in sechs Gebieten vor NW-Afrika erbohrt werden. Eine zentrale Lokation für die Arbeiten liegt auf dem Kapverden Plateau in der Nähe der ODP-Bohrung 659. Für dieses Gebiet existieren jedoch keine modernen hochauflösenden seismischen Daten. Solche Daten werden im Rahmen der Meteor-Ausfahrt M155 im Zeitraum vom 26. Mai bis 30. Juni 2019 gesammelt. Hauptziel dieses DFG-Antrags ist die Bearbeitung und Interpretation der neuen seismischen Daten, um die Sedimente des Kapverden Plateaus seismisch-stratigraphisch einzuordnen. Die seismischen Untersuchungen zielen darauf ab, eine Lokation zu identifizieren, an dem das Plio-Pleistozän dünner und das Miozän mächtiger ist als in der ODP-Bohrung 659. Damit wäre es möglich mittels APC-XCB tiefer in das Miozän zu bohren, was von entscheidender Bedeutung für die Gewinnung von qualitativ hochwertigen Kernen für Paläoklimauntersuchungen ist.

Mehr als verschüttete Täler: Dienen Tunneltäler als bevorzugte Fließwege für frisches Grundwasser in der Nordsee?

Die stetig wachsende Bevölkerung führt zu einem steigenden Bedarf an Frischwasser und die Entnahme von Grundwasser ist eine der wichtigsten Quellen diesen Bedarf zu decken. Engpässe in der Frischwasserversorgung haben die Suche Nachweis von frischem Grundwasser unter dem heutigen Meeresboden angetrieben. Die Rolle glazialer Strukturen, welche während der Vergletscherungen entstanden sind, ist jedoch im Hinblick auf das Vorkommen frischen Grundwassers noch wenig bekannt. Insbesondere sogenannte Tunneltäler (TT), welche sich unter den Eisschilden bildeten, könnten von besonderer Relevanz sein. Ihre Ausmaße (bis zu 5 km breit, 400 m tief, 100te km lang) spiegeln die gewaltigen Schmelzwassermengen wider, die den Untergrund unter den Eisschilden durchspülten. Ihre Entstehung und Füllung resultierte in stark durchlässigen Sanden und Kiesen im unteren Teil und feinkörnigen Ablagerungen im oberen Teil dieser Strukturen. Diese Konfiguration begünstigt eine Rolle als bevorzugte Fließwege für offshore Grundwasser. Zur Untersuchung des Potenzials von TT als bevorzugte Fließwege für offshore frisches Grundwasser (OFG), verfolgt dieses Projekt folgende Ziele: (O1) Durch die Kombination von elektromagnetischen und seismischen Daten wollen wir ein strukturgebundenes Widerstandsmodell für mehrere TT erstellen; (O2) Wir wollen die Salzgehaltswerte für verschiedene Architekturen und Tiefen von TT abschätzen; (O3) Aufbauend auf den ersten beiden Zielen wollen wir die Ergebnisse für das gesamte Arbeitsgebiet in ein detailliertes lithologisches 3D-Modell extrapolieren. Die sich daraus ergebende Salzgehaltsverteilung im Untergrund wird dazu beitragen, die Ober- und Untergrenzen des Volumens frischen Grundwassers abzugrenzen und die Grundlage für ein detailliertes Grundwassermodell schaffen. Folgende Schritte sind dazu nötig: (S1) Kartierung und Charakterisierung der räumlichen Heterogenität von TT anhand vorhandener seismischer Daten; (S2) Erstellung eines lithologischen Modells für den Untergrund zwischen Amrum und Helgoland von 0 bis 400 m Tiefe; (S3) Identifizierung vielversprechender Standorte und Durchführung von CSEM-Messungen (Controlled Source Electromagnetic) zur Untersuchung der Verteilung des elektrischen Widerstands im Untergrund (TT); (S4) Kombination von Widerstandsmessungen mit Mehrkanal-Seismikdaten (MCS) zur Ableitung des Salzgehalts der Porenflüssigkeit; (S5) Extrapolation der Ergebnisse für das gesamte lithologische Modell. Tunneltäler existieren in ehemals vergletscherten Regionen weltweit. Gelingt uns der Nachweis von OFG in Tunneltälern, hätte dies erhebliche Implikationen für bisher unbekannte Süßwasserverteilungen und hydrologische Systeme. Die uns zur Verfügung stehenden Daten bieten eine einzigartige Möglichkeit zur Integration von CSEM- und seismischen Messungen bei begrenztem Aufwand. Die Ergebnisse des Projekts werden einen neuen Blick auf offshore Gletscherlandschaften und ihre Rolle im pleistozänen Wasserkreislauf erlauben.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - International Ocean Discovery Program, Teilprojekt: Küstenfernes Süßwasser: 3D numerische Simulationen von Grundwasserströmung am New Jersey Shelf

Ziel dieser Studie ist die Erforschung der Grundwasserbewegung im New Jersey Shelf (NJS). Ende der 1970er Jahre wurde Grundwasser mit deutlich geringerem Salzgehalt als Meerwasser in zahlreichen Bohrungen entlang der U.S. Ostküste nachgewiesen - teilweise mehr als 100 km vom Festland entfernt. Besonders detaillierte Daten zur Porenwassersalinität wurden im Rahmen von IODP Leg 313 am NJS gewonnen: Sie zeigen abrupte vertikale Salinitätskontraste an allen drei Bohrlokationen. Verschiedene Autoren erklären die Entstehung von küstenfernem Süßwasser im NJS durch rezenten meerwärts gerichteten Grundwasserfluss oder führen sie auf ein erhöhtes hydraulisches Potential während der letzten Eiszeit zurück. Zur Klärung welcher dieser Prozesse zur Entstehung von küstenfernem Süßwasser geführt hat, soll im Rahmen dieser Studie, auf der Basis eines detaillierten 3D hydrogeologischen Modells, die Grundwasserströmung im NJS numerisch simuliert werden. Es werden folgende Arbeitshypothesen aufgestellt: 1. Küstenfernes Süßwasser im NJS entstand während der letzten Eiszeit. 2. Ablandige Grundwasserströmung reicht gegenwärtig nicht bis zu 100 km von der Küste. 3. Küstenferne Süßwasservorkommen sind auf Sedimentschichten mit niedriger Permeabilität beschränkt. Die verfügbare Datengrundlage ist exzellent und besteht neben petrophysikalischen Messungen und Bohrlochdaten vergangener ODP/IODP Expeditionen aus zahlreichen 2D seismischen Profilen. Das gleichnamige Projekt wird seit Mitte 2015 an der TU Freiberg und seit Ende 2016 an der RWTH Aachen durch die DFG gefördert. Eine Tiefenmigration reflexionsseismischer Profile ist nahezu abgeschlossen und bildet die Grundlage zur Erstellung eines hydrogeologischen Modells. Auf Basis einer sequenz-stratigraphischen Interpretation der seismischen Daten und unter Berücksichtigung der aus Bohrlochdaten abgeleiteten Korngrößenverteilung am NJS, wurde mittels geostatistischer Verfahren ein komplexes, über 30 Millionen Gitterpunkte umfassendes und geologisch plausibles 2D Faziesmodell erstellt. Dabei ist jeder Faziestyp durch bohrloch- und literaturgestützte petrophysikalische Eigenschaften charakterisiert. Nach sorgfältiger Definition von Anfangs- und Randbedingungen, bildet dieses Modell die Grundlage für vorläufige numerischer Simulationen. Die Simulationsergebnisse sind vielversprechend und deuten auf eine Bestätigung der oben genannten Hypothesen hin. Zukünftig geplante Arbeiten umfassen eine Erweiterung des hydrogeologischen Modells in 3D unter Einbeziehung multiple-point-geostatistischer Methoden. Dabei sollen auch die durch eine AVO-Analyse der Seismik abgeleiteten petrophysikalischen Parameter berücksichtigt werden. Die Überprüfung der oben genannten Hypothesen wird durch numerische Simulationsrechnung auf Basis des finalen 3D Modells erfolgen. Die Ergebnisse dieser Studie können zu einem verbesserten Verständnis von meerwärts gerichtetem Grundwassertransport im Allgemeinen beitragen.

Eine neuartige Beschreibung des Wärmetransports zwischen Flüssigkeiten und rauen Rissflächen in porösen Gesteinen

Wärmetransfer in geklüfteten porösen Medien ist ein essentieller Prozess im Erdinnern. Er ist Triebkraft für zahlreiche Naturphänomene, wie Geysire, hydrothermische und vulkanische Systeme, als auch für Naturgefahren wie Gesteinsbrüche und Erdbeben. Er bildet die Grundlage für industrielle Anwendungen, etwa im Bereich Geothermie. Die Fließbewegung in Risssystemen kann recht gut beschrieben werden. Es existiert eine breite Auswahl an Ansätzen, u. a. aus der Kontinuumsmechanik, multiple Medien und die explizite Beschreibung von Klüften. Allerdings haben existierende Modelle für den Wärmetransfer zwei große Schwachpunkte: Oft wird ein thermisches Gleichgewicht zwischen Gestein und Fluid vorausgesetzt und die Rolle der Risse vernachlässigt. Beides ist eng miteinander verbunden, da Risse mit hohen Fließgeschwindigkeiten eine Ursache für ein thermisches Ungleichgewicht sind und eine passende Beschreibung des Wärmetransfers in Rissen fehlt. In diesem Projekt wird ein neuartiges Modell entwickelt, um Wärmetransfer in Klüften unter Berücksichtigung mikroskopischer Rissoberflächenmorphologie zu beschreiben. Aktuelle Laborexperimente erlauben eine Analyse dieser Prozesse in bisher unbekannter Genauigkeit und ermöglichen einen tief gehenden Vergleich mit theoretischen Modellen. Oberflächenrauhigkeit, Öffnungsweite und Kontaktfläche beeinflussen Fließfeld wie Wärmetransfer. Gleichzeitig verändert Temperatur die Fluideigenschaften, und Risscharakteristiken hängen vom Spannungsfeld ab, welches wiederum von Temperatur und Fluiddruck abhängt. Ein passendes Wärmemodell muss daher auch hydraulische und mechanische Prozesse berücksichtigen, was in einem vollständig gekoppelten thermisch-hydraulisch-mechanischen Modell resultiert. Die theoretische Modellentwicklung beginnt mit einfachen Geometrien, um gute Vergleichbarkeit mit Laborergebnissen von externen Projektpartnern im Centimeterbereich zu ermöglichen. Daran schließt sich die Erweiterung auf komplexe Kluftnetzwerke an. Um auch für Anwendungen mit hunderten Metern Ausdehnung geeignet zu sein, wird das Modell mit statistischen Methoden skaliert und durch andere Parameter beschrieben, wie der Rissdichte. Anwendung auf Feldskala und Vergleich mit Messungen dienen zur Evaluation. Eine Einbindung des entwickelten Modells in eine Auswahl an wissenschaftlichen Softwareprogrammen ist geplant. Dieser innovative Ansatz kann in unterschiedlichen Modellen unabhängig von der gewählten Rissrepräsentation verwendet werden. Das vorgeschlagene Projekt schließt die lang existierende Lücke einer über die Skalen konsistenten Beschreibung des Wärmetransfers in geklüfteten porösen Medien unter Berücksichtigung statischer wie dynamischer Größen. Erstmals wird es möglich sein den Einfluss und die Interaktion einzelner Bedingungen und Gegebenheiten auf den Wärmetransfer und -transport im Detail zu untersuchen. Die Bestimmung der transferierten Wärme in natürlichen und industriellen Anwendungen wird sich dadurch signifikant verbessern.

Sonderforschungsbereich Transregio 172 (SFB TRR): Arktische Verstärkung: Klimarelevante Atmosphären- und Oberflächenprozesse und Rückkopplungsmechanismen (AC)3, Teilprojekt A01: Arktische Aerosol-, Wolken- und Strahlungseigenschaften von bodengebundenen Beobachtungen und Modellen

Wolkenbeobachtungen werden mit Aerosolmessungen auf dem Forschungsschiff (FS) Polarstern und einer Eisstation synchronisiert um den direkten und indirekten Aerosoleffekt zu identifizieren und zu quantifizieren. Diese werden mit dem Zustand der Atmosphäre in Zusammenhang mit deren Strahlungsflüssen am Boden in Verbindung gebracht. Strahlungsschließungsstudien werden durchgeführt um die fernerkundeten Aerosol- und Wolkeneigenschaften mit den in-situ Messungen der Bodenstrahlungsflüsse zu verbinden

Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm, Teilprojekt: Fluidbewegungen in Westböhmen/ Vogtland: Identifizierung und Dynamikabbildung (Bohemian FluID)

Die Installation von drei seismischen 3D Arrays bildet eine Hauptkomponente von ICDP-Eger Rift zur Beobachtung und Untersuchung geodynamischer Prozesse in Westböhmen/ Vogtland. Im Rahmen dieses Antrags werden wir den Oberflächenteil eines 3D Arrays installieren und mit einem zusätzlichen mobilem Array seismologische Beobachtungen an strategischen Punkten durchführen. Das Projekt befasst sich mit der Untersuchung und Abbildung der zeitlichen und räumlichen Dynamik von tiefen (mehrere Kilometer) Fluidkanälen in Westböhmen/ Vogtland. Dafür werden wir das seismische Rauschen (Noise) benutzen, dass durch die Bewegung von Fluiden entsteht. Vorhergehende Studien haben die 'Matched Field Processing' (MFP) Methode als vielversprechendes Werkzeug zur Untersuchung der zeitlichen und räumlichen Verteilung von mit Fluidbewegungen in Zusammenhang stehenden Rauschquellen identifiziert. Bei dieser Methode wird das an einem Array aufgezeichnete seismische Wellenfeld mit einem modellierten verglichen und dadurch Rauschquellen im Untergrund geortet. Wir werden die MFP Methode dahingehend erweitern, dass diese Ortung auch für mehrere Kilometer tiefe Quellen verbessert wird. Im Projekt werden wir seismologische Daten von einem permanenten Oberflächenarray, welches an dem ICDP Bohrstandort S1 (Landwüst, Vogtland) installiert wird, sowie von einem mobilen Array, als auch von - sobald vorhanden - Bohrlochinstallationen verwenden. Wir haben für unsere Untersuchungen zwei Zielregionen nördlich und südlich von Nová'3 Kostel identifiziert. Südlich von Nová'3 Kostel haben aktuelle seismologische und magnetotellurische Untersuchungen einen Fluidkanal entdeckt, der in direkten Zusammenhang mit den in der Region auftretenden Schwarmbeben gebracht wurde. Die Region nördlich von Nový Kostel hat in den letzten Jahren eine erhöhte seismische Aktivität vor allem in flacheren Tiefenbereichen gezeigt und ist momentan aktiv. Da wir für beide Regionen einen direkten Zusammenhang der Beobachtungen mit aktiven Fluidbewegungen vermuten, werden wir die MFP Methode dort zur Untersuchung der räumlichen und zeitlichen Dynamik einsetzen. Für diesen Zweck wird auch eine Weiterentwicklung der Methode mit Hilfe von Muliarrayverfahren, gezielter Gewichtung der verwendeten Daten, um das Auflösungsvermögen der Methode zu verbessern und der Berücksichtigung von Effekten komplexer Untergrundmodelle betrieben. Zusätzlich werden wir Langzeitbeobachtungen von tief liegenden Fluidkanälen sammeln und mit einem besonderen Augenmerk auf den Zusammenhang ihrer zeitlichen Variabilität mit dem Auftreten von Schwarmbeben auswerten. Insgesamt wird durch diesen Antrag der zur Verfügung stehende Methodenpool im ICDP-Eger Rift zur Untersuchung der geodynamischen Prozesse, welche in engem Zusammenhang zu Fluidbewegungen und Schwarmbeben in der Region Westböhmen/ Vogtland stehen, erweitert.

1 2 3 4 521 22 23